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Week 11 Conceptual Overview

Concept checklist from Readings:

• Fermions ... Electrons in solids can be surprisingly well treated,
despite the fact that they are charged, as noninteracting. This is a free
electron model.

• You might think the simplest place to start the topic of fermi gasses
is to treat them at high temperature. But no, fermions are simpler
to understand when T=0, since then n̄FD(ε) is a step or “heaviside”
function: n̄FD(ε, T = 0) = Θ(µ− ε). As one of the problems this week
shows for electrons in copper, room temperature is virtually a T = 0
situation for electrons in a solid, because the quantum volume λ3 is
very much larger than the volume per electron. These particles truly
act as waves, and quantum mechanics is needed.

• Looking at the distribution function fFD(ε) (Fig. 1 below) shows that
the step from 1 to 0 occurs at ε = µ(T = 0). We need to write T = 0
because we know that µ(T ) is in general a function of T . (For example,
µ ∝ T 3/2 for a classical ideal gas.) The Fermi energy εF is defined as
εF = µ(T = 0).

• Terminology: There are lots of Fermi things. kF is the Fermi wave

number, with εF =
h̄2k2F
2m

. The Fermi temperature comes from εF =
kTF Also, pF = h̄kF is the Fermi momentum, and λF = h/pF is the
Fermi wavelength, which as we mention above, is much larger than the
interatomic spacing in a crystal. There is also the Fermi surface, which
for free electrons is just the surface of a 3N dimensional sphere in k (or
p) space, with radius kF (or pF ).

• The size of the Fermi energy is controlled by the number of particles,
N , via

N =
∫ kF

0
g(k)dk =

∫ εF

0
g(ε)dε

This math is easy with g(ε) ∝ ε1/2 in 3d ( Fig. 1 below). For spin 1/2
particles (electrons, neutrons, ... ) where we can have 2 spin states per
energy, we get

εF =
h̄2

2m
(3π2 N

V
)2/3

• The take home is that the Fermi level is an increasing function of the
density of fermions: εF and TF are proportional to ρ2/3, while pF ∝ ρ1/3.
(Here, G&T use ρ for a number density, ρ = N/V .)



Figure 1: Occupation number (aka distribution function) , density of states,
and their product for fermions. Note: µ on these graphs is µ(T = 0).

• The energy, U can be found in the usual way: we take the integral of ε
weighted by n̄(ε)g(ε). Above are graphs showing n̄ and g; bold curves
are for T = 0, where we’d find U = 3

5
εFN . Pressure is, as we’ve seen

before for massive particles, P = 2
3
U
V

. Thus P = 2
5
N
V
εF , and the bulk

modulus, −V ∂P/∂V = 2
3
N
V
εF .

• Now let’s think about finite temperatures. In particular, 0 < T <<
TF . A big victory for the free electron gas model is that it gives a
linear dependence of heat capacity on T as T → 0. One can find CV
qualitatively by arguing that only an effective number Neff ∝ N(T/TF )
of particles near the Fermi energy can get excited by temperature.
This argument relies on asserting µ(T ) ≈ εF when T << TF . Thus
CV ≈ Nk(T/TF ).

• This argument can be made quantitative. In G&T 6.8, a long derivation
yields (hooray)

CV =
π2

2
Nk

T

TF

• For T >> 0, we need µ(T ) to decrease. Arguing qualitatively: The
area under n̄(ε)g(ε) remains constant ... we want to discuss a constant
number N of fermions. The fact that µ(T ) changes by decreasing, is
because g(ε) is an increasing function of ε. Figure 7.14 of Schroeder
might be helpful to view here.

• The details of how µ(T ) varies: hangs close to εf near T = 0 but then
starts to decrease, can be made quantitative as well. We can also find
how Ē(T ) and Cv(T ) vary with increasing temperature. Schroeder



and B&B call this the Sommerfeld expansion. Please try to follow
the arguments in these texts. The gist is that we expand n̄(ε) in a
Taylor expansion around εF . The expansion parameter can ultimately
be recast as T

TF
. The end results are:

µ(T ) = εF [1− π2

12
(
T

TF
)2 + ...] T << TF

E(T ) =
3

5
NεF [1 +

5π2

12
(
T

TF
)2 + ...] T << TF

Cv(T ) =
π2

2
Nk

T

TF
T << TF

• Sometimes we want to go above TF , though if the fermions are in a
metal, it might melt first :-o. Both G&T problem 6.30 and Schroeder
problem 7.32 fund µ(T ) numerically. The chemical potential goes
through zero at T = TF , and becomes negative for higher tempera-
tures (as we’d expect in a classical ideal gas :-).

Figure 2: Figure 7.16 of Schroeder, chemical potential of ideal Fermi gas.

• Quantum gasses at high and low temperatures ... G&T problem
6.60 is about finding P (T ) for the ideal Fermi gas. G&T 6.61 is similar,
for the ideal Bose gas. The gist is that there is a correction to PV =
NkT , which is positive for Fermions, raising the pressure from the
classical result:

PV = NkT [1 +
λ3
th

27/2
(
N

V
) + ...]

and is negative for Bosons, lowering the pressure:

PV = NkT [1− λ3
th

25/2
(
N

V
) + ...]

• G&T Section 6.11.2 goes over the low temperature expansion of a Fermi
gas. This is also done in both the B&B and Schroeder readings.



• Bose-Einsten condensation ... is weird and wonderful. When a
boson gas has its temperature reduced past Tc, a substantial number
of particles begin to occupy the same state, the ground quantum state.
They stop contributing to pressure or viscosity . To understand why
this transition occurs, we first we might think about how the chemical
potential changes with T . Fixing N , the total number of bosons, we
can in principle find µ via:

N =
∫ ∞

0

1

eβ(ε−µ) − 1
g(ε)dε

Calculated this way, using the classical density of states, g(ε) ∝ ε1/2, we
find that the chemical potential rises to a value extremely close to zero
as T gets very low. When µ actually reaches zero (or ε0, the ground
state energy ... which is close to zero in a real system, there will be one
temperature T = Tc that satisfies this equation.

N = V λ−3
th

2√
π

∫ ∞
0

x1/2

ex − 1
dx with λth =

h2

√
2πmkTc

• The dimensionless integral above has the value 2.315, so

N = 2.612 V λ−3
th ≡ Li3/2(z = 0) V λ−3

th

(The second expression follows the polylogarithm treatment in B&B.)
This can only be true for one value of λth, hence one temperature, the
BEC transition temperature. It will depends on the mass of particles
and their density. From above:

kTc = 0.527
h2

2πm
(
N

V
)2/3

• Why can’t we have bosons with lower temperatures than Tc? We can,
but we have to fix a problem in our formalism. We tried to find the
temperature that gave us the known density N/V , by integrating ener-
gies from 0 to∞. But below Tc we have significant numbers of particles
occupying the ground quantum state. These are not accounted for in
our integral weighted by g(ε), which happens to be zero at ε = 0. We
have to count low-lying quantum states using a sum, not an integral.
The population of the ground state rises in a new way below Tc. A
phase transition!

• The expressions for N above are correct, but only for the population
of particles in the excited state. We thus write:

N0 = N −Nexcited = N [1− (
T

Tc
)3/2]



The N0 particles that are “condensed” are in the ground energy state.
So rather than thinking of them like a drop of water in a gas vapor, we
should think of them as all slowed to their zero-point state of motion.
In experiments, the atoms are localized in a magnetic trap. Here is a
link to the Nobel prize lecture of Wolfgang Ketterle, who participated
in the first experiment that found a BEC in ultra cold alkali halide
atoms. Here’s an MIT video about creating the BEC:
https://www.youtube.com/watch?v=u8wNSVxYZGI.

Figure 3: False color image of velocity space of Rubidium gas undergoing
BEC -BaRbiE project, Univ. Ulm

• One can explore the thermodynamics of the Nexcited particles, as one
moves through the BEC phase transition. B&B Fig. 30.6 plots z, U(T ),
and CV (T ), and problem 30.4 (not assigned) allows us to derive the
inflection at CV (T = Tc) which heralds the transition.

Figure 4: Specific heat of ideal bose gas, with superfluid helium specific heat
cartooned in G. Baym lecture notes, Tokyo. 2004

• Superfluidity is a phenomenon related to BEC, though the differences
are subtle. Superfluid bosons also share a quantum state, allowing
them to escape through nanoscopic pores, move without viscosity, and

https://www.youtube.com/watch?v=u8wNSVxYZGI


follow each other in gravity-defying streams. Cool videos of superfluids
exist: e.g. https://www.youtube.com/watch?v=2Z6UJbwxBZI .
A Bose-Einstein condensate is not quite identical to a superfluid. Su-
perfluids require interatomic interactions, whereas Bose-Einstein con-
densation is a result that emerges for noninteracting bosons.

• Bose-Einstein condensation is a collective phenomenon. A large number
of bosons follow each other into the ground state. Were they distin-
guishable, there would be a very tiny fraction in the ground state, due
to the many ways to distribute them among the many, many excited
states around energy kT . (This is the essence of the canonical distribu-

tion. Because E−TS is minimized, the large S of having particles in higher

energy states fights with the low E of having them in lower energy states.

The compromise for distinguishable, classical particles is that they hover

around energy kT .) However, for bosons, there are far fewer excited
state configurations available. The larger the number of bosons, N ,
the more important is the smallness of e−εN/kT ≈ e−N , the probability
of occupying a state of energy around kT . So the bosons lower their
free energy by falling into the ground state. Like the degeneracy pres-
sure of fermions, this is truly a result of bosons being identical! It is a
demonstration that (as Schroeder says David Griffiths says) “even God
cannot tell them apart”.

https://www.youtube.com/watch?v=2Z6UJbwxBZI

