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ABSTRACT

The notion of the “biological individual” is crucial to studies of genetics, immunology, evolution,
development, anatomy, and physiology. Each of these biological subdisciplines has a specific concep-
tion of indwiduality, which has historically provided conceptual contexts for integrating newly
acquired data. During the past decade, nucleic acid analysis, especially genomic sequencing and
high-throughput RNA techniques, has challenged each of these disciplinary definitions by finding
significant interactions of animals and plants with symbiotic microorganisms that disrupt the
boundaries that heretofore had characterized the biological individual. Animals cannot be considered
individuals by anatomical or physiological criteria because a diversity of symbionts are both present
and functional in completing metabolic pathways and serving other physiological functions. Simi-
larly, these new studies have shown that animal development is incomplete without symbionts.
Symbionts also constitute a second mode of genetic inheritance, providing selectable genetic variation
for natural selection. The immune system also develops, in part, in dialogue with symbionts and
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thereby functions as a mechanism for integrating microbes into the animal-cell community. Recogniz-
ing the “holobiont™—the multicellular eukaryote plus its colonies of persistent symbionts—as a
critically important unit of anatomy, development, physiology, immunology, and evolution opens up
new investigative avenues and conceptually challenges the ways in which the biological subdisciplines

have heretofore characterized living entities.

N THE EARLY modern period, mirroring

the appearance of the independent citizen,
the notion of the autonomous individual agent
framed a biology that was organized around
the study of particulate, interacting, living enti-
des (Taylor 1989). Anatomical, physiological,
and developmental criteria were conceived
solely in terms of individuals, and the Darwin-
ian view of life regarded aggregates of individ-
uals of common ancestry as identifiable units
in competition with one another. With the un-
derstanding that plants and animals are com-
prised of living “cells,” a new orientation
quickly developed concerning the integration
of physiological processes and anatomic units,
but still these cells were understood as agents
in constructing and sustaining a singular or-
ganism that would in turn maintain its auton-
omy and integrity. Only with the emergence of
ecology in the second half of the 19th century
did organic systems—comprised of individu-
als in cooperative and competitive relation-
ships—complement the individual-based
conceptions of the life sciences.

The development of such complex formu-
lations of individuals and systems depends on
myriad factors, of which technology constitutes
a major component in the characterization
process. We perceive only that part of nature
that our technologies permit and, so too, our
theories about nature are highly constrained
by what our technologies enable us to observe.
But theory and technology act on each other
reciprocally: we construct those technologies
that we think are important for examining a
particular perspective of nature. The develop-
ment of the microscope, for example, revealed
the hitherto invisible microbial world of bacte-
ria, protists, and fungi; and the descendants
of that instrument further allowed the disco-
very of subcellular organelles, viruses, and
macromolecules. New technologies such as
polymerase chain reaction, high-throughput
RNA analysis, and next generation sequencing
continue to dramatically transform our con-

ceptions of the planet’s biosphere. They have
not only revealed a microbial world of much
deeper diversity than previously imagined, but
also a world of complex and intermingled rela-
tionships—not only among microbes, but also
between microscopic and macroscopic life
(Gordon 2012). These discoveries have pro-
foundly challenged the generally accepted
view of “individuals.” Symbiosis is becoming a
core principle of contemporary biology, and it
is replacing an essentialist conception of “indi-
viduality” with a conception congruent with
the larger systems approach now pushing the
life sciences in diverse directions. These find-
ings lead us into directions that transcend the
self/nonself, subject/object dichotomies that
have characterized Western thought (Tauber
2008a,b).

This reorientation is not new for the micro-
bial or botanical sciences. In the world of pro-
tists, hereditary symbiosis, the inheritance of
acquired symbionts is legion. In the microbial
world, “you are what you eat” can be taken
literally. In botanical science, the concept of
the autonomous individual has also been
challenged by discoveries concerning rhizo-
bia, mycorrhizae, and endocytic fungae.
Nonetheless, zoologists long subscribed to a
more individualist conception of the organ-
ism, since the role of microbial symbionts
had been more difficult to document in an-
imal evolution (Sapp 1994, 2002, 2009). We
report here that the zoological sciences are
also finding that animals are composites of
many species living, developing, and evolv-
ing together. The discovery of symbiosis
throughout the animal kingdom is funda-
mentally transforming the classical concep-
tion of an insular individuality into one in
which interactive relationships among spe-
cies blurs the boundaries of the organism
and obscures the notion of essential identity.

Our aims in this overview are to: outline
the data demonstrating that animals are
symbiotic complexes of many species living
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together; demonstrate how a thoroughly
symbiotic perspective opens important ar-
eas of research and offers fundamentally
new conceptions of the organism; and ex-
plore what this new evidence means for
biology, medicine, and for the conserva-
tion of biodiversity.

CRITERIA FOR INDIVIDUALITY

‘What would biological science be if symbio-
sis were seen as the rule, not the exception?
What scientific questions would become para-
mount and how might this change our view of
life if intimate cooperation between species
were a fundamental feature of evolution? What
could “individual selection” mean if all organ-
isms were chimeric, and there were no real
monogenetic individuals?

There are many ways in which the term
“individual” is used in biology. Individuals
can be defined anatomically, embryologi-
cally, physiologically, immunologically, ge-
netically, or evolutionarily (see Geddes and
Mitchell 1911; Clarke 2010; Nyhart and Lid-
gard 2011). These conceptions, though, are
not wholly independent of one another. Nor
have these definitions of individuality often
been explicitly articulated as such. Indeed,
even in biology today there is a dearth of
definition in what constitutes the individual
organism. Still, definitions are implied, and
each stems from the common tenet of ge-
nomic individuality: one genome/one or-
ganism. As such, all classical conceptions of
individuality are called into question by evi-
dence of all-pervading symbiosis.

ANATOMICAL INDIVIDUALITY

Anatomically, the individual animal is re-
garded as a structured whole. Yet, data from
PCR show that the cells and bodies of animals
are shared with numerous “species” of bacteria
and other microbes. In some sponges, nearly
40% of the volume of the organism is com-
prised of bacteria, which contribute signifi-
cantly to host metabolism (Taylor et al. 2007).
The algal symbiont, Symbiodinium, provides up
to 60% of the nutrients needed by its host coral
(the term “host” is used here in the classical
sense to denote the larger, eukaryotic, multi-
cellular organism in which the “symbiont”

SYMBIOTIC VIEW OF LIFE

327

resides). When this symbiosis is broken by a
prolonged increase in sea-surface tempera-
tures, corals “bleach.” They lose their algal sym-
bionts and die. Similarly, the entity we call a
cow is an organism whose complex ecosystem
of gut symbionts—a diverse community of cel-
lulose-digesting bacteria, ciliated protists, and
anaerobic fungi—informs its specialized anat-
omy, defines its plant-digesting physiology, reg-
ulates its behaviors, and ultimately determines
its evolution (Kamra 2005).

In addition to the mitochondrial vestiges
of ancient symbiosis, thousands of bacterial
“species” (themselves genetic composites)
live in intimate association with our own
eukaryotic cells. Estimates that 90% of the
cells that comprise our bodies are bacterial
(Backhed et al. 2005; Ley et al. 2006) belie
any simple anatomical understanding of
individual identity. Metagenomic sequenc-
ing (Qin et al. 2010) has shown that each
human gut has entered into a persistent part-
nership with over 150 species of bacteria,
and that the human species maintains about
1000 major bacteria groups in our gut micro-
biome. The gene set contained by this sym-
biotic metagenome is about 150 times larger
than that of the human eukaryotic genome.
And this does not include the symbionts of
human airways, skin, mouth, or reproductive
orifices.

Mastotermes darwiniensis, a termite of north-
ern Australia, may claim the title of “poster
organism” for the chimeric individual. The
worker termites eat trees and entire homes,
digesting the cellulose in their guts and con-
structing elaborate subterranean nests. But as
Lewis Thomas (1974) and Lynn Margulis and
Dorion Sagan (2001) have asked: What consti-
tutes the individual organism? How can a
worker termite be considered an individual
when it is the hive that is the reproductive unit
of the species, and the worker cannot even
digest cellulose without its gut symbiont, Mux-
otricha paradoxa, which is itself a genetic com-
posite of at least five other species? Neither
humans, nor any other organism, can be re-
garded as individuals by anatomical criteria. To
capture this complexity, the term “holobiont”
has been introduced as the anatomical term
that describes the integrated organism com-
prised of both host elements and persistent
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populations of symbionts (Rosenberg et al.
2007).

DEVELOPMENTAL INDIVIDUALITY

The developmental view of animal individual-
ity was originally proposed by Thomas Huxley
in his published lecture, “Upon Animal Indi-
viduality” (Huxley 1852). A variant of the ana-
tomical version of biological individuality, the
individual animal proposed here is understood
to be that which proceeds from ovum to ovum.
Yet, this view of life is belied by evidence that
what we understand to be the “individual” de-
velops as consortia of animal cells and mi-
crobes (McFall-Ngai 2002; Gilbert and Epel
2009; Fraune and Bosch 2010; Pradeu 2011).
Indeed, the development of both vertebrates
and invertebrates (especially larval and postem-
bryonic development) is predicated on int-
mate relations with microbes.

In some instances, the symbiosis may be par-
asitic, one organism benefiting at the expense
of another. For example, the development of
the European blue butterfly Maculinea arion
requires that the female lays her eggs on thyme
plants. The larvae, however, do not eat thyme,
but drop to the ground, where they produce a
mixture of volatile chemicals mimicking the
smell of the larvae of the ant species Myrmica
sabuleti. Patrolling Myrmicae mistake the but-
terfly larva as one of their own, and carry it into
the ant nest. Once in the nest with the ant
larvae, the caterpillar is fed by the workers,
eventually eating young ants until it is ready to
pupate. It undergoes metamorphosis in the
ant colony and emerges as an adult (Thomas
1995; Nash et al. 2008). This type of lifecycle
symbiosis occurs throughout marine inverte-
brates, where larvae require cues, often from
their food sources, in regard to where and
when to settle and undergo metamorphosis.

The importance of symbiotic organisms
for the completion of host life cycles is also
evident in parasitic worms, where bacteria
are crucial for embryogenesis and molting
(Hoerauf et al. 2003; Coulibaly et al. 2009)
and in salamander development, where
symbiotic algae on the egg jelly produce
the oxygen necessary for the survival of the
spotted salamander embryos (Olivier and
Moon 2010; Kerney et al. 2011).

In numerous organisms, the develop-
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ment of particular organs is predicated on
chemical signals from symbionts (Douglas
1988, 2010). For example, the ovaries of
the parasitoid wasp, Asobara, undergo apo-
ptosis if signals from their Wolbachia symbi-
onts are lacking (Pannebakker et al. 2007).
And the newborn of the squid Euprymna
scolopes lacks a light organ, which is devel-
oped in cooperation between the squid
and the luminescent bacteria ( Vibrio fisheri)
absorbed by its ventral epithelium (McFall-
Ngai et al. 2012). Without the bacteria, the
organ does not develop.

In “germ-free” asymbiotic mice, the de-
velopment of the immune system and the
digestive system cannot be completed with-
out gut bacteria (Ley et al. 2006, 2008; Lee
and Mazmanian 2010). Rather, these mice
have insufficient intestinal capillaries, poorly
developed or absent gut-associated lymphoid
tissue, and a diminished T-cell repertoire
that gives them an immunodeficiency syn-
drome (Stappenbeck et al. 2002; Rhee et al.
2004; Niess et al. 2008; Duan et al. 2010). In
zebrafish, microbes regulate (through the
canonical Wnt pathway) the normal prolifer-
ation of the intestinal stem cells. Without
these microbes, the intestinal epithelium has
fewer cells, and it lacks goblet cells, entroen-
docrine cells, and the characteristic intesti-
nal brush border enzymes (Rawls et al. 2004;
Bates et al. 2006).

Microbial symbionts appear to be a nor-
mal and necessary part of the life cycle of
all mammals, which acquire the microbes
as soon as the amnion breaks or when in-
fants suckle or hug. The microbes colonize
the guts and induce appropriate gene ex-
pression in the intestine of the newborn
(Hooper et al. 2001). In the developing
guts of mice and zebrafish, hundreds of
genes are activated by bacterial symbionts
(Hooper et al. 2001; Rawls et al. 2004). The
coevolution of mammals and their gut bacteria
has in effect resulted in the “outsourcing” of
developmental signals from animal cells to mi-
crobial symbionts. Thus, the symbionts are in-
tegrated into the normal networks of animal
development, interacting with the eukaryotic
cells of their “host” (Gilbert 2001, 2003; McFall-
Ngai 2002). Development then becomes a
matter of interspecies communication. We are
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not individuals from the viewpoint of develop-
mental biology.

PHYSIOLOGICAL INDIVIDUALITY

Since the classical writings of Henri Milne-
Edwards (1827) and Rudolf Leuckart (1851),
the physiological view of animal individuality re-
gards the organism as comprised of parts that
cooperate for the good of the whole. Complex-
ity of animal organization is accompanied by
the increasing division of labor among or-
gans, a concept derived from Adam Smith’s
conception that socioeconomic progress in
complex societies results from the division of
labor (Limoges 1994). In the post-Darwinian
era, this individualistic view of the organism
extended to the organization of the cell, as
well as projected onto the organism formed
by intercellular relations. Accordingly, all com-
plex organization resulted from the struggle
for existence, providing an everincreasing in-
tegration through a division of labor (Sapp
1994, 2003). A common assumption underlays
this classical conception, namely, that each or-
ganism is derived from one germplasm, the
zygote.

Yet, far removed from this classical con-
ception, a small but growing body of evi-
dence accumulated, which reveals that this
physiological division of labor could also
be accomplished by different species living
together, as exemplified by the discoveries,
in the latter 19th century, of the duality of
lichens, of fungi living in the roots of or-
chids and forest trees, of nitrogen-fixing
bacteria in root nodules of legumes, and of
algae living inside the cells of translucent
cnidarians. Later, in the early 20th century,
findings that microbes inherited through
the eggs of insects caused morphological
changes with no apparent pathogenic effects
on their host further suggested how organ-
isms living in close proximity shared their
respective physiologies (Buchner 1965; Sapp
1994).

Still, evidence of such intimate microbial
interactions, especially with animals, was rela-
tively scarce, and the evidence for the life-
giving properties of microbial infections could
not compete with the great success and impor-
tance of the germ theory of disease. Indeed,
the view of microbial infections as disease-
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causing “germs” defined the antagonistic view
that microbes were “the enemy of man.”
Current molecular biological research has
underscored how symbionts can become part
of an obligatorily integrated commonality
(MacDonald et al. 2011; Vogel and Moran
2011). For example, the “genome” of the
mealy bug Planococcus is the product of a
nested symbiosis: animal cells harbor the be-
taproteobacterium Tremblaya princeps, which
in turn harbor a gammaproteobacte-
rium, provisionally named Moranella en-
dobia. The synthesis of amino acids appears to
be coordinated between these two microbes
and the host. Three of the enzymes needed for
phenylalanine biosynthesis are encoded by the
Moranella bacterium, five other enzymes are
encoded by the Tremblya bacterium, and a fi-
nal enzyme in this pathway is encoded by the
insect (McCutcheon and von Dihlen 2011).
Note, the genomes of all three organisms have
been altered through this symbiosis. Such met-
agenomic sequencing has demonstrated the
importance of microbes in insect physiological
systems (Vasquez et al. 2012; Weiss et al. 2012).
Microbial symbiosis also has been dem-
onstrated in vertebrate physiology. Lipid
metabolism, the detoxification of xenobiotics,
regulation of colonic pH, vitamin synthesis,
and intestinal permeability are each biological
functions provided to the holobiont by bacte-
ria (Nicholson et al. 2012). Specific bacteria
also induce the formation of regulatory T-lym-
phocytes that suppress potentially dangerous
immune responses that can cause inflamma-
tory bowel disease (Mazmanian et al. 2008;
Chow et al. 2010). The role of symbiotic mi-
crobes in mammalian disease prevention is
well recognized today (Mazmanian et al. 2008;
Lee and Mazmanian 2010; Ballal et al. 2011),
and new metagenomic sequencing continues
to provide new insights into the relationships
between human physiological states and the
microbial populations found in humans
(Turnbaugh and Gordon 2009; Greenblum et
al. 2012). And there is reciprocity. The com-
mon gut symbiont Bacteroides thetaiotaomicron
induces angiogenin4 gene expression in the
intestinal Paneth cell. This protein functions to
produce new blood vessels. But it is also a bac-
teriocidal factor against Listeria, the major com-
petitor of Bacleroides and a gut pathogen (Cash
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etal. 2006). From these examples, we may con-
clude that on classical physiological grounds,
animals are not individuals.

GENETIC INDIVIDUALITY

The classical genetic conception of the in-
dividual is rooted in sex and based on the in-
heritance of the chromosomal complement
acquired at fertilization. That conception of
the genetic individual, at the basis of the Weis-
mannian biology of the 19th and 20th centu-
ries (Weismann 1893), was fortified by classi-
cal Mendelian genetics and later came to
include the mitochondrial chromosome as
well (Chapman et al. 1982; Avise 1991). In
population genetics, this genetic identity su-
persedes all others, as it is postulated to con-
tain the allelic variations that are the bases of
phenotypic variation.

The one-genome/one-organism doctrine of
classical genetics has been eclipsed by studies
of hereditary symbiosis. Microbial symbionts
form a second type of genetic inheritance
(Moran 2007; Gilbert 2011). Arthropods often
acquire their symbionts vertically though the
maternal germline as well as horizontally from
the environment. Mammals obtain them
through the maternal reproductive tract and
from the mutual licking and grooming follow-
ing birth. The microbial symbionts represent
diverse genomes; and those genomes can also
be coselected together with the genome of
their host. In aphids, symbiotic bacteria pro-
vide selectable allelic variation (thermotoler-
ance, color, parasitoid resistance) that enable
some hosts to persist better under different
environmental conditions (Dunbar et al. 2007;
Tsuchida et al. 2010). There is also allelic vari-
ation in the human microbiome. The genes of
Bacteroides plebeius differ in different human
populations. The Japanese strain contains at
least two genes (horizontally transferred from a
marine relative) that enable the bacteria to
metabolize complex sugars, such as those
found in seaweeds (Heheman et al. 2010). In-
deed, the Human Microbiome Project (Turn-
baugh et al. 2007) has applied ecological
metagenomics to explore the microbial
world within the human species.

The evolutionary importance of microbial
symbionts goes well beyond increasing the fit-
ness of hosts or providing hereditable variation
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that might stabilize a community. Recent stud-
ies in Drosophila, for instance, demonstrate that
the symbionts (not alleles of nuclear genes)
provide important pheromonal cues necessary
for mating preference (Sharon et al. 2010).
Symbionts can therefore provide selectable al-
lelic variation such that the entire group—the
holobiont—is the selectable entity rather than
either host or symbiont alone (see Zilber-
Rosenberg and Rosenberg 2008; Gilbert et al.
2010). Thus, microbes provide a second hered-
itary system that enables holobiont survival
and selection. Indeed, as the mealy bug ex-
ample mentioned earlier demonstrates, ge-
nomes evolve in such a manner that they
need their partners to achieve complex ge-
netic integration. None of the three species
in that symbiosis has a “complete” genome.
It is the holobiont that does. We are not
individuals by genetic criteria.

IMMUNE INDIVIDUALITY

The “immune self” model of individua-
lity, first proposed by Sir McFarlane Burnet
(Burnet and Fenner 1949), portrays the im-
mune system as a defensive network against a
hostile exterior world. The immune individual
rejects anything that is not “self.” Indeed, the
discipline of immunology has been called “the
science of self/non-self discrimination” (Klein
1982). In this view, the immune system is a
defensive “weaponry,” evolved to protect the
body against threats from pathogenic agents:
worms, protists, fungi, bacteria, and viruses. Ac-
cordingly, if it were not for the immune system,
opportunistic infections would prevail (as they
do in cases of immune deficiencies) and the
organism would perish.

In a fascinating inversion of this view of life,
however, recent studies have shown that an
individual’s immune system is in part created
by the resident microbiome. In vertebrates, the
gut-associated lymphoid tissue is specified and
organized by bacterial symbionts (Rhee et al.
2004; Lanning et al. 2005). The immune sys-
tem does not function properly and its reper-
toire is significantly reduced when symbiotic
microbes are absent in the gut (see Lee and
Mazmanian 2010; Round et al. 2010). Simi-
larly, Hill et al. (2012) have shown that micro-
bial symbionts provide developmental signals
that limit the proliferation of basophil progen-
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itor cells and thereby prevent basophilinduced
allergic responses. Lee and Mazmanian con-
clude, “multiple populations of intestinal im-
mune cells require the microbiota for their
development and their function” (2010:1768).

This ability of symbionts to condition and
promote the immune capacities of the holo-
biont is not exclusive to vertebrates. In several
insect species, bacteria of the genus Wolbachia
appear to play an important role in antiviral
protection (Teixeira et al. 2008; Moreira et
al. 2009; Hanson et al. 2011). In plants, en-
dophytes, the diverse and widespread fungi
that live out most of their life cycle in plant
tissue, provide enhanced pathogen immu-
nity to their host; they can also ward off her-
bivores, among other benefits (Herre et al.
2007). Thus, immune systems are created, in
part, by microbial symbionts. We will return
to these newer concepts of immunity below,
in a discussion of how the holobiont commu-
nity can be an evolutionarily viable “individ-
ual.”

EvoLUTIONARY INDIVIDUALITY: THE
REVISED IMMUNE INDIVIDUAL

Biological individuality has also been de-
fined evolutionarily, as that which can be
selected (see Maynard Smith and Szath-
mary 1995; Michod and Roze 1997; Okasha
2006). Usually, these individuals are genes
or monogenomic organisms. But, from the
above discussion, it is evident that organisms
are anatomically, physiologically, developmen-
tally, genetically, and immunologically mult-
genomic and multispecies complexes. Can it
be that organisms are selected as multigenomic
associations? Is the fittest in life’s struggle the
multispecies group, and not an individual of a
single species in that group?

An instructive example comes from studies
of the pea aphid, Acyrthosiphon pisum and the
several species of bacteria that live in its cells:
variants of Buchnera provide the aphid with
thermotolerance (at the expense of fecundity
at normal temperatures; Dunbar et al. 2007);
Rickettsiella provides color change, turning ge-
netically red aphids green through the synthe-
sis of quinones (Tsuchida et al. 2010); and
some variants of Hamiltonella provide immunity
against parasitoid wasp infection (Oliver et al.
2009). But in the last case, the protective vari-
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ants Hamiltonella result from the incorporation
of a specific lysogenic bacteriophage within the
bacterial genome. The aphid must be infected
with Hamiltonella, and the Hamiltonella must be
infected by phage APSE-3. As Oliver et al.
(2009) write, “In our system, the evolutionary
interests of phages, bacterial symbionts, and
aphids are all aligned against the parasitoid
wasp that threatens them all. The phage is im-
plicated in conferring protection to the aphid
and thus contributes to the spread and main-
tenance of H. defensa in natural A. pisum pop-
ulations” (Oliver et al. 2009:994). But there is a
cost to the host in having this beneficial pro-
tection, for in the absence of parasitoid infec-
tion, those aphids carrying the bacteria with
lysogenic phage are not as fecund as those
lacking them. Similarly, a tradeoff occurs in
aphids that carry the thermotolerant genetic
variants of Buchnera, i.e., while more heat resis-
tant, they have less fecundity at milder temper-
atures than their sisters whose bacteria lack the
functional allele for the heatshock protein.
However, the population as a whole can survive
hot weather, which would otherwise prevent
reproduction.

This symbiotic relationship appears to
fulfill the criteria for group selection: al-
leles can spread throughout a population
because of the benefits they bestow on
groups, irrespective of the alleles’ effect on
the fitness of individuals within that group.
Except, in this case, the beneficial alleles
are genetic variations in bacterial symbionts,
which provide their hosts with a second
source of inherited selectable variation.
We are not genetic or anatomical individ-
uals; and if there is no “individual organ-
ism,” what remains of classic notions of
“individual selection”?

This moves the biological discussion of sym-
biotic associations into the venerable con-
ception of “group selection,” so abhorrent to
neo-Darwinian sensibilities, and so denigrated
by sociobiologists” conceptions based on game
theory. Most discussions of group selection
(see Williams 1966; Lewontin 1970; Hull 1980;
Keller 1999) are not germane here, because
they assume that the group in question is com-
posed of a single species. However, one im-
portant concern is relevant: cheaters. The
major problem for all group selection theo-
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ries (and the groups, themselves) are poten-
tial “cheaters,” those lower-level parts of the
group that would proclaim their own auton-
omy and that would multiply at the expense
of the others. As Stearns has pointed out,
“conflicts within lower levels and between
lower and higher levels must be suppressed
or otherwise resolved” (2007:2275).

This problem of cheaters, it has been ar-
gued, has rendered many models of group
selection mathematically untenable (see Keller
1999; Leigh 2010; Eldakar and Wilson 2011).
The problem of “cheaters” then has to be
solved in such a way that associates in a sym-
biotic relationship are under the social con-
trol of the whole, the holobiont. This strong
socializing and unifying force is found in the
immune system, and there we find a solution
to the problem of cheaters in a symbiotic
complex.

The immune system may be formulated as
having two “limbs”: an outwardlooking limb
that defines the organism as that which is to
be protected from foreign pathogens, and
an inwardlooking arm that looks for poten-
tial dangers arising from within the organism
itself (see Burnet and Fenner 1949; Tauber
2000, 2009; Ulvestad 2007; Eberl 2010; Pra-
deu 2010). This dualistic vision was the original
conception of Metchnikoff at the end of the
19th century. He regarded immunity as a gen-
eral physiology of inflammation, which in-
cluded repair, surveillance for effete, dying,
and cancer cells, as well as responsibility for the
defense against invading pathogens (Tauber
1994). This larger, systemic understanding
thus places defensive properties as only part of
a continuous negotiation of numerous interac-
tions between the organism and its biotic envi-
ronment—both “internal” and “external”
(Ulvestad 2007; Tauber 2008a,b).

If the immune system serves as the critical
gendarmerie keeping the animal and microbial
cells together, then to obey the immune system
is to become a citizen of the holobiont. To
escape immune control is to become a patho-
gen or a cancer. In cancer, such autonomously
proliferating (lower-level) cells must escape the
innate, acquired, and anoikis-mediated im-
mune systems of the host in order to survive
(Hanahan and Weinberg 2011; Buchheit et al.
2012). Infections are those microbes that
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that have similarly evaded the immune-
enforced social modes of conformity (Hoshi
and Medzhitov 2012). Most Neisseria species,
for instance, can become symbionts. The two
pathogenic Neisseria species that will not be
part of the symbiotic community (N. gonor-
rhoeae and N. meningitidis) have escaped the
social control of the holobiont by circum-
venting the immune system (Mulks and
Plaut 1978; Welsch and Ram 2008).

In some cases, the internal immune surveil-
lance of symbionts can actually be observed. In
insects, symbionts are sequestered in bacteria-
bearing host cells, called the bacteriocytes,
which, in some species, cluster together to
form a bacteriome (Buchner 1965). In weevils,
antimicrobial peptide coleoptericin-A selec-
tively targets endosymbionts within the bacte-
riocytes and inhibits their cell division (Login
et al. 2011). If the synthesis of this peptide is
blocked, the bacteria escape from the bacterio-
cytes and spread into the insect tissues. Here, it
seems that the coevolution of host and symbi-
ont has enabled the immune system to facili-
tate the endosymbiotic relationship. In squids
(McFall-Ngai et al. 2010) and mammals
(Hooper et al. 2012), elements of the host im-
mune system have been co-opted to support
the colonization, limitation, and persistence of
symbiotic bacteria within the host.

Medzhitov et al. (2012) have discussed “dis-
ease tolerance” as a strategy whereby the defen-
sive factors are minimalized to prevent damage
to the infected organism. However, what we
suggest is not merely “tolerance” toward mi-
crobes, but active recruitment of symbiotic bac-
teria by the immune system. Peterson et al.
show that IgA, in addition to its well-known
role in attacking polio virus and other patho-
gens, plays a “critical role in establishing a sus-
tainable hostmicrobial relationship” (2007:
328). Similarly, these Peyer’s Patch antibodies,
which are essential in fighting opportunistic
pathogens, appear to be involved in “the cre-
ation of an optimal symbiotic environment on
the interior of the PPs” (Obata et al. 2010:
7419). Even the TolHike receptors that medi-
ate innate immunity are utilized by Bacteroides
to establish a host-commensal relationship.
The ability of symbiotic bacteria to use the
innate and acquired immunity pathways to
initiate symbioses has led Round et al. (2011)
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to conclude that “the immune system can
discriminate between pathogens and the mi-
crobiota through recognition of symbiotic bac-
terial molecules in a process that engenders
commensal colonization” (Round et al.
2011:974). To use an anthropomorphic anal-
ogy, the immune system is not merely the
body’s “armed forces.” It is also the “passport
control” that has evolved to recognize and
welcome those organisms that help the body.

Thus, the immune system looks inward, in
surveillance, to monitor potential microbial
cheaters. The “defensive” role of immunity, so
prominent in the medical and agricultural
contexts, must be balanced from evolutionary
and ecological viewpoints. Immunity does not
merely guard the body against other hostile
organisms in the environment; it also mediates
the body’s participation in a community of
“others” that contribute to its welfare (Tauber
2000; Agrawal 2001; Hooper et al. 2001; Dale
and Moran 2006). The immune system has
learned through evolution which organisms
to exclude and kill, and which organisms
to encourage, allow entry, and support. If
accepted, the symbiont can mutually partic-
ipate in development and physiological pro-
cesses. Moreover, it can help mediate the
holobiont’s response to other organisms, ef-
fectively becoming “self.” From this vantage,
there is no circumscribed, autonomous en-
tity that is @ priori designated “the self.” What
counts as “self” is dynamic and context-
dependent.

“E pruriBus uNuM”: THE NEGOTIATED
SURVEILLANCE OF PARTS AND WHOLES

Negotiated surveillance is a general mecha-
nism that has evolved to permit the incorpora-
tion of potentially selfreplicating parts into
coherent wholes (see Maynard Smith and Sza-
thmary 1995; Michod and Roze 1997; Okasha
2003, 2006). We see this, as Lynn Margulis
(Sagan 1967) long predicted we would, in the
main transitions in evolution; for in addition to
providing variation needed for intraspecies
selection (see above), symbiosis has been criti-
cally important in macroevolutionary innova-
tion (see, for example, Margulis and Fester
1991).

First, and foremost, as mentioned above,
eukaryotic cells are themselves the result of
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several symbioses. Suggestions that their nu-
clei, mitochondria, and chloroplasts originated
from ancient symbioses had been repeatedly
postulated throughout the 20th century, but
they were dismissed and ridiculed in so much
as they conflicted with the main tenets of clas-
sical biology (Sapp 1994). The tipping point
occurred in the 1960s when mitochondria and
chloroplasts were shown to possess their own
genes and their own translation machinery.
And with that discovery, symbiosis in the origin
of the eukaryotic cell was brought to the fore of
cell biology (Sagan 1967; Margulis 1970, 1981).

Still definitively demonstrating the symbiotic
origin of eukaryotic organelles required the
development of new molecular methods for
showing evolutionary relationships in the mi-
crobial world. Methods based on comparisons
of ribosomal RNA were developed by Carl
Woese and colleagues, for exploring the hith-
erto unknown evolutionary relationships of mi-
crobes (see Sapp 2009). Those methods, when
applied to mitochondria and chloroplast ori-
gins, revealed them to be relics of formerly
free-living alphaproteobacteria and cyano-
bacteria, respectively. Today, molecular phylo-
geneticists generally agree that the nuclear
genome of the mother cell, the engulfing host,
was itself formed from the symbiotic fusion of
an Archaean and one or perhaps two other
lineages. The nature of those non-Archaean
symbionts remains a subject of discussion
among microbial phylogeneticists (Hartman
and Federov 2002; Hall 2011; see also Sapp
2005, 2009).

Second, multicellularity may also have been
initiated by interactions between bacteria and
protists. Certain species of choanoflagellates,
the unicellular clade thought to be the sister
group of multicellular animals, can be trans-
formed into multicellular organisms by inter-
actions with specific bacteria (Dayel et al.
2011). In the presence of certain bacteria, cells
remain together after cell division, and the
cells form epithelial rosettes sharing a com-
mon extracellular matrix and intercellular
bridges. Based on this finding, one mode of
multicellularity may have arisen as a conse-
quence of a multispecies association of bacteria
and protists altering cellular development.

Third, the origin of placental mammals may
have been predicated on genomiclevel inte-
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gration of exogenous DNA. Every genome is a
historical product and, just like the cell, it is
the result of ancient symbioses and horizon-
tal gene transfers. We are genomic chimeras:
nearly 50% of the human genome consists of
transposable DNA sequences acquired exoge-
nously (Lander et al. 2001; Cordaux and
Batzer 2009), possibly by the horizontal gene
transfer from microbial symbionts to ani-
mal cells (see Dunning Hotopp et al. 2007;
Altincicek et al. 2012). Although much of
this added DNA is thought to be “parasitic,”
some transposable elements may have been
critical in creating new patterns of transcrip-
tion (Sasaki et al. 2008; Oliver and Greene
2009; Kunarso et al. 2010). The emergence of
the uterus, the defining character of eutherian
mammals, appears to have been facilitated in-
dependently in several mammalian families by
transposons integrating into the regions con-
trolling the expression of the prolactin gene.
These transposons contain transcription factor
binding sites that enable the prolactin gene to
become expressed in the uterine cells (Lynch
et al. 2011; Emera et al. 2012). Moreover, this
convergent evolution of gene expression via
the insertion of transposable elements also sug-
gests that such transposons can mediate adap-
tive evolution. The selective silencing of such
transposons by DNA methylation or small in-
terfering RNAs appears to be another polic-
ing mechanism that has facilitated evolution
(Chung et al. 2008; Kaneko-Ishino and Ishino
2010; Castaneda et al. 2011).

Thus, animals can no longer be considered
individuals in any sense of classical biology: an-
atomical, developmental, physiological, immu-
nological, genetic, or evolutionary. Our bodies
must be understood as holobionts whose ana-
tomical, physiological, immunological, and
developmental functions evolved in shared re-
lationships of different species. Thus, the ho-
lobiont, with its integrated community of
species, becomes a unit of natural selection
whose evolutionary mechanisms suggest
complexity hitherto largely unexplored. As
Lewis Thomas (1974:142) commented when
considering self and symbiosis: “This is, when
you think about it, really amazing. The whole
dear notion of one’s own Self—marvelous,
old free-willed, free-enterprising, autono-
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mous, independent, isolated island of a
Self—is a myth.”

NEwW PERSPECTIVES, NEW QQUESTIONS

The understanding that symbionts are criti-
cal for animal development, health, and ho-
meostasis brings with it “new” problems and
opens up novel avenues of investigations. In
regard to evolutionary biology, much needs to
be investigated in terms of understanding the
very diversity of microbes, trying to unravel
their complex relations with each other and
with their animal host. The evolution of bacte-
rial symbionts and their animal hosts is still an
untapped research domain of central impor-
tance for evolutionary biology, medicine, and
agriculture.

The field of research on Wolbachia endosym-
bionts that has emerged over the past decade
exemplifies the importance of understanding
symbiotic associations in each of these fields.
Wolbachia are transmitted sexually through the
cytoplasm of the eggs of many species of insects
and of nematodes. Their effects range from
mutualism to parasitism. They cause cytoplas-
mic incompatibility and parthenogenesis, and
they can change male offspring to females so as
to enhance their own transmission and repro-
duction (Werren 2005). Molecular phyloge-
netic analysis has also shown that horizontal
gene transfer from Wolbachia to host ge-
nomes is widespread (Dunning Hotopp etal.
2007). Wolbachia are held to be important in
understanding rapid speciation and the rich
species diversity of insects and nematodes of
symbiosis, and also in controlling insects
pests and disease (see, for example, Brels-
foard and Dobson 2009).

In regards to medicine, first and foremost
stands the challenge of elucidating the com-
plex relationship between health, disease,
and changes in the human microbiome. The
interactions of host genome, symbionts, and
diet become critical. The genomes of certain
mice, for example, have been shown to en-
able colonization of specific gut bacteria,
which results in an obese or a lean pheno-
type, depending upon the bacteria’s ability
to utilize nutrients (Turnbaugh et al. 2006).
In zebrafish, a particular cohort of gut bac-
teria is selected when given mouse intestinal
microbes (Rawls et al. 2004, 2006). Although
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the adage “no man is island” works for hu-
man interactions, each person is precisely an
island to a bacterial cell. The island biogeo-
graphical perspectives of colonization, suc-
cession, resource allocation, and division of
functional modules may be critical in symbi-
otic relationships (see Morowitz et al. 2011;
Muegge et al. 2011; Costello et al. 2012).

This new symbiotic perspective makes sense
of certain data and provides a fresh outlook
on human anatomy and physiology. The
milk oligosaccharides produced by human
mothers cannot be utilized by newborn in-
fants; however, they serve as an excellent
food for strains of Bifidobacillus that enhance
infant nutrition (Zivkovic et al. 2011). The
vermiform appendix, long thought of as a ves-
tigial organ, may actually serve as a reservoir for
normal gut bacteria such that symbionts can be
rapidly replaced after bouts of diarrhea (Smith
et al. 2009). Diarrhea remains the leading
cause of death in children of less-developed
countries (CDC 2010), and antibioticiinduced
colitis, caused by the spread of Clostridium after
the normal symbionts have been killed, can be
cured by the low-tech procedure of fecal trans-
plants (usually from the spouse; Bakken 2011).

If we have evolved the ability to select mi-
crobial symbionts, perhaps genetically mod-
ifying these bacteria may enhance health.
The curative effect of Lactobacillus on exper-
imentally induced intestinal inflammation
can be even more pronounced by genetically
modifying the Lactobacillus to induce more
IL-10 (Mohamadzadeh et al. 2011). Also, since
microbes are in part responsible for detoxify-
ing xenobiotic chemicals, our responses to
drugs might depend on our microbial popula-
tions (Haiser and Turnbaugh 2012).

What we think is worth studying can be af-
fected by our paradigms. One of the most im-
portant areas of developmental biology has
been the study of mammalian brain formation.
Although environmental stimuli were known
to affect behaviors and learning, the possibility
that microbes could regulate neural develop-
ment had not been considered until recently.
Now, however, a microbiota-gut-brain axis
has recently been proposed (Cryan and
O’Mahony 2011; McLean et al. 2012). Germ-
free mice, for example, have lower levels of
NGF-1A and BDNF (a transcription factor and
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a paracrine factor associated with neuronal
plasticity) in relevant portions of their brains
than do conventionally raised mice. Heijtz et
al. (2011:3051) have concluded that “during
evolution, the colonization of gut microbiota
has become integrated into the programming
of brain development, affecting motor control
and anxietylike behavior.” In another investi-
gation, a particular Lactobacillus strain has been
reported to help regulate emotional behavior
through a vagus nerve-dependent regulation
of GABA receptors (Bravo et al. 2011). Investi-
gations into the regulation of brain develop-
ment by bacterial products were unthinkable
before this challenge to the prevailing para-
digm.

Conservation zoology is also greatly affected
by acknowledging the diverse effects of symbi-
ont relationships. For instance, knowledge of
symbiosis is crucial in preventing the extinction
of the spotted salamander in the central states
of America; and knowledge of the parasitic
symbiosis of Maculinea and the Myrmica ants
has been critical for the return of Maculinea to
Great Britain (Thomas 1995). In agriculture,
“curing” insects of their vital symbionts may be
an environmental friendly way of controlling
pests such as aphids. This destroying of the
host by killing the symbiont has been shown to
work in the case of Mansonella, a worm that
parasitizes humans (Coulibaly et al. 2009).

Last, this new appreciation of symbiosis,
where even microevolution might involve in-
terspecies interactions, opens up a range of
new questions for evolutionary biology. The
change of a localized, interacting, multispe-
cies collective over time has been modeled
by ecological succession, and in one of the
first formulations of ecological succession,
Clements (1916) likened succession to devel-
opment, viewing the climax community as
the adult phenotype. Each organism may
have to become modeled in a web of ecosys-
tem dynamics, where cells come from diverse
genotypes.

In the 2009 “Homage to Darwinism” de-
bate held at Oxford University, Richard
Dawkins questioned the bringing of symbi-
osis into evolutionary theory:

Take the standard story for ordinary ani-
mals, [where] you've got a distribution of
animals [and] you’ve got a promontory, or
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an island or something and so you end up
with two [geographical] distributions. And
then on either side you get different selec-
tion pressures, and so one [group] starts to
evolve this way, and [the other] one starts
to evolve that way, and what’s wrong with
that? It’s highly plausible, it’s economical,
it’s parsimonious. Why on Earth would you
want to drag in symbiogenesis when it’s so
unparsimonious and uneconomical?

To which Lynn Margulis replied, Because it’s
there (Dawkins and Margulis 2009).

And it is significant. For animals, as well as
plants, there have never been individuals. This
new paradigm for biology asks new questions
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and seeks new relationships among the differ-
ent living entities on Earth. We are all lichens.
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