
Physics 114 Statistical Mechanics Spring 2021

Week 8 Conceptual Overview

Concept checklist from Readings:

• The Grand canonical ensemble has a probability distribution known as
the Gibbs distribution:

Ps =
1

ZG
e−β(Es−µNs); where ZG = Σs e

−β(Es−µNs)

• Notation alert: The grand partition function is noted as ZG in G&T
and Z in both B&B and Schroeder.

• The proof that the Gibbs probability distribution is established equi-
librium is very much like the one for the Boltzmann probability distri-
bution. We argue that the system shown above has Ns particles and
energy Es , with energy and particles being exchanged with a huge
bath. Thus:

lnΩb(E−Es, N−Ns) = lnΩb(E,N)−d ln Ωb(E,N)

dE
Es−

d ln Ωb(E,N)

dN
Ns+...

From earlier weeks, we recall that

d ln Ωb(E,N)

dN
≡ 1

k

dSb
dN
≡ −µ/kT .

Because the equilibrium probability of observing a particular value
of Es and Ns is proportional to Ωb(E − Es, N − Ns) (which assumes
Ωs(Es, Ns) = 1) we are lead to the Gibbs distribution.



• The chemical potential, µ , will be very important this week, and we’ll
say more about it below.

• In the definition of the grand partition function,

ZG(T, V, µ) = Σs e
−β(Es−µNs)

you should infer that Es depends on Ns . So to calculate Z you might
first sum over all states for a given Ns and then sum over all possible
Ns:

ZG = ΣNse
βNsµ ΣEs,where s has Ns particles e−βEs

• What we have just written is:

ZG(T, V, µ) ≡ ΣNe
βNµZ(T, V,N)

where Z(T, V,N) is the canonical partition function. Cool! ZG is a
transform of Z, where the variable N is transformed to µ. Moreover,
the Landau free energy, Ω, which is also known as the grand potential,
is a transform of the Helmholtz free energy. They are related by a
Legendre transform: Ω = F − µN .

• Below is a figure (Clemson University website) which shows how mul-
tiplying Z(N) by e−αN , produces a sharp peak at N̄ , the mean number
of particles in the system. (Note: Their variable α is our -βµ . For the semi-

classical gas, µ << 0 . So with α > 0, the shape of graph is sensible and relevant

:-)

• The grand potential is proportional to the logarithm of the grand par-
tition function; just as F = −kT lnZ for the canonical ensemble.



• Notation alert: the grand potential is written as Ω(T, V, µ) in G&T,
as ΦG(T, V, µ) in B&B and as Φ(T, V, µ) in Schroeder.

• However you choose to write it, ΦG(T, V, µ) = −kT lnZG(T, V, µ). As
we learned in a problem in an earlier week, ΦG = F − µN = −PV .
For similar mathematical reasons, G = µN .

• A nice summary of the three fundamental potentials: Entropy, Helmholtz,
and Grand are shown in B&B:

Ω = eβTS

Z = e−βF

Z = e−βΦG

• Like their partition functions, the potentials contain all equilibrium
thermodymic information for their respective ensembles. For example,
B&B section 22.4 shows

S = −
(
∂ΦG

∂T

)
V,µ

, P = −
(
∂ΦG

∂V

)
T,µ

, N = −
(
∂ΦG

∂µ

)
T,V

As ever, partial derivatives of a potential yield the “conjugate” quan-
tities to its natural variables. Here: (T, V µ)↔ (S, P,N).

• Chemical potential is discussed both in B&B and stat the start of G&T
Ch. 7. We consider two systems, say 1 and 2, where particles can be
exchanged. Guided by the idea that entropy is maximized, use of the
definition µ/T = −( ∂S

∂N
)U,V leads to µ1/T1 = µ2/T2 at equilibrium

• Furthermore, using the idea that entropy must decrease when systems
move toward equilibrium, we find that particles flow down the gradient
of chemical potential, so if µ1 > µ2 , particles flow from 1 to 2.

• On the topic of chemical potential, be sure you feel comfortable with

– definitions of µ in other ensembles:

µ =

(
∂U

∂N

)
S,V

=

(
∂F

∂N

)
T,V

=

(
∂G

∂N

)
T,P

= G/N

– the example of Figure 7.1, where part of system is raised up in a
gravitational field leading to Nu = Noe

−βmgy

– the example of two Einstein solids which can exchange particles
... leading to ∂lnΩA/∂NA = ∂lnΩB/∂NB at equilibrium

– Free energy arguments, like dG = ΣiµidNi for a multi particle
system. Such arguments



∗ are the basic principle upon which chemical reaction problems
(see below) rest

∗ let us deduce that if we can destroy a species of particle com-
pletely (like a photon) then µ = 0

– the numerical Widom particle insertion method which relies on the
fact that µ is the change in free energy, F , when we add a single
particle to the simulation. A clever idea is to calculate only the
addition to the ideal gas part of µ. This “excess” contribution is
µexcess = −kT ln < e−β∆U >

– the chemical demon Monte Carlo algorithm ... which appears in
a problem this week.

• We will read B&B 6.3 and 6.4 soon. These do the explicit counting
needed for bosons and fermions. Below is a nutshell summary which
sets us up to use grand canonical stats as they are used in B&B 6.5
and 6.6... which is the limit where semiclassical stats hold.

• How many particles do we expect to exist in any single quantum state
labelled by k? This is the occupation number n̄k. Finding this quantity
lends itself to grand canonical statistics, because we are not requiring
a certain number of particles exist ... we are instead counting probable
occupation of energy levels. In future weeks, we’ll take into account the
spin-related statistics of bosons and fermions. Fermions can only have
nk = 0 or 1 particles in state k. Bosons can have an infinite number.

• We write the grand partition function as ZG = ΠkZG,k where

ZG,k = Σnk
e−βnk(εk−µ)

is the partition function for one quantum state with label k ... which
could be occupied by nk particles ... and we sum over nk. When we
read G&T Section 6.4, we’ll see that it goes through the two cases
(fermions, bosons) to deduce that

ZG,k = (1± e−βnk(εk−µ))±1 with + for fermions ; − for bosons

The Landau potential for each energy state is Ωk = −kT lnZG,k and
the expected occupation number is n̄k = −∂Ωk

∂µ
. These lead to

n̄k =
1

eβ(εk−µ) ± 1
with + for fermions ; − for bosons

• Theh equation abve was G&T 6.85. Currently relevant is semiclas-
sical particles, where n̄k is tiny. This is achieved in the limit that
eβnk(εk−µ) >> 1. G&T call this the Maxwell-Boltzmann distribution in
their Eq. (6.87). ( I do find this odd ... I’m not sure why we don’t call
it the Gibbs distribution. )

n̄k = e−β(εk−µ)



• When we have many single-particle states close together, we can find
thermodynamic averages by treating sums over states k as integrals.
We use n̄k g(εk) as the weighting factor for the quantity we want to
average. For example, the mean energy would be

Ē =
∫ ∞

0
εkn̄(εk)g(εk)dεk

while the expected number of particles is

N̄ =
∫ ∞

0
n̄(εk)g(εk)dεk

As in previous weeks, particle-in-a-box counting yields the density of
states g(k) :

g(k)dk =
V k2

2π2
dk the number of waves with wave vector k;

Then one can convert from k to energy, ε for the cases of matter par-
ticles or photons:

g(ε) = ns
V

4π2h̄2 (2m)3/2ε1/2 matter particles with ns internal states;

g(ε) =
V ε2

π2h̄3c3
photons with two polarizationstates

• Chemical reactions are a key application of chemical potential. A typ-
ical reaction might be: |νA|A + |νB|B ↔ |νC |C + |νD|D . The νi are
stoiciometric coefficients. We translate this to math as

ΣiνiNi = 0

with Ni the number of molecules of type i. By convention, νi > 0 if i
is a product molecule; νi < 0 for a reactant.

• Conservation principles and the minimization of the Gibbs free energy
at a given temperature and pressure lead to

dG = −SdT + V dP + ΣiµidNi = 0 => Σiνiµi = 0 (1)

This is the condition of chemical equilibrium.

• What is a equilibrium constant , K? It sets the ratio of reagents to
products. Its definition depends on the specific reaction, as well as
P and T . We will only deal with gas phase reactions in this seminar
- though liquid ones aren’t much harder once you get the procedure
down. K is defined as

K = Πi(Ni/N)νi ≡ Πi(Pi/P )νi

K is a constant when the reagents and products are in equilibrium.
The relationship above is also called the law of mass action.



• How do we find the value of K? The arguments in B&B and G&T
begin with

µi(T, P,Ni) = µoi (T, P )− kT ln(Ni/N) (2)

Using Eqs. (1) and (2), we find K via

−kT lnK = Σiνi µ
o
i (T, P )

where µoi is the chemical potential of a system of molecules of type i at
temperature T and pressure P . (Remember that µ for an ideal gas is
one of the many things you know how to find from Zideal.)

• Sometimes chemists standardize µo by finding it at a standard tem-
perature and pressure. They often note the standard pressure as P−	−.
This leads to writing, as in B&B, µo ≡ µ−	− and

K = Πi(Pi/P
−	−)νi

• Yet another way to write the equilibrium constant is derived from Eqs.
(1) and (2) above:

K = e−∆rG−	−/RT (3)

The subscript r means that we take the difference between reactants
and products, and we measure these quantities in moles. To find ∆rG,
a table like the one at the back of Schroeder is just the thing!

• Another game we can play with K leads to Le Chatellier’s principle.
Using Eq. (3) and the definition H = G+ TS = G− T (∂G

∂T
)P we find

d lnK

dT
=

∆rH
−	−

RT 2
; or

d lnK

d (1/T )
=
−∆rH

−	−

R
(4)

• How does Eq. (4) help us? Since exothermic reactions have ∆rH
−	− < 0,

it tells us how K drops as temperature increases. Similarly, it tells us
how K rises with T for endothermic reactions. This is Le Chatelier’s
principle ... reactions adjust their equilibrium to try and minimize the
disturbance. If you raise temperature for an exothermic reaction, it
goes less strongly, thereby releasing less heat!

• Another name for the second identity in Eq. (4) is the van’t Hoff
equation. There is a linear relationship between lnK and (1/T ), with
the slope equal to −∆rH

−	−/R.

• Osmosis is a very useful phenomenon involving particle exchange. A
membrane dividing two containers of an A and B mixture is permeable
to only one species, A say. This will result in a pressure higher by an
amount Π, on the the side containing more B. Eventually, Π will reach
an equilibrium value.



• What is this equilibrium value? The question is answered for “dilute,
ideal” solutions in B&B section 22.9. Example 22.8 shows that the
chemical potential of a solvent A with a tiny amount of solute B added
is lowered from the value of the pure liquid. The amount by which it
is lowered is RTlnxA. Using this fact and equating chemical potentials
on either side of the membrane, leads to

Π = nBRT/V

where nB/V is the concentration of B.

• On the way to deriving the osmotic pressure, B&B mention Raolt’s
law. (We will probably see it again when we study phase transitions.)
Raolt’s law states that the vapor pressure of A is lowered from its pure
liquid by a factor xA, if there is a fraction xB = 1− xA mixed in.

• Numberfluctuations are discussed in G&T 6.11.1. These are directly
proportional to κ, the isothermal compressibility. This is going to be
important when we think about a critical phase transition later ... fluc-
tuations go wild as a gas becomes so compressible it falls into a liquid
state!

– Don’t worry about a “new Maxwell relation”. To me, Eq. (6.235)
does not have the right form.

– Please do follow the logic that leads to Eq. (6.238), with the
take-home message that κ = 1

ρkT
<∆N2>
<N>

– Please do take home the message of Eq. (6.240), that <∆N>
<N>

∝
1√
<N>


