
Physics 114 Statistical Mechanics Spring 2021

Week 6 Conceptual Overview

Concept checklist from Readings:

• About entropy of mixing: G&T section 6.1 show us by explicitly using
S(T, V,N), that mixing identical gas particles results in ∆S = 0, as it
should be :-)

• Applications of the Boltzmann distribution: It can be applied, as in
G&T section 6.2.2 and 6.2.3 to gas velocities. In that case, it is of-
ten known as the Maxwell-Boltzmann (MB) distribution and the speed
distribution p ∝ v2e−mv

2/2kT is called a Maxwellian. Ch. 5 of B&B
is a short, excellent reference for the MB distribution of velocities and
speeds.

• A second application of the Boltzmann distribution is the beautiful
equipartition theorem. This is done in G&T section 6.2.1 and B&B Ch.
19. The theorem can be summarized by saying that if a particle has
f independent, quadratic terms in its Hamiltonian, then its expected
equilibrium energy is < E >= f

2
kT .

• A natural consequence for gasses is that Cv = f
2
R per mole. Similarly,

Cp = (f
2

+ 1)R and the adiabatic constant is γ = 1 + 2
f
.

• Equipartition is derived assuming a continuous distribution of energies.
Thus, if kT >> ∆Eq, where ∆Eq is a typical separation between quan-
tum levels, equipartition applies. On the other hand, if kT << E1−E0,
that mode will be “stuck” in its ground state whose energy is E0.

• B&B have several examples of equipartition: a harmonic oscillator, a
solid (modeled as a set of N harmonic oscillators in 3d, monatomic and
diatomic gasses). Be sure that you can use equipartition to find their
average energies and their specific heats.

• Z(T, V,N) is the partition function for N particles, but we read a
lot about the single particle partition function. Why care about one
particle? Because Z(T, V, 1) is often much easier to calculate, and if
we have N distinguishable particles, it is the case that

Z(T, V,N) = Z(T, V, 1)N distinguishable particles

• In a related way, if we have several completely different degrees of
freedom (like A = rotations, B = translations, and C = vibrations)
then partition functions just multiply

Z = ZA ZB ZC



• What about N indistinguishable particles?

– The right way: Find out if they are bosons and fermions and do
the correct counting arguments

– The not-totally-right way: This works for classical ideal gasses,
and is essential to get the entropy of mixing correct:

Z(T, V,N) =
1

N !
Z(T, V, 1)N dilute, semiclassical particles

This approach is predicated on the idea that there are so many
states, and so few particles (N is few? Yes, N is few compared
to the number of available quantum states.) that it would be
extremely unlikely to find any two particles occupying the same
quantum state.

• For semiclassical particles (now we are being more general than just
talking about ideal gasses) G&T Section 6.2 tells us that we can cut
through all the “particle in a box” counting. There is one quantum
state per “box” of size dxdp/h. To find Z amounts to taking an integral
over x1, y1, z1, x2....px,1, py,1... . We integrate over the 3N coordinates
of N particles in 3d. Thus

ZN,classical =
1

h3N N !

∫
e−βE(x1,y1,....,py,N ,pz,N )dx1, ...., pz,N

• How do we know a gas can be treated semi classically? For this, we
calculate the thermal deBroglie wavelength, λ̄. If this is much smaller
than the mean distance between particles, the semiclassical limit is
good.

• From Z comes the free energy, and more: Last week in B&B
problem 14.8 we saw that

S/k = βĒ + ln Z

(except that B&B used U , not Ē for energy.) This week, this equa-
tion reappears; moreover we learn that Helmholtz free energy is the
“natural” free energy for the Canonical ensemble:

F (T, V,N) = −kT ln Z(T, V,N) or equivalently Z = e−βF

As the logarithm of a “master function”, free energy is also a master
function. Either produces all thermodynamic information.



• The partition function as a sausage-making machine:

produces, via explicit formulae we already know, all useful functions of
state.



• Analogy: Ω(E, V,N) and its logarithm S(E, V,N) contain all thermo-
dynamic information in the micro canonical ensemble.

• The protocol for the Canonical ensemble is simply described in a box
in Ch. 20 of B&B

1. Write down Z

2. Go through standard procedures to obtain functions of state you
want from Z

• Applications of Canonical ensemble to single-particle sys-
tems, with easy extension to N particles: Often partition func-
tions for N particles are simply derived from 1 particle ones. This is
possible if the particles don’t interact! This explains why many of the
examples this week are pitched in terms of finding f = −kT lnZ(T, V, 1),
s = −(∂f/∂T )V ,
ē = −∂ lnZ(T, V, 1)/∂β, ... and so on. These are the free energy,
entropy, and expected energy per particle. For N non-interacting par-
ticles, you just multiply by N.

• Many examples are done this week, which are good “toy” models for
realistic systems. Please be sure that for the models listed below, you
feel comfortable finding both single-particle and N -particle quantities
like Ē, S, C, ...

– 2-level system

– N-level system

– 1d harmonic oscillator

– Rotating diatomic molecule

– Chemical reactions: dependence of products on temperature

– The isothermal atmosphere

– The spin 1/2 paramagnet

– The ideal gas

• The specific heat C = ∂E/∂T is of particular interest this week. Please
be sure you can see a calculation through, beginning with Z and ending
with a “response function” like specific heat.

• We have confidence that the equipartition theorem holds for sufficiently
high T , and this gives us a guide to what Ē and C should be in the
high temperature limit.

• Magnetic systems have a couple of observables that we care about in
addition to Ē and C. These are the magnetization m = −(∂F/∂B)T
and the susceptibility χ ∝ ∂m/∂B. (It is the case that χ ∝ m/B in the



limit that B → 0.) We will do more with paramagnets in a later week;
for now just appreciate that we can find these things in the Canonical
ensemble :-)

• The Canonical ensemble for ideal gasses: Ch. 22 of B&B is all
about the ideal gas; a review and extension of what we did last week.
In particular it

– reviews finding the density of states g(k) and g(E) with particle-
in-a-box counting arguments.

– emphasizes the importance of the thermal de Broglie wavelength,
now called λth. The quantum concentration is nQ = 1/λ3th. When
particles are much less concentrated than nQ, they can be treated
classically. An elegant way to write the single particle partition
function for the ideal gas is:

Z1 =
V

nQ

– extends what we already did, to find free energies like F , G and
H for a Canonical treatment of the ideal gas. All ensembles are
supposed to give the same results for these in the thermodynamic
limit!

– calculates the Sackur-Tetrode entropy S(T, V,N) and goes over
the notion of entropy of mixing and the Gibbs paradox.

– discusses as an example, the heat capacity of the diatomic ideal
gas. B&B does quantitatively what we are asked to doin G&T
Problem 6.46 this week ... find Z = ZtransZrot for a diatomic
molecule that can rotate. (Not assigned, but G&T Problem 6.47
talks about the specific heat of molecules that can vibrate too ...
so we’d begin with Z = ZtransZrotZvib where Zvib is derived as
G&T Eq. (4.128) and B&B Eq. (20.28).

• Simulation techniques: In our G&T reading, we learn

• a tiny bit about micro canonical simulations, which will be more rele-
vant when we do magnetic systems (because other things than energy
are of interest)

• demon thermometer simulations

• canonical simulations, which could be done by solving F = ma (molecu-
lar dynamics) but are easier to do via Monte Carlo (MC). A description
of the standard Metropolis algorithm is given, which involves the very
useful accept/reject paradigm that will establish thermal equilibrium
at temperature T .


