Physics 114 Statistical Mechanics Spring 2021
Week 10 Conceptual Overview

Concept checklist from Readings:

e About counting Bosons and Fermions ... There is a paradigm
shift in how we think of counting states this week that carries over
from the week we first learned to use the Grand Canonical Ensemble.
Instead of saying we have N particles, and talking about the state each
particle is in, we make single-particle states the primary focus. We ask
about how many (identical) particles exist in each of these states.

e Due to their half-integer or integer spins (in a way which one text
admits most physicists accept but don’t understand) fermionic wave
functions are odd under exchange of particles, whereas bosonic wave
functions are even. Thus, you cannot have two fermions in a state with
identical quantum numbers. Not so for bosons; an arbitrary number
can occupy the same quantum state.

e Though our ultimate goal is to understand systems with large numbers
of bosons or fermions, the texts take us through some “toy” problems
where we have only a few particles. Problems like Schroeder 7.8, 7.17
or G&T 6.15 are worthwhile, because they go to the heart of the kind
of state counting needed for fermions or bosons.

e How many quantum states do we have within small range, dk, around
the quantum state k7 Here, k is a label, though in many applications
it is the magnitude of the wave number, k = p/\. As we've seen before
(twice!) the number density of states near k is called the density of
states (DOS), written as g(k). Sometimes we are interested in using
g(k) to find g(€)de, the number of states within de of energy e. This can
be found by setting g(k)dk = g(e)de and knowing €(k) for our system
of interest.

e In past seminars, we've used € = h2k?/2m for semiclassical gas parti-
cles. Particularly relevant this week is the relation between k and e for
photons: € = hck.

e Don’'t we already know how to deal with identical particles? Isn’t
Z(N) = Z}/N!? Not necessarily ... We consider the semiclasical result
Zy = V/A},. (His notation is vg = A}, the quantum volume). If it is
not the case that Nvg << V, then the quantum particles are too close
to each other for a semiclassical treatment. It is likely that two particles
could try to share the same single-particle state. This is forbidden for
fermions. While it is OK for bosons, it ruins the counting argument



that leads to Z(N) = Z¥ /N!, because that argument assumes there is
at most one particle in each state.

Let’s think back to the Grand Canonical ensemble. For a semiclassical
gas, u = —kTin(Z;/N). Such a gas has a negative pu with a very
large magnitude. If this is not true of u, we need the kind of quantum
counting arguments that we learn this week.

How many particles do we expect to exist in any single quantum state
labelled by k7 This is the occupation number ny. We know that finding
this quantity lent itself to Grand Canonical statistics. This week, we
add to this that we must into account the distinctive statistics of bosons
and fermions. Fermions can only have ny = 0 or 1 particles in state k.
Bosons can have an infinite number.

All three of our suggested texts tackle the calculation of n;. Below I
use language which most closely follows G&T 6.4, but Schroder 7.2 and
B&B Ch. 29 are also fine references!

We write the grand partition function as Zg = I Z¢ , where
Zok = anefﬂnk(ﬁk*lt)
Chasing through the two cases (fermions, bosons) leads to:

Zar= (1% e’ﬁ(e’“’“))jEl with + for fermions ; — for bosons

To get the bosonic result, the sum in Zg, from n; = 0 to oo leads to
a geometric series, and the convergence of the series requires that the
chemical potential ;1 < 0 for bosons, just as is true for a semiclassical
ideal gas.

The Landau potential for each energy state is € = —kTInZg ) and

the expected occupation number is n, = —%. These lead to
ng = a1 with + for fermions; — for bosons

As a pure function of the variable € and parametrized by u, these two
expressions are known as the Fermi-Dirac and Bose-FEinstein distribu-
tion functions:
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Figure 1: f(e) vs. €; classical behavior when (e — p) >> 1

e When we have many single-particle states close together, we can find
thermodynamic averages by treating sums over states k as integrals.
We use 1y, g(ex) as the weighting factor for the quantity we want to
average. For example, the mean energy would be

E = /OOO exn(ex)g(ex)deg

while the expected number of particles is

N = /OOO n(ex)g(ex)deg

e B&B Section 30.1 treat quantum counting in a formal, general way.
For example, you know that from quantum mechanics that there are
2S5 + 1 spin states for a particle with spin S. Thus, B&B Section 30.1
reminds us that these are part of the quantum labeling of any state,
and end up as a multiplicative factor in the Landau free energy.

e B&B also provide us with generic integrals we need to do, and the
mathematical names for the functions that result. (In the interest of
full disclosure: Mathematica can do these needed integrals, without
your knowing their names :-)

— The kinds of definite integrals that we need to calculate averages
of energy to a power: E"7! are a gamma function, ['(n) times a
polylogarithm function, Li,(z) which is defined as

Zk

Liy(2) = X2, —.

2 (Z) k=1 kn

— The polylogarithm Li, (z) embraces both fermion and boson cases,
through the sign of the argument z. B&B claim this in Eq.
(30.14), and prove in Appendix C.5.



— The argument z is the activity or fugacity z = €. (We met
this quantity in Seminar 8, when we discovered e.g. that for the
semiclassical gas, N = z7;.) When p = 0, z = 1 and the polylog-
arithm becomes a Riemann zeta function, ((z). B&B Appendix
C.4 has details on this very useful, special case.

e Photons ...  have energy ¢ = pc = hck = hw = hf where these
symbols have their usual meaning. E.g. p is momentum and wavelength
is A = ¢/v = h/p. When we consider a photon confined to a large box,
its wavelength, hence momentum, is quantized.

e Photons can be treated as a (non-classical) gas and we can do pure
thermodynamics and kinetic theory of gasses to get some good infor-
mation. For example, B&B Section 23.1 shows us that if energy density
is w:

1
u=AT*; P=u/3; Power/unit wall area = Juc= oT*

where %Ac = 0 is a constant of proportionality known as the Stefan-
Boltzmann constant.

e [f we want to find the value of ¢ and more, we do stat mech. We use
the 3D density of states g(k) = 2 x %idk where the extra 2 is for the
two polarization states. This can be recast as g(ex) or g(w) in order to
find the average energy:

E=U= /OOO hw npg(w)g(w)dw

where nigg(w) is the Bose Einstein occupation number distribution with
w=0:
1

n(w) = e 1

e Doing the integral above gives U = AT* as thermo predicts. The
integral is set up to go over angular frequency w, but we change vari-
able to get an expression for A that is proportional to [;* efild:c =
C(4)T'(4) = 7*/15. Thus we have an exact value for A = 17;];%3 The
Stefan-Boltzmann constant is thus o ~ 5.67 x 10 8Wm 2K 4.

e Though we will not have time to focus strongly on it in this seminar, our
assignment includes B&B sections 23.3, 23.3 and 23.8 (This material
is also present in Schroder 7.4). These are topics which astrophysicists
and laser/atomic physicists need:

— spectral energy density

— absorptivity, emissivity and how they are related by Kirchoft’s law



— Einstein A and B coefficients.

e A black body is a system (a kiln, a star, ... ) containing photons at
thermal equilibrium. Please be able to work with the black body dis-
tribution, which is the quantity under the integral sign in the equation
for energy:

Fiw? 1

w23 (efhw — 1)

Please know that this is the energy density near frequency w. Know
how to change variable to find u()A). In terms of either variable, this
function has a characteristic shape ... zero at high and low frequencies
and peaked in the middle at a place, Wyaz OF A\jpaz, Which you can find
by setting the derivative of u equal to zero. This peak occurs where
hwmasz /KT = 2.821.... This has a name: Wein’s displacement law.
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Figure 2: u(\) vs. A; classical behavior when hc/A << kT

e At long A (small w) this spectrum can be described classically, with
equipartition applying to modes of E&M radiation. In this regime,
u oc A4, which is known as the Rayleigh-Jeans law. At short A, the
spectrum goes to zero because when hc/A >> kT there is insufficient
thermal energy to occupy such high energy modes. This limit, which
was termed the “ultraviolet catastrophe” because Rayleigh-Jeans blows
up there, benefits greatly from knowing the stat mech of photons. As
with the classical paramagnet problem done last week, stat mech shows
that quantum mechanics is real! Both high and low wavelength limits
are beautifully fit by using the BE distribution function.



e Please be able to combine stat mech and thermodynamics to derive
stuff like entropy and free energy of photons in equilibrium. An example
that requires this is G&T Problem 6.25 (or if you read Schroeder, his
problems 7.44, 7.45) Below are a couple of tables (from the optional
reading by Leff) that give a snapshot of how the photon and matter
ideal gasses compare.

Table II. Comparisen of equations for classical ideal and photon gases.

Classical ideal gas Photon gas
N is specified and fixed N=peVWT?
U=3NkT U=bVT*=2INKT
P=NETIV P=bT =09NKTIV
5= NE[ (T 2VIN) + In(2mmbk) 24+ 3] §=hVT = 36Nk

Table III. Numerical comparison of classical ideal and photon gas functions.
Here the ideal gas is 1.0 mol of monatomic argon at P= 101X 10° Pa,
V=247 107" m*, and T=300 K.

Function Classical ideal pas Photon gas
N 602 107 atoms 135% 10" photons
U 374%10° 1 151%10°7 ]
P 1012 10° Pa 204X 10°% Pa
5 155 /K 671% 107" K

¢ Quantized vibration in solids ... Recall the Einstein model of
solids. Now we have a new perspective on it. The ¢ quanta of energy
shared among the N oscillators are like ¢ bosons. The expected energy
per oscillator, e, is the ground state energy, hw/2, plus the energy of n
bosons ... each one carrying energy w. That is:

1
_ —Bhw/2
Zl =€ 71 — e—ﬁhw
_ L 1

These new bosons are quanta which carry vibrational energy. Like
photons, they have p = 0.

e We introduce a relevant, new temperature T = hw/kp. If we do
the familiar calculation of C), for the Einstein solid, we notice that
for for T' >> T we are in the high 7' limit known as “Dulong-Petit”

This limit is just what we’d get from equipartition: C, = 3Nkpg.
(Notation alert: We have wave vectors k floating around now, so I have tried to

write Boltzmann’s constant as kg ... but look out for typos.)

e The problem with the Einstein crystal’s C,, is that it falls to zero much
too fast as T — 0. Not a theoretical problem, but an experimental one.
Experiments give C, oc T3 as T — 0.



e The Debye model is an improvement. The same kind of summing over
modes as we’ve done a couple times before, is now applied to lattice
vibrations. Now our quantized vibrations are not independent oscil-
lators as in the Einstein model, but the normal modes of a lattice of
N atoms. Every quantized wave vector k is converted to a frequency
based on the average speed of sound, ¢, in the lattice:

ke =w
This allows us to get the density of states:
3V widw
glido == 5a

e U can be found in the usual way, by integrating hw weighted by 7 (w)g(w)
over all w. However, we need to think about the limits of integration.
Unlike E&M radiation in a box, solid vibrations have a shortest wave-
length Ap equal to the typical spacing between atoms. This is shown
in problem G&T 6.65, which is assigned this week. It’s equivalent to
arguing that there is a high frequency cutoff wp, so we don’t count
more modes than there are. There can only be 3N normal modes of
vibration in a 3d crystal with N atoms.

e This high energy low wavelength cutoff leads us to define an equivalent
temperature, the Debye temperature Tp = hwp/kp. We thus get:
3

(kg1 )4 /TD/T x
U=N9 2"/ _
9(]€BTD>3 0 er — 1d$

e Atlow T, C, o< T® which is what experiments show. Schroeder reminds
us that in a metal, there is another contribution at low temperatures
proportional to T', which is something we discussed above, the contri-
bution from the “free electron gas” (i.e. the conduction electrons). At
high 7', the law of Dulong and Petit, C, = 3Nk is obeyed, just as for
an Einstein solid. Hooray!

e B&B Section 24.3 gives us a glimpse of a situation where we can no
longer treat phonons like particles-in-boxes. Now, is not the case that
the dispersion relation is w o< k. Nor is the density of states g(w) o< w?
in 3d. This analysis probably familiar to you from a Phys 111 seminar,
where you looked at the normal modes of a system of masses, connected
by springs. In this section, we can read the variable ¢ as being like the
wave number, k. We see the relationship between w and ¢ in Eq. (24.33)
and Fig. 24.5 for a 1d chain of masses. Because sin(ga/2) x (aq/2)
for small ¢, the small-¢q limit is just like an Einstein or Debye model.
For large g, the situation is different. Also different is g(w). The low-w
limit is like a particle in a box. But higher w behavior in Fig. 24.7
shows that g(w) depends on the detailed way atoms are bound together
in the copper solid.



