
Physics 114 Statistical Mechanics Spring 2021

Week 7 Conceptual Overview

Concept checklist from Readings:

• The pressure of a gas on a wall is the force normal to the wall, divided
by the wall area: P = F/A. (It’s important to specify “normal to”
because when we talk about viscosity, we’ll be talking about shearing
forces which are parallel to the wall.)

• Say the wall is oriented in the x− y plane; so its surface normal points
in the z direction. One molecule hitting the wall supplies an quick,
impulsive, normal force of F = dpz/dt. Our job is to calculate how
much force comes from molecules at a density of n = N/V , traveling in
random directions. B&B Eq’s 6.10-12 construct this argument, arriving
at an expression for molecules that hit in a certain angular range within
dθ of θ.

• The number of molecules per unit volume, per unit time, with speed
near v, hitting the wall near angle θ is:

v cosθ n f(v)dv
1

2
sinθ dθ (6.12)

Above, f(v) is the Maxwellian speed distribution familiar to us from
last week :-). We can then integrate over angle and speed in order to
find:

p =
1

3
nm < v2 > (6.15)

• The Maxwellian distribution is then used to find < v2 >= 3kBT
m

. This
leads to what else ... the ideal gas law. Nice!

p = nkBT (6.18)



• One can find the proportionality between pressure p and u, the energy
per unit volume. This is most interesting, perhaps, when one contrasts
different systems. For example, we will later do this for a “gas” of
photons at thermal equilibrium. For now, for the ideal gas the constant
is 2/3: p = 2

3
u.

• Dalton’s law is just common sense. The sum of the “partial pressures”
due to different kinds of gasses is the total pressure in a gaseous mixture:

Σi pi = p

• Effusion is when gas escapes from a tiny hole. Grahm’s law applies
when the hole is tiny. How tiny? It must be the case that the hole’s
diameter is much less than λ, the mean free path that a molecule travels
in-between collisions. To understand this phenomenon, we define the
flux, Φ, the number of particles per unit time hitting an imagined unit
area. B&B Eq. 7.5 (again, using the Maxwellian distribution f(v) of
speeds) yields

Φ =
1

4
n < v >=

p√
2πmkBT

(7.6), (7.9)

Then, the effusion rate is ΦA, for a hole of area A. The rate of change
of mass in the system is dM/dt = −mΦA where m is the molecular
mass.

• The rate of effusion thus gives us a way of determining gas pressure. It
also gives us a way of separating molecules by mass, since the effusion
rate ∝ 1/

√
m. It also predicts that if hole’s diameter is much less than

λ, setting Φ1 = Φ2 means p1/
√
T1 = p2/

√
T2. 1

• Finally we get to the idea that gas particles can collide! We start with
the idea that a particle with an effective cross section σ will sweep out
a volume σ v dt in time dt, and if another, stationary molecule’s center
lies in that volume (see the picture below), there will be a collision.
The effective cross section, σ, for a collision is the area of the “tube” of
volume below - the collision cross-section. This model is predicated on
the particles interacting like hard-spheres ... they miss each other unless
their actual surfaces impinge on one another. The simplest model is
that all particles have the same radii, making σ = πd2 where d is a
particle diameter.

1This supports something that we discussed weeks ago, the Joule-Kelvin“throttling
process” where two gasses had different pressures on either side of a a tiny connector
between the two containers. I am not claiming that this is the exact relationship between
pressures and temperatures for the Joule-Kelvin effect! I’m just saying that here is another
situation in which a pressure difference can exist between two containers of gas, when
molecules must make their way through a tiny hole into the adjacent container.



• B&B derive that the probability that a molecule has not suffered a
collision over a time interval t is

pno collision before t = e−nσvt (8.5)

• It follows that the likelihood of having no collision up to a time t, then
colliding in the next dt is pcollision near t = e−nσvt nσv dt. This permits
us to calculate the mean scattering time τ , which is the expected time
between collisions:

τ =
1

nσv
(8.10)

• The mean free path λ is the typical distance a particle goes between
collisions. B&B Section 8.3 makes one common-sense modification to
the ultra-simple model that would suggest λ =< v > τ . One realizes
that particles collide more often, hence have a shorter mean free path,
b/c they are all moving relative to one another. With this modification:

λ =
1√
2nσ

=
kBT√
2pσ

(8.20), (8.21)

It is also the case that the mean free time is modified, to:

τ =
1√

2nσ < v >

• Transport of momentum, energy, and matter are found in B&B Ch. 9.
All three of these quantities are described in terms of their flux. Fluxes
are introduced by referring to an imaginary area in the xy plane ... and
the transport occurs in the z direction. These concepts are generalized
later. Fluxes of energy and particles are both vectors. Problems in-
volving these fluxes can be done in cylindrical or spherical geometries,
as boxed examples on pages 80, 83 and 84 show.

– The transverse momentum flux, Πz, is how much x momentum
is transported per unit area per unit time. (One could have also
talked about y momentum; the idea is that this is a component of
momentum transverse to the direction in which it is transported.)



– The heat flux, Jz is how much thermal energy is transported per
unit area per unit time.

– The flux of labelled particles, Φz, is how many labelled particles
are transported per unit area per unit time.

• A key geometry we use for all three transport properties is this one:

We want to know the excess transverse momentum (Eq. 9.3) or net
thermal energy (Eq. 9.16), or net flow (implicit in Eq 9.37) for a single
particle which has travelled its mean free path, moving at angle θ and
speed v, moving from lower to higher z. The z direction is relevant
due to B&B’s choice of how to shear the system, or set up a tempera-
ture or concentration gradient (for viscosity, thermal conductivity and
diffusion, respectively).

• A key approximation in what follows is that the system size L is much
greater than the mean free path, λ, which is in turn much greater than
the diameter d of the molecules.

• Momentum transport is determined by viscosity. Its SI units areNs/m2.

– The momentum we discuss is parallel to some shearing force. The
simplest geometry is having the fluid confined between two plates,
which are in steady, relative motion, say in the x direction. Even
without modeling the particles as having any “sticky” interactions
with other particles or the walls, you will get a gradient of the
average x velocity, < ux(z) > from the top plate to that of the
bottom plate. A more practical geometry with rotating cylindrical
walls is discussed in the box on B&B p. 80. In that case, the
“transverse” momentum is in the θ̂ direction, and it varies with
the radial position in the cell.



– The shear stress τxz = F/A. It is proportional to the transverse
momentum gradient, with the coefficient of proportionality being
the viscosity η:

F/A = η
d < ux >

dz
(9.1)

– This shearing produces a transverse momentum flux
Πz = −τxz = −η d<ux>

dz
. Πz(θ, v) is a product of two terms: the

number of particles impinging at angle θ and speed v on an imag-
inary area in the xy plane, and the x component of momentum
they carry. One then integrates over angle using Eq. (6.12), and
speed using the Maxwellian distribution f(v), to obtain:

η =
1

3
nmλ < v > (9.5)

– Interesting facts are that η is independent of p. However, all other
things being fixed: η ∝

√
T (which is not what you’d expect from

a liquid), η ∝
√
m, and η ∝ 1/d2.

• Thermal energy transport is characterized by the thermal conductivity,
κ. Its SI units are Wm−1K−1.

– We imagine a cell with a temperature gradient so heat flows from
low to high z (hot to cold).



– The temperature differential produces a heat flux Jz = −κdT
dz

.
Jz(θ, v) is a product of two terms: the number of particles im-
pinging at angle θ and speed v on an imaginary area in the xy
plane, and the amount of heat they carry. For a single molecule,
B&B calls the latter Cmolecule∆T . For a molecule traveling a single
mean free path’s distance, ∆T = dT/dz λcosθ. As with viscosity,
one integrates over angle and speed to obtain:

κ =
1

3
nCmoleculeλ < v >≡ 1

3
CV λ < v > (9.18)

where CV is the heat capacity per unit volume.

– Interesting facts are that κ is independent of p. Also, all other
things being fixed: κ ∝

√
T , κ ∝ 1/

√
m, and κ ∝ 1/d2.

• Mass transport which B&B characterize as the motion of some subset
of labelled particles is characterized by the self diffusion constant, D.
Its SI units are m2/s.

– We imagine a cell with a concentration n∗(z) of labelled particles,
where a concentration gradient ∂n∗/∂z has been set up. The
particle flux, Φz is the number crossing an imaginary area in the
xy plane, per unit area per unit time. Flux is proportional to the
concentration gradient, with self diffusion constant D the constant
of proportionality: Φz = −D ∂n∗

∂z
.



– B&B go further to derive the 1d Diffusion Equation, predicated
on the idea that particles are conserved; i.e. ∂n∗

∂t
= −∂Φz

∂z
. This

leads to
∂n∗

∂t
= D

∂2n∗

∂z2
(9.31)

This is generalized to 3 dimensions. (See Ch. 10 if you wish ...
perhaps this is math you did in Phys 17?). Further, diffusion can
be connected to random walk theory. There are many places one
can go with diffusion, but we haven’t the bandwidth to go there
now :-} .

– In the same way as was done for the other two transport quantities,
one integrates Φz(θ, v) for a single particle over all angles and
speeds, weighted by the Maxwellian speed distribution, to obtain

D =
1

3
λ < v > (9.38)

– Interesting facts are that D is not independent of p ... but goes like
p−1 at fixed temperature, because λ ∝ n−1. Also, all other things
being fixed: D ∝ T 3/2 , D ∝ 1/

√
m, and D ∝ 1/d2. Finally,

there is a weirdly direct relationship between diffusion constant
and viscosity: D n m = η.

• B&B gives us “less memorable” formulae for η, κ, and D in Eqs. (9.6),
(9.19), (9.40). These have all the constants and thermodynamic pa-
rameters shown. While they do fairly well reproducing experimental
data, a more careful theory (not assigned, mentioned in B&B Section
9.4) has slightly better predictions for the constants that agree even
better with experiment.


