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Summary

Botanical gardens make unique contributions to climate change research, conservation, and

public engagement. They host unique resources, including diverse collections of plant species

growing in natural conditions, historical records, and expert staff, and attract large numbers of

visitors and volunteers. Networks of botanical gardens spanning biomes and continents can

expand the value of these resources. Over the past decade, research at botanical gardens has

advanced our understanding of climate change impacts on plant phenology, physiology,

anatomy, andconservation. For example, researchershaveutilizedbotanical gardennetworks to

assess anatomical and functional traits associated with phenological responses to climate

change. New methods have enhanced the pace and impact of this research, including

phylogenetic and comparative methods, and online databases of herbarium specimens and

photographs that allow studies to expand geographically, temporally, and taxonomically in

scope. Botanical gardens have grown their community and citizen science programs, informing

the public about climate change and monitoring plants more intensively than is possible with

garden staff alone. Despite these advances, botanical gardens are still underutilized in climate

change research. To address this, we review recent progress and describe promising future

directions for research and public engagement at botanical gardens.
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I. Introduction

Over the past 20 years, the scientific community has described a
range of ways that climate change affects plants – influencing
phenology, physiology, anatomy, and other aspects of plant
ecology and evolution (Parmesan & Yohe, 2003; Wolkovich
et al., 2012). The timing of plant leaf out, flowering, fruiting, and
senescence are changing, as are plant functional traits and carbon
budgets (Menzel et al., 2006; Gallinat et al., 2015). Climate change
is also influencing plant conservation, with biologists taking actions
to identify and preserve plant species most threatened by changing
environmental conditions (Salguero-G�omez et al., 2012). As part
of these efforts, scientists and educators are increasingly engaging
the public in botany and plant ecology, including through
community and citizen science initiatives aimed at tracking plant
responses to climate change (Ellwood et al., 2017). (We use
community and citizen science to refer to projects in which the
public participates in research and data collection, sometimes as a
part of projects designedby communitymembers and sometimes as
a part of projects designed by scientists.) With the vast botanical
resources they house and the visitors they draw, botanical gardens
are uniquely suited to timely climate change research, conservation,
and public engagement (Krishnan & Novy, 2016).

In 2009, we published a New Phytologist Tansley Review
(Primack &Miller-Rushing, 2009) that highlighted the underuti-
lized capacity of botanical gardens – gardens that specialize in the
display, scientific study, and utilization of plant diversity – to
advance climate change research. In the decade since, botanical
gardens have indeed advanced climate change research, often
through the use of new or improved tools that allow researchers to
leverage the living, historical, and specimen collections of botanical
gardens. At the same time, new scientific, conservation, and public
engagement challenges have arisen that botanical gardens are
uniquely positioned to address.

Several features of botanical gardens allow researchers to answer
questions they could not elsewhere. Botanical gardens are located
around the world (Fig. 1) and have large living collections of plants
representing both diverse taxa and historical biogeographies
growing in shared conditions. As such, botanical gardens can be
used as common gardens, where researchers can conduct
unmatched comparative studies of plant physiology, anatomy,
and responses to climate change (Donaldson, 2009; Sellmann &
Bogner, 2013; Chen & Sun, 2018). Many botanical gardens also
house unique historical records – such as herbarium specimens,
photographs, and field observations – that document plant
responses to climate change over decades or centuries. Sometimes
these specimens and records are linked to individual plants with
known histories growing on garden grounds, again providing data
that are difficult to find elsewhere (Primack et al., 2004; Miller-
Rushing et al., 2006; Heywood, 2017; Lang et al., 2019). Many
botanical gardens monitor, and have historical records describing,
abiotic conditions, such as weather and air quality, which can be
used to examine plants’ responses to climate change over long
periods. Botanical gardens also facilitate connections among
botanists, ecologists, students, and volunteers investigating plants,
through place-based research networks. And by attracting millions

of visitors each year and through their connections with local
communities, botanical gardens serve as a point of outreach and
exchange with the public, providing opportunities for people to
learn about the impacts of climate change on plants and to
participate in real research through community and citizen science.

Despite the advantages of botanical gardens, we believe they
continue to be underutilized for climate change research. There is
great untapped potential for researchers and science communica-
tors to better partner with and use the resources that botanical
gardens provide, and to communicate and engage the public in the
work taking place at botanical gardens.Much of the climate change
research during the past decade at botanical gardens has focused on
woody plant collections, often at arboreta, in temperate regions. As
a result, there are great opportunities for climate change research
focusing on herbaceous species and at botanical gardens located in
tropical and polar regions.

Here we review advances in climate change research at botanical
gardens around the world, take stock of novel resources and
techniques, and describe promising future directions. We focus on
research that takes advantage of the special features of botanical
gardens – for example, diverse living collections, often with
substantial related records such as herbarium specimens and
photographs, and documentation of where source material was
collected – rather than studies that could easily have occurred at
other locations, such as studies of single species. Our goals are to
unify the climate change-related work of botanical garden
researchers and encourage new researchers to use botanical gardens
as places to study and communicate the critical questions about the
impacts of climate change on plants. We argue that botanical
gardens and researchers working at them have the resources and
expertise to address the following important questions: How do
populations and species vary in their responses to climate change?
How have individual plants responded to climate change over long
periods of time? Howwill plants respond to future climate change?
How can we best protect plant species threatened by climate
change? And how canwe effectively communicate these ideas to the
public and increase their engagement with climate change science?
Research at botanical gardens has already generated valuable
insights that will help us to answer these questions, and these efforts
are poised to offer more in the coming years and decades.

II. New methods and resources

1. New phylogenetic and comparative methods

Studies at botanical gardens can include dozens or even hundreds of
species. Examining and accounting for the evolutionary history of
those species can providemore information about why plants differ
in their responses to climate change. Recent advances in phyloge-
netic tools and trait databases have provided new opportunities for
researchers to leverage the diverse living collections and herbaria at
botanical gardens. Advances include the open-access release of
high-resolution plant phylogenies (Zanne et al., 2014; Qian & Jin,
2016), tools researchers can use to generate phylogenies (e.g. Smith
&Walker, 2019), and new eco-phylogenetic statistical approaches
for estimating and accounting for the ways species’ relatedness
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affects their comparative ecology (e.g. Orme et al., 2012; Pearse
et al., 2015). For example, prior to our review in 2009, researchers
often treated species as independent data points, despite different
levels of relatedness among those species. However, many plant
traits, including their responses to climate change, are phylogenet-
ically conserved, with close relatives sharingmore similar traits than
would be expected by chance (Webb et al., 2002; Davies et al.,
2013).Modern phylogenetic analysis can estimate the phylogenetic
patterns among species’ traits, indicating the strength of evolu-
tionary constraint on those traits and allowing for more accurate
comparisons among groups, such as deciduous and evergreen
species, different growth forms, and provenances.

The recent development of global plant trait databases, includ-
ing the TRY (Kattge et al., 2011, 2020) and BIEN (Enquist et al.,
2016; Maitner et al., 2018) databases, has further enabled
researchers to examine the ways in which functional traits and
their evolutionary historymediate relationships between plants and
their environments. For instance, the TRY database now houses

over 11 million trait records for over 250 000 plant taxa which are
available to researchers upon request. Botanical gardens have
contributed information to these databases. For understudied
species, likemany tropical species, botanical gardensmay be among
the best places to collect trait data, particularly for understudied
traits (Perez et al., 2018). Studies at botanical gardens have also
made use of these data, often in concert with phylogenetic tools, to
better understand the effects of climate change on plants (Panchen
et al., 2014; Smith et al., 2019).

Many of the examples we discuss in the following sections of this
paper use these phylogenetic and comparative methods, tools, and
databases to advance climate change research and address questions
that would be difficult or impossible to address elsewhere.

2. Growing botanical garden networks

The power of comparative analyses at single botanical gardens is
magnified by connections across gardens. Networks of botanical

(a)

(b)

Fig. 1 (a) Thousands of botanical gardens are distributed throughout the world. (b) Concentrations of species are found in botanical gardens, particularly in
Europe, North America, Eastern Asia, and Eastern Australia (fromMounce et al., 2017).
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gardens allow researchers to study the same species growing in
different locations under different present-day climate conditions.
In our previous review (Primack & Miller-Rushing, 2009) we
described the pioneering efforts and valuable long-term records
kept by the International Phenological Gardens (IPG) network,
which was founded in 1957 and spans approx. 90 locations across
Europe (Chmielewski et al., 2013). The IPG provided some of the
best early data describing plant phenological responses to climate
change and described broad patterns of variation across regions,
phenophases, taxa, and growth forms – for example, the spring
phenology of plants (leaf out, flowering) is generally more sensitive
to warming than autumn phenology (leaf senescence) (Menzel,
2000;Menzel et al., 2006; Chmielewski et al., 2013; Gallinat et al.,
2015). Recently, the network’s data have been incorporated into
larger data sets – for example, the Pan European Phenological
database (Templ et al., 2018) – and have supported a number of
larger scale studies, including those assessing nonlinear changes in
phenology, examining nonintuitive shifts in autumn phenology,
and using remote sensing to examine phenology across large
landscapes or countries (Jochner et al., 2016; Donnelly et al., 2018;
Zani et al., 2020). Newer networks and programs in the USA also
link observations across botanical gardens and other research sites –
for example, the National Phenology Network (www.usa-npn.
org), Project Budburst (www.budburst.org), and iNaturalist
(www.inaturalist.org).

Networks of botanical gardens have further expanded in the past
decade to include a network of researchers at gardens around the
world. In 2012, a network of eight botanical gardens in North
America, Europe, and Asia began a long-term collaboration to
monitor the timing of spring leaf out, summer fruiting, and
autumn leaf senescence ofmore than 1000woody plant species (see
section III, Phenology, below). The research team has been able to
study multiple seasonal events for a large number of diverse species
at locations across three continents – research that would be very
difficult to achieve without botanical gardens (Panchen et al., 2014,
2015; Gallinat et al., 2018).

3. Improved access to herbarium specimens, photographs,
and other historical records

Access to herbarium specimens, photographs, and historic obser-
vations is dramatically improving and researchers are identifying
new ways to use them to provide data critical to climate change
research, often at botanical gardens (Zohner & Renner, 2014;
Willis et al., 2017; Younis et al., 2018; Pearson et al., 2020). In the
past, researchers had to visit herbaria in person to examine large
numbers of herbarium specimens covering broad regions. Now,
tens of millions of herbarium specimens, collected from all around
the world, have been imaged and are available online (Blagoderov
et al., 2012; Soltis, 2017), including through the Global Biodiver-
sity Information Facility (Heberling et al., 2021). This facilitates
the combining of detailed observations and experiments from
botanical gardens with the broad geographical perspectives
supplied by herbarium specimens collected across regions, conti-
nents, and the world. Over the past decade researchers have
continued to use herbarium specimens, photographs, and field

observations to provide insights into plant responses to climate
change (Panchen et al., 2012; Rawal et al., 2015), even in remote
areas such as theHimalayas, where it is difficult to collect long-term
observations (Hart et al., 2014). Additional specialized collections
of preserved wood, seed, and pollen collections collected and stored
at particular gardens provide further under-explored research
opportunities.

III. Phenology

Shifts in phenology – the timing of seasonal events like leafing out,
flowering, fruiting, and leaf senescence – are among the most
immediate and easily observed impacts of climate change on plants.
However, many basic features of these shifts in plants remain
unknown, including how species vary in their phenological
sensitivity to environmental factors like temperature and precip-
itation, the extent to which evolution and environment constrain
phenology, and which traits mediate interactions between plants
and their environments. It has become increasingly common for
botanical gardens to record the phenology of their living collections
(Fig. 2), and such monitoring is often matched with a renewed
appreciation for, and rediscovery of, past records of phenological
monitoring at these gardens. This has resulted in a number of
publications demonstrating that plants at botanical gardens in
temperate regions are now flowering and leafing out earlier in the
spring than in the past as a result of warming temperatures (Tooke
& Battery, 2010; Sparks et al., 2011; Du et al., 2017).

In recent decades, researchers at botanical gardens have made
progress by comparing the phenology of species across seasons and
across gardens, identifying how phylogeny and functional traits
constrain phenology, and connecting botanical garden phenology
data to additional data sources for more integrative comparisons.

1. The complex relationship between climate and plant
phenology

The responses of plant phenology to changes in climate are complex
and vary substantially across species, locations, and seasons (Piao
et al., 2019). Depending on these factors, plant phenology may
respond to changes in temperature, precipitation, snowmelt, or
daylength – and plants may respond to cues differently in different
seasons (Basler & K€orner, 2012; Lenz et al., 2013; Flynn &
Wolkovich, 2018). For example, a study examined 10 295
Rhododendron herbarium specimens collected between 1894 and
2009 in theHimalayas and stored at a number of botanical gardens
and other herbaria (Hart et al., 2014). Their analysis showed that
over the full study period plants tended to flower earlier as a result of
warming springs, but that flowering phenology has not advanced
over the past 45 years because of the offsetting influence of warmer
springs, which tended to advance flowering, and warmer autumns,
which tended to delay flowering (Hart et al., 2014). Another recent
study, partially based on botanical garden data, found that
growing-season productivity largely regulates tree leaf senescence
phenology across Europe, suggesting that leaf senescence will occur
earlier in the year as conditions continue to warm, rather than later
in the year as previous models had suggested (Zani et al., 2020).
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2. Explaining variation in phenological responses to climate
change

Amajor challenge in plant phenology research is to disentangle the
complexity of climate–phenology relationships by examining how
and why phenological sensitivities vary across species, locations,
and seasons. A new network of eight botanical gardens studied leaf
phenology of 1597 tree, shrub and vine species, and fruit phenology
for over 400 species, growing at gardens inNorthAmerica, Europe,
and Asia (Panchen et al., 2014, 2015; Gallinat et al., 2018). This
research is unusual for the large number of species monitored at
multiple botanical gardens using a standard protocol. The design
allowed researchers to assess factors that drive variation in species
responses to climate change, resulting in five key findings.

First, the studies reveal that the timing of phenological events
varies substantially across species. For example, plant species vary
by as much as three months in their leafing out times at individual
botanical gardens, with some species leafing out in earlyMarch and
others leafing out in early June. This finding suggests that the onset
of carbon sequestration and other ecological processes associated
with leaf out also vary dramatically among species.

Second, these studies collectively show that leaf-out and fruit
phenology are constrained across species – that is, species tend to
leaf out and fruit in the same sequence in different years and at
different botanical gardens. By contrast, leaf senescence phenology
(defined as the date when 50% of leaves had changed color or had
fallen) is much more flexible and is not correlated across botanical
gardens. This result suggests that leaf senescence may respond to a

Fig. 2 Phenological studies at botanical gardens now often cover the full range of major plant phenophases, including (clockwise from top left) flowering,
fruiting, leaf senescence, leaf out, and leaf senescence.
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more varied set of environmental cues, including local site
conditions, or may be a more plastic trait compared to leaf-out
and fruit phenology. This greater complexity of leaf senescence
compared to leaf out is supported by other studies from the
individual to canopy scale (Menzel et al., 2006; Gallinat et al.,
2015; Zani et al., 2020). Botanical garden collections have
provided a unique contribution to this area of research by
expanding the taxonomic breadth, which is essential to understand
the complexity of responses.

Third, in the study of leaf out, the researchers found that species
with diffuse and semi-ring porous stem anatomy tended to leaf out
earlier than ring porous species, and species with smaller diameter
xylem vessels leafed out earlier than species with larger diameter
vessels (Panchen et al., 2014). This result is consistent with the
greater freezing tolerance of smaller vessels, which allows them to
move water to leaves earlier in the spring (Lechowicz, 1984).
Deciduous species tend to leaf out before evergreen species, both
across large taxonomic groupings, such as angiosperms vs
gymnosperms, andwithin particular genera, such asRhododendron,
which include deciduous and evergreen species. This research
informs predictions of which species will be better able to adapt to
changing climate conditions, as field studies suggest that plant
species with the ability to adjust their phenology are more likely to
persist in a changing climate (Willis et al., 2008).

Fourth, the studies found that leaf out and fruiting exhibit
moderate to strong phylogenetic signals, while leaf senescence does
not (Panchen et al., 2014, 2015; Gallinat et al., 2015). In other
words, closely related species tend to leaf out and fruit at similar
times to one another, but this is not the case for leaf senescence. For
example, phylogenetic analysis demonstrated that certain clades
tend to leaf out early (such as the Rosaceae and the Dipsacales,
including Lonicera andViburnum) and other clades tend to leaf out
late (such as the Ericaceae and the Fagales, including Fagus and
Quercus; Fig. 3; Panchen et al., 2014). A separate study at the Forest
Botanical Garden of Heilongjiang Province, China also found that
the responses of flowering and leaf-out phenology are also strongly
phylogenetically conserved among 52 woody species (Du et al.,
2017). Together, these results suggest that there are evolutionary
constraints on flowering, leaf-out, and fruiting times, which may
limit the extent to which phenology shifts under climate change.

Fifth, researchers have found that biogeography of species
explains some of the variation in phenology. Within particular
genera and families, species of eastern North America tend to leaf
out later in the spring than species from Europe and East Asia
(Zohner&Renner, 2017), whichmay reflect the fact that themore
variable weather of eastern North America, and greater possibility
of late-spring frosts, has selected for greater winter chilling and
spring forcing requirements to help plants avoid damage. A further
study at the Munich Botanical Garden showed that species of
easternNorth America weremore likely to display red coloration in
their leaves during senescence compared to species of Europe
(Renner & Zohner, 2019), perhaps due to the photoprotective
function of these pigments during the bright and cold autumn
season of eastern North America (though see Pena-Novas &
Archetti, 2020). Related research from botanical gardens and the
wild shows that flowering phenologies of nonnative species were

more responsive to temperature than were those of native species
(Du et al., 2017), supporting the idea that some nonnative invasive
species may increase their competitive advantage under climate
change by shifting their phenology earlier in spring (Willis et al.,
2008; Wolkovich & Cleland, 2011).

3. Contributing to descriptions of regional changes in
phenology

Because phenological gardens have become hubs for phenology
data, researchers are increasingly using them to anchor studies of
phenological change across regions. For example, Donnelly et al.
(2018) used observations of leaf color and leaf fall phenology at four
botanical gardens in Ireland to assess the ability of satellite-based
remote sensing to capture autumn plant phenology across rural and
urban locations in the country. They found that remote sensingwas
relatively good at capturing autumn plant phenology across large
homogenous landscapes compared to more heterogenous land-
scapes.

IV. Physiology and anatomy

In addition to seasonal vegetative and reproductive timing, plants
may exhibit climate-driven changes in other functional traits.Many
anatomical and physiological plant traits vary along environmental
gradients, suggesting that they may respond to climate change and
allow plants to tolerate changing conditions around the world
(Guittar et al., 2016). The diversity of living collections and
specimens at botanical gardens can help researchers document the
plasticity and role of plant functional traits in climate responses
within and across species. Plant physiology and anatomy play key
roles in regulating how plants tolerate heat waves and drought
stress, how changing phenology influences vulnerability to frost,
and how plant growth and water use efficiency respond to
increasing levels of carbon dioxide in the atmosphere, longer
growing seasons, warmer winters, and reduced snowpack (Becklin
et al., 2016; Crous, 2019; Aparecido et al., 2021). In this section we
discuss examples of studies that have used botanical gardens to
investigate these physiological and anatomical attributes.

1. Water use efficiency and stomata

Increasing atmospheric CO2 concentrations around the world are
pushing plants to adapt their anatomy and physiology. Over the
past 100 yr, atmospheric CO2 concentrations in Massachusetts,
USA have increased by over 100 parts permillion and temperatures
have increased by 1.8°C. A study at the Arnold Arboretum of
Harvard University in Boston, Massachusetts investigated whether
plant physiology and anatomy, specifically water use efficiency and
stomata, changed over that same period (Miller-Rushing et al.,
2009). The team expected that water use efficiency would decline
over time as the concentration of atmospheric CO2 increased.
Using herbarium specimens collected from trees of 24different taxa
of Acer (maples), Quercus (oaks), and Carpinus (hornbeams)
growing on the arboretum grounds, the researchers compared
leaves from contemporary specimens with those collected decades
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ago or even a century ago from the same individual trees.
Surprisingly, they found that water use efficiency did not change
over time. Stomatal density declined over time but was compen-
sated for by a tendency for stomates to increase in size, leading to no
net change in stomatal conductance and water use efficiency
(Miller-Rushing et al., 2009). This study highlights one of many
innovative ways studies can combine analyses of living collections
and herbaria to investigate plant responses to climate change.
However, this study did require destructive sampling of herbarium
specimens for stable isotope analysis. Such destructive sampling
requires careful consideration of the amount of plant tissue
available and required, and the comparative value of using
specimens for research now or maintaining more complete

specimens for the future. In this study, the researchers used only
specimens with numerous leaves, and only removed one small leaf
fragment per specimen.

2. Frost damage and stem anatomy

One of the greatest challenges faced by temperate deciduous plants
in adapting to a changing climate is the trade-off between leafing
out early enough to obtain the greatest carbon gain and maintain a
competitive advantage, and avoiding leafing out so early as to incur
tissue damage from late-season frosts. Late frosts can damage
delicate young leaves and flowers, and while plants might be able to
produce a newflush of leaves to replace those damagedby frost, they

1

1

2 3

2 3

4

4

5

5

7

7

10

10

11

11

12

12

6

6

8

8

9

9

13

13

Rosaceae

Fabales and
Fagales

Paeonia Fraxinus Syringa and
Ligustrum

Malpighiales Dipsacales

Catalpa Ribes Larix GymnospermsEricaceae Magnolia

140

160

120

100

80

60A
dj

us
te

d 
le

af
 o

ut
 d

at
e

Taxa

Fig. 3 Spring leaf-out times are phylogenetically conserved, meaning closely related species tend to leaf out at similar times. The dotted line shows the mean
date of leaf emergence for all species in this evolutionary tree. The solid black line indicates the date after which species leaf out significantly later than the
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Gymnosperms that are primarily evergreen and leaf out late. (from Panchen et al., 2014).
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will consume important carbon resources in the process, detracting
from future growth and reproduction (Polgar & Primack, 2011;
Lenz et al., 2013). Similarly, plants will generally not replace
flowers damaged by late frosts and will lose fitness. Using data from
botanical gardens and other locations and herbarium specimens,
Zohner et al. (2020) and Park et al. (2020) examined that risk of
late-season frost to young leaves and flowers in scenarios of future
climate, finding that risk is increasing in Europe and Asia but is
declining in North America.

A research team at the Longenecker Horticultural Garden at the
University of Wisconsin-Madison Arboretum documented the
sensitivity of different woody species to unusual periods of winter
warming associated with climate change (Ladwig et al., 2019).
Following 6 d of exceptionally warm weather in February 2017,
they found that 45 of the 101 species they studied showed evidence
of budbreak, exposing them to greater risk of frost.March frosts are
common at that site and throughout theMidwest andNortheast of
the United States. Many of the precocious plants in this study
belonged to closely related species in Rosaceae and the genera
Fraxinus and Acer (Ladwig et al., 2019). In future studies, it would
be useful to determine whether these more responsive species are
more frost-tolerant than less responsive species.

3. Environmental triggers for the onset of springandautumn
activity

Spring leaf and flower phenology ofmany temperate plant species is
regulated through a combination of winter chilling, spring
warming, and daylength. Many plants have advanced their spring
phenology with warming temperatures, but recent research
suggests that these advances are beginning to decrease in strength,
possibly due to unmet chilling and photoperiod requirements (Fu
et al., 2015). Botanical gardens provide excellent sites to investigate
when, where, and for which species chilling requirements and other
factorswill limit plants’ phenological responses to climate, and how
this might affect ecological relationships within and across taxa.

For example, researchers have cut dormant twigs from plants in
the living collections at some botanical gardens and brought them
into the lab to examine the relative importance of factors
determining spring leaf out (Fig. 4). Researchers cut the twigs at
different times during the winter and early spring, placed the twigs
in water in the lab, and exposed them to different conditions, such
as different temperatures and light environments (Miller-Rushing
& Primack, 2008; Basler &K€orner, 2013; Lenz et al., 2013; Laube
et al., 2014; Polgar et al., 2014; Primack et al., 2015; Flynn &
Wolkovich, 2018). Using this technique, researchers have found
that species vary considerably in their winter chilling requirements
and the length of time needed to respond to spring forcing. These
studies suggest that photoperiod requirements may be less
important than winter chilling and spring forcing requirements
for many species. Photoperiod requirements have been most
extensively studied in Fagus sylvatica (European beech), a species
with a relatively strong photoperiodic requirement (Zohner &
Renner, 2015). Future studies at botanical gardens can explicitly
test the importance of photoperiod relative to other factors for a
wide variety of species.

The timing of autumn leaf senescence is difficult to study using
cuttings and is regulated by a more complex set of factors than
spring leaf out and flowering, but botanical gardens can still
contribute to these studies. A recent study byZani et al. (2020) used
historical data from botanical gardens and other locations in
Europe, along with shading experiments (also done at a botanical
garden) and climate chamber experiments, to explore factors that
regulate autumn senescence in European trees. Surprisingly, they
found that plant productivity was the primary driver of leaf
senescence phenology in the trees they studied, rather than
temperature or other factors (Zani et al., 2020). It is difficult to
know how general their findings are, but botanical gardens provide
ideal locations for repeating variations of their study to further
investigate factors driving leaf senescence.

V. Conservation

1. Preserving rare species and genetic variation in living
collections and seed banks

As the climate changes, botanical gardens play a key role in
preserving living collections and seed banks to store and maintain
rare plants, for later use in restorations and recovery in the wild
(Schulman & Lehv€avirta, 2011; Smith et al., 2019; Knapp et al.,
2021). At an international level, these activities are coordinated by
Botanic Gardens Conservation International (www.bgci.org).
ArbNet similarly coordinates activities among arboreta, botanical
gardens specializing in trees, shrubs, and vines (http://www.arbnet.
org/). It is estimated that theworld’s 3000botanical gardens protect
30% of all plant diversity and over 41% of known threatened
species, including around 500 species thought to be regionally or
globally extinct in the wild (Mounce et al., 2017; O’Donnell &
Sharrock, 2018). Roughly 350 botanic gardens maintain seed
collections, which together contain 57 000 taxa (O’Donnell &
Sharrock, 2018). These plants and seeds can provide material for
use in restoration and reintroductions when appropriate. The value
of this material is enhanced when collections include detailed
records of where the parent material was collected (i.e. provenance)
to ensure that there is a good match between the genotype and site
conditions. This important conservation role of botanical gardens
in growing and preserving rare and endangered plants will increase
as more species are threatened by climate change.

Botanical garden seed collections also have special importance in
facilitating the adaptation of agricultural crops to a changing
climate (Smith et al., 2019). Seed collectors often target wild
populations of cultivated species and wild species that are closely
related to cultivated species. When plants grown from these wild
seeds are hybridized with crop plants, genes for traits that promote
resilience to climate change, such as drought tolerance or insect
resistance, may be transferred to cultivated crops, and may increase
crop yields under future environmental change.

2. Ecology of rare species

Botanical gardens offer the opportunity to investigate the
responses of rare species to climate change by measuring their
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performance in different climates across networks of botanical
gardens. For example, one research team planted 35 plant species
at five botanical gardens located at different altitudes and
climates in Switzerland (Vincent et al., 2020). Of these species,
24 were locally distributed and rare in Switzerland, while the
other 11 species were common. The team found that rare species
had lower probabilities of surviving and lower production of
biomass in comparison with common species. Survival of rare
species was diminished at botanical gardens with climates that
were the most different from the climates where the species
naturally occur. This study demonstrates that rare species may be

more susceptible to the damaging effects of a changing climate
than common species.

3. Managed relocation

Similar experiments can inform the potential use of managed
relocation (also known as assisted migration or assisted coloniza-
tion), in which individuals of rare and endangered species are
introduced outside their current range in response to a changing
climate (Vitt et al., 2010; Ali & Trevedi, 2011). This may be
necessary because most plant species are not able to migrate fast

Fig. 4 Dormant twigs canbeused for laboratory experiments to test the environmental determinants of plant phenology. (a)Dormant twigs being collected for
anexperiment. (b)Dormant twigs in controlled conditions. (c)Dormant twigs ina lab settingwithnatural and supplemental lighting. (d) Extendedday length led
to earlier leaf out in American beech.
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enough to track the pace of the changing climate. Smith et al.
(2014) proposed a plan in which botanical gardens could
‘chaperone’ plants as a part of managed relocation efforts by
moving species outside their historic ranges, testing new locations
where they may be able to persist, developing methods to help
species survive translocation, and screening species for potential
invasiveness, pests, diseases, and hybridization. Some gardens are
already doing this (Van der Veken et al., 2008). For example, a
network of gardens in Finland, Norway, and Estonia tested
translocations of northern and southern varieties of Siberian
primrose (Primula nutans ssp. Finmarchica) (H€allfors et al., 2020),
a species protected in Europe. They found that climate change is
already harming the performance in the species’ current habitats
(especially northern varieties), that plants performed best at
northern locations, and thatmanaged relocationmay be a necessary
and appropriate strategy to help the species persist.

Botanical gardens, such as the Royal Botanic Gardens
Victoria, Australia, are incorporating managed relocation-type
methods into their landscape plans – that is, they are planning to
transition their living collections to species that are likely to
succeed in future climate conditions (Royal Botanic Gardens
Board Victoria, 2016; Kendal & Farrar, 2017). In 2018, a group
of botanical gardens formed the Climate Change Alliance of
Botanic Gardens to promote collective preparedness for climate
change in living botanical collections (CCABC, 2018). As a part
of these efforts, botanical gardens might consider starting or
modifying plant breeding programs for rare and endangered
species to help them adapt to climate change as part of managed
relocation programs.

4. Changes in nonplant species and abiotic conditions

Botanical gardens have also played a central role in the past for
producing other types of biological data which can be used to
investigate the impacts of climate change on conservation. For
example, at theMunich Botanical Garden inGermany, researchers
have studied the bee fauna over a 20-yr period (Hofmann et al.,
2018). Among the new species recorded over time at the garden,
most were warm-adapted species, suggesting that climate change is
impacting the bee fauna at this site. It is likely that other botanical
gardens are collecting similar data describing changes in insects,
fungi, and soil conditions. Botanical gardens have a special role to
play as early warning systems to detect emerging plant pests and
diseases, many of which are shifting their range to due climate
change (Smith et al., 2019).

VI. Public engagement

Together, botanical gardens attract more than 500 million visitors
each year and have thousands of dedicated volunteers (Miller et al.,
2020). Visitors are attracted to gardens because of their beauty, and
also because people want to learn about plants (Williams et al.,
2015). Thus, one of themost important roles of botanical gardens is
to promote learning and engagement related to the value of plants
and the need to conserve biological diversity (Miller et al., 2020).
Climate change is a critical part of that learning and engagement,

given its influence on plant ecology and conservation and on the
operations of botanical gardens.

1. Public education programs and inclusion

Botanical gardens engage visitors in free-choice learning and host
student groups during field trips. Evidence shows that botanical
gardens have positive impacts on knowledge and environmental
attitudes in student groups and visitors, including on topics
specifically related to plants and climate change (Sellmann &
Bogner, 2013; Sellmann, 2014;Williams et al., 2015; Eberbach &
Crowley, 2017). Botanical gardens are making efforts to grow and
improve these education programs and to engage groups that have
been previously underserved by their environmental education
programs (Dodd& Jones, 2010; Su�arez-L�opez & Eugenio, 2018).
These efforts include, for example, engaging such audiences in
projects related to climate change, biodiversity conservation, edible
gardening, enhancing food security, and sharing personal stories
about the value of trees to local communities (Vergou &Willison,
2013, 2016).

2. Community and citizen science

In recent years, botanical gardens have increased their engagement
of the public in monitoring the effects of climate change on plants
in their living collections as a part of community and citizen science
projects (Miller & Derewnicka, 2019; Fig. 5). Most of these
projects focus on phenology and encourage volunteers to record
stages of plant life cycles that can be seen throughout the growing
season, including leaf out, flowering, fruiting, and leaf senescence
(Chmielewski et al., 2013; Havens & Henderson, 2013). Some
gardens tie these observations to past records to help people see how
phenology has changed over time. Inmost cases, these observations
follow established protocols, which allow data from different
gardens (and other locations) to be combined, informing studies of
phenological events over broad geographic areas (e.g. Chmielewski
et al., 2013; Denny et al., 2014). The availability of smartphone
apps – like Nature’s Notebook, iNaturalist, and custom apps for
specific gardens – has made it easier for many people to participate
in these programs.

In addition to phenology, botanical gardens are engaging the
public in studies of the impacts of climate change on pollination,
monitoring rare plant populations, the digitization of herbarium
specimens used in climate change research, and the documentation
of traits in digitized specimens (Havens et al., 2012; Willis et al.,
2017).

3. Communicating and engaging the public in climate
change adaptation

On a practical level botanical gardens are adjusting their operations
and the management of their collections to the changing climate
conditions at the gardens (Royal Botanic Gardens Board Victoria,
2016; CCABC, 2018). These changes provide an excellent
opportunity to communicate local stories of climate change
adaptation to the public and to engage the public in helping to
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implement some of the changes (Royal Botanic Gardens Board
Victoria, 2016; Miller et al., 2020). These stories might involve
howwinter conditions are nowmild enough to grow certain species
that were formerly killed by deep freezing, or how other species that
used to be hardy are now harmed by summer heat waves and
drought.

VII. Recommendations for future research and
engagement

1. Broaden geographic distribution of climate change
research and engagement

Climate change research in botanical gardens has been dispropor-
tionately concentrated in Europe and North America. Indeed,
botanical gardens are disproportionately concentrated on these two
continents (Fig. 1). Broadening the geographic distribution of
climate change research at gardens will improve our understanding

of how a greater diversity of species respond to a greater variety of
climate conditions.We are still gaining appreciation for geographic
variation even in relatively well-studied Europe andNorthAmerica
(e.g. Renner & Zohner, 2018). The variation is likely to be much
greater as we study species from tropical rain forests, tropical dry
forests, savannahs, deserts, and other ecosystems that have been
understudied in terms of their responses to climate change.

We suggest that research at botanical gardens in the Global
South should be better highlighted in the literature – for example,
by recruiting representation into leadership of relevant organiza-
tions and by journals recruiting more diverse key staff and
researchers from these institutions as editors, reviewers, and
authors, and by organizing special issues (Primack et al., 2019;
Maas et al., 2021; Pettorelli et al., 2021). Botanical gardens in the
Global North could also partner with gardens in the Global South
to encourage and support the establishment of climate change
research in regions that are understudied, underfunded, and
disproportionately impacted by climate change. Networks of

Fig. 5 Methods formonitoringphenology, clockwise from top left: a dronebeing launched tomonitor leaf-out phenologyat theArnoldArboretum; volunteers
at the Royal Botanical Garden Edinburgh evaluating plant phenology; students planting a phenology garden at their school, with support from the Chicago
Botanical Garden; students learning to monitor phenology at the Chicago Botanical Garden.
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botanical gardens could also make additional efforts to include
gardens from underrepresented regions.

2. Continued monitoring of phenology and other traits and
digitization of historical records

Long-termmonitoring of plants in botanical gardens – for example
phenology, anatomy, and other traits – and the collection of
herbarium specimens from plants in living collections have added
critical insights into our understanding of plant responses to
climate change (e.g. Panchen et al., 2015; Zohner&Renner, 2017;
Gallinat et al., 2018; H€allfors et al., 2020; Zohner et al., 2020).
Some of these monitoring approaches require little technology and
can be carried out with modest but consistent effort. Many simply
require observers to walk around gardens’ grounds and record
observations on paper data sheets, in field books, or on smartphone
apps. Some observations can be made once a year, whereas
phenology is generally best recorded once or twice per week. In
some cases, increased efforts can help capture additional measures
of plant performance, such as flowering intensity, production of
fruits and seed, and growth rate.We strongly urge botanical gardens
to continue to expand these programs to include more species, a
wider range of traits, and a greater number and diversity of
observers. For example, coring living trees and collecting wood
samples could complement historical trait information held in
herbarium specimens, which generally focus on leaves and flowers.
New observations in extreme climate conditions – including heat
waves, drought, flooding, and lack of winter snowpack –will likely
yield more important insights. We also recommend that botanical
gardens continue to digitize their past records, including records of
when plants were planted and died, and make their records
available online so that they can be used in larger regional and
international comparisons (Blagoderov et al., 2012; Soltis, 2017;
Willis et al., 2017; Younis et al., 2018; Pearson et al., 2020).

3. More comprehensive and integrated studies of
phenology

Previous studies have focused primarily on one phenological stage
at a time. However, successive phenological stages are linked
through anatomical, physiological and developmental processes
(Primack, 1987; Ettinger et al., 2018; Gougherty & Gougherty,
2018; Diggle & Mulder, 2019). As climate changes, it will be
valuable to collect new phenology data onmultiple phenophases in
the same plants and to re-analyze existing data sets to determine
how these linkages will change, and if particular phenological stages
will respond differently to climate change. For example, if
flowering times aremore responsive to climate change than fruiting
times, then there will be a longer time available for fruit
development, with implications for physiological ecology and
plant–herbivore interactions. Earlier leaf-out timesmight be linked
to earlier leaf senescence times if leaves have finite lifetimes (Keenan
& Richardson, 2015).

When expanding phenology monitoring, leaf out, flowering, and
fruit maturation are straightforward to assess in the field. Leaf
senescence is more difficult, because of variability among species.

However, gardens have developed standard methods, such as
recording leaf senescence when approximately half of the leaves on
theplant have either fallen off or changed color (Panchen et al., 2015).
Such visual evaluations of color change correspond very closely to
measurements done with a Chl meter (Gallinat et al., 2013).

Additionally, we recommend that botanical gardens expand their
phenology research to include more herbaceous plants. Most
phenology studies at botanical gardens have examined woody
plants. There is a surprising paucity of studies on the leaf-out, leaf
senescence, and fruiting times of herbaceous species at botanical
gardens, even though they represent the greatest diversity of vascular
plants in terrestrial ecosystems and are crucial for providing food for
insects and other species. The newly launched PhenObs network of
botanical gardens, based in Germany, aims to close this gap in our
knowledge and provide standard methods for monitoring phenol-
ogy (e.g. first leaf out, which can be difficult) of herbaceous plants in
botanical gardens (Nordt et al., 2021). The Botanical Garden at
Charles University in Prague has shown the way forward in this
field, demonstrating that differences among herbaceous species in
light levels and mature plant heights influence plant growth
phenology (Huang et al., 2018; Schnablov�a et al., 2020).

4. Assess frost tolerance across a variety of species

Frost damage can limit species ranges (native and nonnative) and
can severely harm crop and horticultural species. Studies have
shown that the risk of frost is changing differently in different
locations – declining in North America, but increasing in Europe
and Asia – as a result of climate change (Park et al., 2020; Zohner
et al., 2020). However, these results are based only on trends in
phenology and the dates of last frost in the spring; they lack data on
frost tolerance for different species that is important for assessing
frost risk. Monitoring of frost damage to plants growing at
botanical gardens, where plants are often growing in conditions
beyond their native ranges, could give insights into traits associated
with different frost tolerances, informing estimates of risk and
potential shifts in species ranges as climate conditions change.

For example, recent experimental research has suggested that
woody species of the Swiss Alps that leaf out earlier in the spring
have greater ability to toleratemild frost events than species that leaf
out later (Lenz et al., 2013). Plant species with smaller vessel
elements and diffuse porous stem anatomy tend to leaf out earlier
than species with larger vessel elements and with ring porous stem
anatomy (Panchen et al., 2014), presumably because species with
smaller vessel elements are more resistant to freeze–thaw cycles
(Miller-Rushing & Primack, 2008).

There are several ways researchers can examine the frost tolerance
of young growth of plants at botanical gardens, all of which can take
advantage of the concentration of diverse plant species growing at
gardens. Onemethod is to examine frost damage to young leaves or
flowers after an early, warm spring followed by a late, hard frost (as
in Augspurger, 2013). This method has the advantage of reflecting
natural conditions, but researchers are unable to predict when these
conditions will occur, nor can they control the ambient freezing
temperature, which would allow comparisons of frost severity at
different temperatures. Monitoring frost damage at several
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botanical gardens in different climate conditions can help alleviate
some of these challenges because freezing temperatures and the time
between budburst and frost would naturally vary across locations. A
second method involves collecting newly leafed-out twigs from
plants in a botanical garden or cutting dormant twigs and forcing
leaf-out in the lab. Researchers can then experimentally expose the
young leaves to different freezing temperatures and record the
extent of the damage, either by observing visible damage or by
recording the leakage of cellular fluids into solution (Lenz et al.,
2013; Primack et al., 2015). However, it is unknown whether
young leaves on cut twigs will have the same freezing properties as
young leaves growing on intact plants outside.

5. Carbon budgets, photosynthesis, and the light
environment

New studies suggest that climate change-driven shifts in phenology
are significantly altering the light environments and carbon budgets
of understory wildflowers and shrubs, which rely on periods of high
light and favorable conditions for photosynthesis when trees have
few or no leaves (Fridley, 2012; Heberling et al., 2019). Similarly,
plants show differing growth responses to rising levels of CO2 and
nitrogen deposition (Dukes & Mooney, 1999; Luo et al., 2004).
These studies have used historical observations and experimental
gardens set up at field locations. Using such approaches at botanical
gardens could dramatically improve our understanding of these
phenomena. For example, Fridley (2012) grew 43 native shrub and
vine species alongside 30 nonnative invasive shrub and vine species
in an experimental garden in Syracuse, NY, USA. The species were
matched so that the native and invasive species were in the same
families and genera. Nonnative species retained their leaves on
average four weeks later in the autumn than did native species. This
increased autumn carbon budget is a likely a key factor in the
competitive success of these invasive species. Further experiments
of this type could be conducted at botanical gardens, making use of
their diverse living collections, common growing conditions, and
range of species’ geographic origins. Coordinated experiments
across networks of botanical gardens could allow researchers to
investigate species growing under a range of climatic conditions.

6. Drones and fixed cameras

Drones and fixed digital cameras have the potential to contribute to
monitoring and research at botanical gardens. Drones allow
operators to survey individual trees growing in open areas (Scher
et al., 2019), and have the potential to record when each plant is
leafing out and flowering, and to monitor the structure, photo-
synthetic rate, and temperature of trees (Fig. 5a). In just a few
hours, a drone could fly over hundreds or thousands of plants and
take detailed digital images of all of the plants. Using images from
successive days and weeks, it might be possible to determine the
detailed phenology of all of the plants in a collection, though
matching plants from one flight to the next remains a significant
challenge. Similarly, fixed digital cameras have the potential to
automate observations of flowering and leafing out (Brown et al.,
2016), though each camera records only a single view.

7. Increased communication and public outreach

We recommend that botanical gardens continue to communicate
their efforts to preserve species threatened by climate change and
actions they are taking to adapt their gardens as climate conditions
change. For example, gardens could prominently display species that
are threatened by climate change in thewild.Additionally, they could
collect anddisplay species that are not currently hardy in their climate
zones butwill likely be hardy in coming years as the climate continues
to warm (Friedman et al., 2016). For example, in Boston, camellias
(Camellia sp.), crepe myrtles (Lagerstroemia sp.) and fig trees (Ficus
carica) are not generally hardy, but will likely be in coming decades.
Botanical gardens could feature such species on their grounds, using
them to highlight the effects of climate change, and notingwhen they
survive winters, or are killed by coldweather. Botanical gardens could
take such displays one step further by growing cold tolerant and cold
intolerant varieties of these species next to each other, to further
demonstrate different tolerances to cold. Similarly, botanical gardens
could have displays of plants that are not doing well or have died due
to heat waves and droughts (Hultine et al., 2016).

In recent years, botanical gardens have increased the extent to
which they invest in engaging underserved audiences (Dodd &
Jones, 2010). It is increasingly recognized that diversity, equity, and
inclusion are critical for climate change science, engagement, and
action (Patz et al., 2005; Fischer, 2009; Mason & Rigg, 2019).
Botanical gardens are situated to engage with underserved
audiences – including children, low-income groups, and racial
and ethnic minorities – in meaningful discussions and actions
(including science) related to climate change that are relevant to
these communities (Vergou & Willison, 2016). Some gardens,
such as the Chicago Botanic Garden, have long-running and
successful programs addressing climate change by working with
existing community groups and leaders (Hatchett et al., 2015;
http://www.connectcca.org/). These efforts should continue to
grow and advance climate change science and engagement.

VIII. Conclusion

Climate change has emerged as one of the greatest challenges faced
by human society, and the urgency of this challenge continues to
grow as the climate continues to warm. Botanical gardens have a
special role to play in investigating climate change because they
have large collections of living plants that can be used for scientific
investigations, they have botanical expertise, and they are places
where the public comes to learn about plants. Their impacts on
climate change research and climate change have already been
substantial. New technologies and initiatives at botanical gardens
around the world are providing new research opportunities. We
encourage botanical garden staff, researchers, and science commu-
nicators to continue to work together to advance climate change-
related science, conservation, and public engagement.
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