Physics 114 Statistical Mechanics Spring 2021
Week 9 Conceptual Overview

Concept checklist from Readings:

e Spins in a paramagnetic lattice do not interact with each other but
only with an external field, B, so each spin has energy ¢ = +uB. The
sign depends on if it is spinning antiparallel or parallel to an applied
field. The macrostate is given by how many spins, n are parallel to
the field. We thus have a microcanical ensemble where energy is F =
—nuB + (N —n)uB.

e For the microcanonical paramagnet, there are Q = 2V total microstates,

each equally likely. The multiplicity of macrostates is Q(n) = — ( ]]\yin)!.
We use familiar arguments to find % = %.

e As usual, canonical statistics may seem easier :-) The partition func-
tion yields all other quantities of interest. For a paramagnet, Z; =
2coshfuB and Zy = Z. Canonical and microcanonical treatments
agree that £ = —NuB tanh(BuB).

e As with other systems, F = —kT InZy, E = —818”#, and
Cp = (0E/OT)p can be found. The specific heat is, for example,
Cp = kN (BuB)? sech®(fuB).

e Of special interest for magnetic systems are the expected magnetization
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In the paramagnetic case, M = Ny tanh(SuB) .

e Also important is the magnetic susceptibility ... which describes how
willing the system is to change its magnetization M in response to an
external field. The susceptibility is

oM

X~ 9B

and for a paramagnet, x = NSu? sech?(BuB). At high temperatures,
we see the Curie law where susceptibility drops as 1/T.

o x = fB(< M? > — < M >?), so fluctuations in magnetization determine
the susceptibility, just as fluctuations in energy determine the specific
heat.



e The intensive quantity of magnetization per spin is m = M/N. From
here on, we tend to drop the symbol y ... and treat magnets as if they
are just spins of size +1.

e The thermodynamics of magnetic systems is not very intuitive for most
of us. G&T focus on the H field because it is what we control. The
analogy to a fluid is M is like pressure, P and field H is like volume V.
(Definitely not intuitive.) If we accept this, we can write G(T, P, N) and
F(T,H,N) = G(T,M,N) — HM, the usual Legendre transformation.

Then
oF oM

M = _(87H)T P X = (87H)T

e Paramagnets can be artificially set up at a negative temperature. T'< 0
is actually hotter than 7" = oco. See the review reading in Schroeder
Ch. 3.3 for this interesting situation.

When U >0, dS/dE<0 so T <0

e The Ising model for a ferromagnet comprised of N distinguishable,
quantized spins. The Hamiltonian for a microstate of the N spins
looks like

E({Sb ""asN}) = _Zi,j netghbors Jsisj - Ez SiH

where s; = +1 are the values allowed for any spin. The canonical
partition function is thus Zy = Sinicrostates€ L (Microstate)

o Writing Z down does not mean solving it in closed form. Now that
we have a system with interactions, the partition function does not
decompose into a product : Zy # ZI as it did if we had J = 0 and
were back to solving a paramagnetic system. Before we get into math
details, let’s get comfortable with the conceptual landscape.
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Figure 1: A microstate of ising spins. An external H field would point up or
down.
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Figure 2: Green is a paramagnet. Magnetization is zero at H = 0 for a
magnet that doesn’t remember its history like a (green) paramagnet or (blue)
superparamagnet (not part of our course, but cool.) The pink curve is a
ferromagnet, which has had H increased and decreased repeatedly ... it
remembers its past and has leftover magnetization, showing “hysteresis”. For
example, M(H = 0) # 0. However, if we started an experiment at H = 0
with a ferromagnet having M = 0, and then we increased (or decreased)
H from zero, it would do what the blue curve does. Take home message:
Because neighboring spins want to align in a ferromagnet, M(H) has the
same general shape, but rises more strongly than in a paramagnet.

0.0

0.5}

1.0
m —ﬁ H>0

-1.0

I 'l L

0.0 0.5 1.0 1.5 2.0

Figure 3: A phase diagram, M(T) for an Ising ferromagnet. First follow the
black line ... it has H = 0. Above a critical temperature 7' > T, there is zero
magnetization (entropy wins). For T" < T, there is nonzero magnetization,
that increases as T decreases, and spins become successively more aligned
(energy wins). The white regions are best explained by looking back at the
blue line in Figure 2. There is a nonzero M when H # 0 at all temperatures.
Spins always want to align with H. The shaded regions are forbidden.
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Figure 4: Plot of M(H) showing the difference between passing through H =
0 if the Ising ferromagnet is above, at, or below the critical temperature T..
For T' > T,., M is continuous. But for T' < T,, as soon as H rises from zero,
M jumps up to a finite value. (This is one case that isn’t shown in Figure
2.) Another way to look at this jump is to look at Figure 3. The jump
involves crossing the “forbidden” shaded region when going between positive
and negative H values.

e One can make small models of interacting spins. Example 28.9 in
B&B uses a 4x4 lattice and shows how to count states, leading to Z
and < E >. There are some good lessons here: the ground state
is degenerate; and there’s a “crossover” from ordered to disordered
macrostate as a function of £7/.J.

e The simplest analytically-solvable case in the thermodynamic limit (i.e.
N — o0) is a 1d Ising model with H = 0. It is tractable in a couple of
ways. G&T section 5.5 talk about solving this Ising chain by directly
counting states. They find find Zy = 2(2cosh(8.J))N~1. If we close the
chain so that the N** spin interacts with the first, there is a small dif-
ference which is immaterial in the N — oo limit: Zy = (2cosh(8J))N.
From Zx of course, we find energy, free energy, magnetization, specific
heat, and susceptibility.

e Schroeder Ch. 8.2 points out that this Zy for the ferromagnet has
exactly the same mathematical form as Zy for the paramagnet, if one
replaces J with pB. This is only true in 1d.

e \ diverges as T' — 0. A phase transition!? It is a matter of definition
. since it doesn’t occur at a nonzero temperature. Both B&B and
G&T make an argument about “domain walls”, which in 1d is just the
place where a row of spins changes alignment. It costs a bit of energy
and a lot of entropy in 1d, which supports the idea that in the N — oo
limit, the 1d Ising model is paramagnetic for all nonzero T'.

e There is one more trick that works for the 1d Ising model for both zero



and nonzero H. This is the transfer matriz method. We can write
Zn =tr(TV) = MY + AN where

eBU+H) =BT
T = o8] BU-H) At are eigenvalues

This exact solution not only lets us calculate all thermodynamic quan-
tities, but supports the result that the H = 0 ferromagnetic transition
does not exist save at T, = 0.

Let’s now talk about higher dimensions. For H = 0 in 2d, 3d, ...
there is definitely an exciting kind of transition... an “order-disorder”
transition. T, is called a critical point. Below T, the system exhibits
spontaneous magnetization. Quantities like C' and x are singular, or
even divergent with so-called critical exponents. E.g. x o< |T — T,|7".

The spin-spin correlation function G(r) measures the correlations be-
tween spin directions when the spins are separated by distance r.

Gir =0) = m2-m? o« x. For arbitrary r, G(r) usually dies
off exponentially, as e 7/¢() where £ is the correlation length. But as
one approaches the critical point T,, £(T) — oo . At distances less
than & will die off as G(r) o< —=. This slower, algebraic die-off near
the phase transition suggests that spins “communicate” over large dis-

tances.

The 2D Ising model has an exact solution thanks to Onsager (and
later by Yang). The solution begins with the transfer matrix, but
then treats spins using the Pauli spin matrices of quantum mechanics,
creation/annihilation operators for spins ... beyond our scope.

A very accessible technique that yields 7, and critical exponents (though
not the correct ones) is mean field theory ... also known as “Weiss
molecular field theory”. In this theory, we replace ¥,cightors ; 5; With
g m . Here, ¢ is the number of neighbors of any spin. Self-consistency
in the definition of m leads to

m = tanh(BuH + BqJm)
This in turn leads to (for H = 0) T, = ¢J/k.

G&T problem 5.18 shows that one can also write a mean-field theory
expression for the free energy. This is an even more fundamental thing
than the Weiss theory described above. This expression for free energy
is called a Landau theory. For the ferromagnet:

f(m) =a— Hm +b(1 — B¢J)m* + cm*

This free energy can be used to find out which solution of the self-
consistent equation for m is the stable one!
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e Monte Carlo again?! Yes, because another very accessible technique to
study magnets is Monte Carlo (MC) simulation. Please know that MC
creates a trajectory, a sequence of states of the system. MC sampling
involves finding the average of a quantity of interest ... call it G:
<G >p = (1/T) X,;G; where on step j of the trajectory of length T,
the value of G is Gj.

e Being even more careful, we mights find partial averages of the quantity
e.g. < G >U) over the i set of L steps along the trajectory. Taking
many successive sets of L steps allows us to find the average:
<G >r=(L)T) X < G >@) This gives us a good estimate of
the true < G > as the trajectory length T" grows. This also lets us
estimate uncertainties in our estimate by finding the sum of squares of
deviations of the set of < G >%_ When you click “zero averages” for
the " time in a G&T simulation and then compile data for L more
steps, you are finding a partial average in this way.

e The nuts and bolts of MC simulation in its very simplest form involves
just trying configurations at random. A slightly less simple form which
lets us avoid wasting time in configurations of low probability is tmpor-
tance sampling via an acceptance/rejection algorithm we’ve met before:
Metropolis algorithm. Now, the probability distribution we want to
sample is the Maxwell-Boltzmann probability which governs the Ising
system: prob oc e PEUs1snh),

e G&T and Schroeder Ch. 8.2 both give us the rules for sampling with
the Metropolis algorithm in order to achieve the canonical distribution.
We make a trial move from spin microstate a to state b say, and then
accept or reject it so that

pTOba—)b/prObb_)a —= eﬁ(Ea—Eb)

If E, and E} are the Hamiltonians associated with two different spin
configurations, a and b respectively, this allows us to simulate the Ising
model.



o Critical slowing down is an enemy of Metropolis Monte Carlo calcu-
lations near a critical point. B&B mentions the Wolff algorithm, and
G&T describe it in the description page that shows up when you launch
their simulation of the 2d, square lattice, Ising model: If we are inter-
ested only in the static properties of the Ising model, the algorithm used to
sample the states is irrelevant as long as the transition probability satisfies
what is known as detailed balance. The Wolff algorithm flips a cluster of
spins rather than a single spin, and is an example of a global algorithm. The
utility of the Wolff algorithm is that it allows us to sample states efficiently
near the critical temperature; that is, it does not suffer as much from critical
slowing down.



