
Physics 114 Statistical Mechanics Spring 2021

Week 12 Conceptual Overview

Concept checklist from Readings:

• Phase transitions and phase diagrams: Ideal gasses have only one
phase - gas. But a real substance can exist in different phases, which
have distinct forms. Examples are the ordered packing of molecules
in a solid vs. the disorder of a liquid, or the orientational ordering of
molecules in a liquid crystalline phase. It is something of a miracle that
this happens. Two molecules of a substance interact in a fixed way. So
why, when you change P or T do you get a radically different form
for the entire system? It’s a cooperative phenomenon. As we read this
week, it is all about which phase has a lower free energy per molecule.
Throughout the topics this week, this is a recurring theme: Lowest
G means most thermodynamically stable system ... so the
system will choose the phase with the lowest G(T,P,N), given
you fix T, P and N..

Figure 1: Phase diagram of a typical substance, CO2.

• The most basic kind of phase diagram is that of a pure substance as
in Figure 1 above. Axes are typically P vs T . (Analogous magnetic
systems would have the external magnetic field taking the place of
pressure, as seen in Schroeder Fig. 5.14.) To read diagrams like this,
you might ask yourself “If I change P at constant T , will I cross the
curve separating two different phases?” And vica-versa: “What about
changing T at constant P?” Figure 2 below indicates a difference be-
tween H2O and most other substances: Raising P when one begins in



the solid phase (ice) eventually takes you to the liquid (water). This
is because unlike most other substances ρsolid < ρliquid for H2O. The
Clausius-Clapeyron equation glossed below completes the formal argu-
ment.

• This phenomenon (raising pressure turns solid into liquid) also occurs
in more exotic systems, like low temperature 3He. There, we’d also use
Clausius-Claperyon to see why. But in this case, solid has not a lower
density, but a higher entropy than the liquid! (This weird fact arises
because the liquid phase has an entropy dominated by the behavior of
an ideal Fermi gas. The solid’s entropy is dominated by a paramagnetic
solid; the magnets being the 3He nuclei.)

Figure 2: Phase diagrams for H2O and 3He. Green arrows show unusual negative

slope for P (T ) along solid-liquid coexistence curve

• Can you draw a phase diagram with other axes? How about P vs. ρ
or equivalently P vs. V ? This is technically OK as in G&T Fig. 7.5
or Schroeder Fig. 5.23 which is Figure 3 below. But careful: V or ρ
is not a control parameter. You might think it is but a system can do
something beyond your control, like phase separate with two different
densities: ρliquid and ρgas say.

• Some terminology you will learn this week:

– phase: a state of matter characterized by macroscopic properties
like density, symmetry, magnetic moment. These correspond to
labelled areas on a phase diagram.

– phase transition or phase transformation: the properties above
change as a control parameter like temperature, pressure, external
field is varied

– phase coexistence curve: curves on the phase diagram that sepa-
rate one area from another If there were more variables, these could be



Figure 3: Phase diagrams of a van der Waals fluid.

surfaces. This week we did not have time to talk about binary fluids, but they

are a good example of a system where we have to be creative about how we

plot, because the volume fraction x of one species is also a control parameter.

– sublimation: the transition from solid to gas

– melting/freezing: the transition between solid and liquid

– vaporization: the transition from liquid to gas

– vapour pressure: the pressure of gas above a solid - or above a
liquid - if the two phases are in equilibrium.

– latent heat: the heat, which is actually an enthalpy difference,
between two phases. Usually symbolized by L.

– Triple point: The special value of T and P where liquid, solid and
gas all coexist. Not all systems have one (He4 doesn’t.)

– Critical point: The special value of T and P where liquid and gas
coexist, but ρliquid = ρgas so there is no real distinction between
them.

• One way to imagine the critical point: along the coexistence curve,
ρgas < ρliquid, but the difference gets smaller as T gets higher. At Tc,
ρgas = ρliquid and beyond it, there is only a thing we call fluid. There
are strong analogies between magnets and fluids. Tc is like the Curie
temperature of a ferromagnet, and it is the critical temperature for our
favorite “toy” model of a magnet, the Ising model.



• Notation alert: Different readings have different symbols conventions.
One text uses G meaning per the total, Gibbs free energy mole, but
another might mean G is per mole. Another text uses g meaning energy
per molecule, and other texts use µ, chemical potential, as a synonym
for g. Also confusing, in one text L will mean latent heat per kg, or
latent heat per mole. But in a different text, G&T for example, they
switch to small letters so that l is the latent heat per mole. They also
use small letters for entropy and volume, so s is entropy per mole, and
v is volume per mole. B&B uses Vm per mole. Sigh!

• Areas of a single phase are separated by phase boundaries: P (T ) curves
where two phases coexist. What determines a phase boundary? At any
point (Tb, Pb) on a phase boundary the Gibbs free energy per molecule
will be numerically equal: µATb, Pb) = µB(Tb, Pb). It costs no free
energy to interconvert from one phase to the other.

• B&B 28.7 talk about a few naming schemes for phase transitions:

– First, vs. second, vs. third ... has to do with which derivative of
G(T, P,N) shows the first discontinuity. E.g across the curves in a
phase diagram, you have a first order transition. For a first-order
transition, the latent heat is nonzero: L = T∆S 6= 0. Thus S, a
first derivative of G with respect to T is discontinuous. Also, V ,
a first derivative of G with respect to P , is discontinuous.

– Continuous vs. discontinuous: is a way to lump all orders beyond
the first into one called ”continuous”. However, it makes good
sense. First derivatives of G with respect to an external field like
pressure or magnetic field are order parameters. For example,
the magnetization M(T ) is a derivative of energy with respect to
magnetic field. It rises smoothly from zero as temperature drops
below the Curie temperature.

– Symmetry breaking: is what some transitions do. For example,
a liquid is more statistically symmetric than a crystalline solid,
which is not perfectly symmetric upon translation or rotation. On
the other hand, a liquid and gas have equal amounts of symmetry.

• The Gibbs-Duhem equation:

dg = (
∂g

∂P
)T dP + (

∂g

∂T
)P dT ; or dµ = vdP − sdT

It looks like a weird flipping of the thermodynamic identity, where ex-
tensive are swapped with intensive variables. It plays a role in various
arguments this week, including deriving the Clausius-Clapeyron rela-
tion (below) and the Maxwell construction as it is explained in G&T
section 7.4.



• Clausius Clapeyron Let’s go with Schroder’s notation that we have
a mole of stuff that can be either in the A or B phase. Quantities
below will all be considered to be measured per mole. The slope of the
vapour pressure P (T ) curve on the phase diagram is shown to obey:

dP

dT
=
SB − SA
VB − VA

=
L

T∆V
.

Here, L is the latent heat or enthalpy of transition going from A to
B. In other words, L = T∆S = ∆H because when we straddle a line
between phases A and B in the phase diagram, GA = HA − TSA =
HB − TSB = GB.

• When we cross a coexistence curve to move between, say, liquid and
gas phases, L is not zero. (It is positive for liquid to gas, and negative
for gas to liquid.) The density between a liquid and a gas jumps when
you cross the curve. This is the big difference between liquids and
gasses! The only exception is, as we mentioned above, at very end of
the liquid-gas coexistence curve, the critical point.

• Good examples of how to use Clausius-Clapeyron are B&B Examples
28.2, 28.4 (identical to G&T Examples 7.3 and 7.4). We derive the
shapes of P (T ) for cases:

– liquid ↔ gas:
P (T ) = Po exp(−Lo/RT )

– liquid ↔ solid where we just assume L and the volume difference
∆V between the phases is constant:

P (T ) = Po +
L

∆V
ln (T/To)

– You are not responsible for the case where L varies with T , treated
in B&B Example 28.3.

• A practical use for knowing P (T ) is knowing how a change in pressure
will change the freezing or boiling temperature of a substance. We have
at least one problem on this application this week. There is much talk
of this effect with respect to the ”pressure melting” of water. G&T
show that it cannot be true that this is what melts ice under a skater’s
skates (too little pressure), but Schroder points out that this is relevant
to understand pressure-induced melting of glaciers.

• Something in B&B that I would like you to know: B&B sec-
tion 28.6 talks about colligative properties. That is, one can change a
freezing or boiling point by adding solute to a pure substance. We do
not have time this semester to talk about phases of systems that are
mixtures of pure substances. There are all kinds of new possible phases



in such cases. B&B Section 28.5 tells us about the Gibbs phase rule for
example, which dictates the topology of the phase diagram. (You have
a triple point ... can you have a quadruple point? Not with a pure
substance but yes with a mixture :-) Bottom line: I would like you to
understand and be able to apply this outgrowth of Raoult’s law:

T−T ∗ =
RT ∗2 xB

∆H
change in transition temperature with added solute

What was Roult’s law? In B&B Ch. 22, it told us how the chemical
potential changes when a small mole fraction xB of solute is added to
a solvent.

• Interesting in B&B but not required for you to know Are Trou-
ton’s rule, which gives a rough estimate of L for the gas/liquid phase
transition. Also, Kelvin’s formula which arises from a discussion of
metastability ... why drops do not always coalesce (“nucleate”) to
form a liquid when this is the phase with a lower G ... but actually
evaporate, leading to a metastable vapour phase.

• The Van der waals equation of state A gas whose equation of
state is PV = NkT cannot undergo a phase transition. But the van
der Waals equation of state

P =
NkT

V −Nb
− aN

2

V 2
; or in per mole language, P =

RT

Vm − b
− a

V 2
m

models a substance which has realistic short range repulsion and long
range attraction. It can make a transition between gas and liquid. Note
that the constants a and b are different in these two formulations ... for
example b is a volume/molecule on the left, and volume/mole on the
right. The term proportional to b limits reduces the available volume
for each molecule under the assumption that they cannot overlap.

• The term proportional to a can be derived by assuming an attractive
term in the energy Uatt = −aN2/V (or in the per/mole way of looking
at things, Uatt = −an2

moles/V ). This is proportional to N2 (or n2
moles)

since it has pairs of particles attracting one another. Then, either an
argument like dU = −PdV or one constructing the partition function
as in B&B p. 298 yields the vdW equation of state.

• There are issues with the phase diagram that the vdW gas produces.
All three texts show P vs. V plots, where the isotherms do something
crazy below a certain temperature, Tc. This critical isotherm is the
one on which P (V ) has a point of inflection, both first and second
derivatives vanish. On isotherms for T < Tc the compressibility, κ =
− 1
V

(
∂V
∂P

)
T,N

becomes negative in a range of V values. This is physically



impossible! But it comes out of the math ... in particular I like B&B’s
argument in their Eq. (26.11) that P (V ) is a cubic equation, and we
shouldn’t be surprised if it has an “S” shape. it will only do so for
T < Tc .

• The readings make various arguments. Though B&B and Schroeder
avoid doing this, G&T ends up writing g(T, ρ,N), even though ρ is
not g’s “natural variable”. G(T, P,N) turns out to be multi-valued in
a certain range of V . Looking at it another way (see figures below),
when we are below T = Tc, viewing the phase diagram in P, V, T space
, a curve of constant T opens up into an area. But this area is not a
realm of thermal equilibrium.

• Interpretation: only the boundary of that area is physical and repre-
sents thermal equilibrium. The equilibrium system is confined to the
black, dashed binodal line in the bottom figure below. The tan, dashed
spinodal curve is the one inside which a system could never, ever go.
This is where compressibility goes negative. However, a quickly cooled
liquid could get inside the binodal ... it would be called ”supercooled”
and be considered metastable. This is the essence of Figure 7.7 of G&T,
which shows the beginning of the ”loop” in G(P ) shown completely in
Fig. 5.21 of Schroeder.

• Liquid and gas thus coexist at the two volumes on the boundary of the
binodal, Vl and Vg. The Maxwell equal area construction tells us what
these volumes are are for given P and T . We draw a horizontal line
which insures that ∫ P (Vg)

P (Vl)
V (P )dP = 0

• Doing this integral and setting it equal to zero is well and good, but
how do we really find VL(P ) and VG(P ) for arbitrary P? G&T take us
through this partly-analytical, partly-numerical calculation on p. 400
that leads to their Figure 7.9.



• Reduced variables and the vdW Critical Point We get insight by
writing the vdW equation of state in terms of dimensionless “reduced”
variables P̃ = P (27b2/a), T̃ = kT (27b/8a), ρ̃ = ρ 3b, and g̃ =
(g/kTc)(8/3). This not only makes the vdW equation cleaner, but
makes the critical point values Tc, Pc and ρc very pretty as well ... all
equal to unity as one of our problems this week, G&T 7.10 shows.

• The law of corresponding states shows us that if we rescale P, V and T
by their critical values, a remarkable number of pure substances fall on
the same liquid-gas coexistence curve.

• We can also use the dimensionless vdW equation to derive critical ex-
ponents. A couple of problems treat these this week. There are cool
analogies to the mean field Ising ferromagnet. For example,
M ∝ (T−Tc)β is completely analogous to ρliq−ρgas ∝ (T−Tc)β ... with
the same critical exponent for both. The vdW model is a mean-field
model of a real fluid.

• Virial coefficients Suppose we have a classical gas that is dense
enough for interparticle interactions to matter, but insufficiently dense
or cold for transition to a liquid. Now pressure can be written as a virial
expansion. B&B are fond of writing expressions per mole so framed this
way, for one mole with molar volume Vm:

pVm
RT

= 1 +
B(T )

Vm
+
C(T )

V 2
m

In G&T language, this would be

P/kT =
N

V
+B2(T )

(
N

V

)2

+B3(T )
(
N

V

)3

+ ...



• G&T and B&B go on to justfy this virial series in similar ways (though
B&B is a lot shorter and just fine for our purposes). Recall the general
form for the partition function:

Z(T, V,N) =
1

N ! h3N

∫
...
∫
dr1, ..., drN dp1, ..., dpN e−βU(r1,....rN,p1,....pN)

For much of seminar, we’ve been dealing with an ideal gas, so U was
wholly kinetic: U = UK ≡ Σip

2
i /2m. In this case, the partition function

was:

Z(T, V,N) = Zideal(T, V,N) =
1

N !
V N(

√
2πmkT

h
)N

• Now we will assume there is potential energy as well as kinetic. So
U = UK + UP . We find that we can write the partition function as
a product Z = ZKEZPE where ZKE = Zideal and ZPE is often seen
written as Zc. This is because Zc is called the “configuration integral”
- it depends on the spatial configuration r1, ..., rN. We thus have

ZPE = Zc =
1

V N

∫
...
∫
dr1...drNe

−βUP (r1....rN)

• Notice the V N in the denominator! We need it! Otherwise, U = 0
would not lead to Z = Zideal.

• Two approximations: i) We use pair potentials - so two particles con-
tribute to Up via u(ri, rj), no matter where the other particles in the
system are located. ii) It is only the scalar distance between particles i
and j that determines their potential energy. Thus

UP = Σi<ju(|ri − rj|) ≡ Σi<ju(rij)

where the sum is over all distinct pairs of particles. This leads to

Zc = V −N
∫
...
∫
dr1...drN Πi<je

−βu(rij)

• Now comes a notation that B&B doesn’t use but G&T, and most other
people do. We frame Zc in terms of the Mayer f functions
f(rij) = e−βu(rij) − 1. See the figure below ...

• The f(r) functions go quickly to zero as soon as a pair of particles are
separated by r greater than the range of their interactions. These are
“molecule-sized” functions. By definition,

Zc = V −N
∫
...
∫
dr1...drN Πi<j[1 + f(rij)]



• From here, one expands out the infinite product. Note that f(r) is
small when βu is small ... i.e. when interactions between particles are
not too important on a scale of kT . If we truly expect f to be small
enough to ignore for all pairs of particles, we have Zc = 1. This is an
ideal gas.

• If we can’t ignore these factors of f , we have the issue of calculating
terms in the product.

Zc =
1

V N

∫
...
∫
dr1...drN[1+Σpairs i<jf(rij) + Σdistinct pairs i<j, k<l f(rij)f(rkl)+...]

• It is at this point that we say that we are stopping only at the very
first sum above ... only one power of f(r). This is like saying that our
gas is dilute enough that it is rare to have a triplet (or quadruplet or
... ) of particles close to each other at any one time. We can make the
usual N large approximation

Zc = 1 +
N2

2V

∫
drf(r)

We now integrate over angle space for the one remaining 3d coordinate,
r, to arrive at

Zc = 1− NB2(T )

V
where B2(T ) = −2π

∫ ∞
0

r2f(r)dr

• Last steps ... use F = −kT lnZ and P = −(∂F
∂V

)T to get our first term
in the virial expansion for free energy and pressure:

F = Fideal +
N

V
kT B2(T ) ;

PV

NkT
= 1 +

N

V
B2(T )



• Order-disorder transitions and Critical phenomena So far in
these notes, we spent most of our time on “first order” transitions that
happen on curves in P − T space. But sometimes we want to focus on
the the vicinity of a single point, the critical point. A transition at the
critical point involves zero latent heat, and it the higher derivatives of
free energy which are discontinuous or divergent. Despite the lack of
a jump in the free energy due to a jump in the entropy, this kind of
transition takes place between an ordered and disordered phase.

• When we studied the Ising model in Week 9, (H = 0, T = Tc) was
the critical point. Mean field theory gave us an approximate prediction
of magnetization, m(T,H). When one extends mean field theory to
also talk about free energy, f(m,T,H), it’s called a “Landau theory”.
G&T Problem 5.17 (which we didn’t do, though we used the resulting
f(m,T,H) in Problem 5.18) explained the steps. The quantity m was
the order parameter, which was zero at T > Tc and rose smoothly from
zero to a nonzero value of mo(T ) as T was reduced below Tc. Thus,
mc = 0 for the Ising model. In order to study critical phenomena, we
learned that it was convenient to define dimensionless distance from
the critical temperature. So say ε ≡ |T − Tc|/Tc. The result that
m − mc ∝ ε1/2 (where mc happens to be 0) leads us to the critical
exponent β = 1/2.

• I bring this up now because the van der Waals equation of state comes
from a mean field theory for the free energy, g(T, P,N). When we read
G&T section 7.4.2 and do problems G&T 7.18 and B&B 26.1 this week,
we see that the values for the critical exponents β, δ, and γ are precisely
those that we’d get from the Landau free energy for a magnetic system.
The analogy is that near the critical point, gas density (in reduced
units) behaves like magnetization: ρ̃ − ρc ≡ m − mc. And pressure
(again, reduced units) is like magnetic field: p̃− pc ≡ H −Hc.


