
Physics 114 Statistical Mechanics Spring 2021

Week 5 Conceptual Overview

Concept checklist from Readings:

• Conditional probabilities are needed where experimental outcomes are
not independent, as they relate to the question we ask. For example,
suppose we toss two dice, look at the first but not the second, and
ask about the sum of the values shown. The first die has value xseen.
Call this outcome Event B. We could ask for the probability that the
total value shown on both die, xseen + xunseen, is greater than 7. Call
this outcome Event A. What is Prob(A occurs, given that B occurs)?
This is written P (A|B). In general, P (A|B) 6= P (A). This is because
the information we received from Event B is meaningful. For example,
it is more likely for the total to exceed 7 if Event B was xseen = 6, as
opposed the xseen = 2.

• The completeness of our sample space implies

– P (A) = P (A|B) + P (A| a B)
where a B is the situation where outcome B does not occur.

– P (A AND B) = P (A|B)P (B) = P (B|A)P (A)

• Bayes Theorem: Suppose there are multiple independent, exclusive out-
comes of an experiment {Ai}. B is anything else we know (a single
outcome, a condition involving multiple outcomes, ... ). A true state-
ment is that
P (Ai and B) = P (Ai|B)P (B) = P (B|Ai)P (Ai). Bayes theorem is
these last two equalities, re-written as:

P (Ai|B) = P (B|Ai)P (Ai)
P (B)

This theorem can be counterintuitive but is very useful. Examples are
found in G&T section 3.4.2 and B&B section 15.6.

• The methods of stat mech ... (These are totally worth repeating from
last week.)

– Specify macrostates and the microstates that contribute to each
macrostate.

– Choose the ensemble. This is a collection of identically-prepared
systems, like the different trials from probability theory.

– Calculate statistical properties.



• A small review of thermo topics ... B&B Ch. 4 begins telling us about
thermal equilibrium and the 0th law of thermo: “thermometers work”.
It also talks about macro and micro states with coin-counting examples.

• Statistical definition of entropy ... B&B Ch. 4 presents a new defini-
tion of S. Consider two systems in thermal contact as below. Earlier,
when we were purely doing thermo, we made an ad hoc definition of
temperature as the thing that is equal when S = S1 +S2 is maximized:

dS = 0 =>
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Now, informed by stat mech, we can do better. We use definition that

Si = k lnΩi. Thus S = S1 + S2 is maximized when Ω = Ω1Ω2 is
maximized. This happens for the Ω which is largest ... it embraces
the most microstates for the combined system. This is equilibrium! So
finally, the new idea this week - this statistical definition of temperature
for any system i with energy Ei:

1

kTi
=
∂ln Ωi(Ei)

∂Ei

(This definition reappears, but without the “i”, in B&B section 14.5,
where S = dQ/T for a reversible process is equated with k lnΩ(E).)

• G&T section 3.4.1 (last week’s reading) said that uncertainty in a sys-
tem with probabilities {Pi} can be characterized by a function
S({Pi}) = −ΣiPi lnPi. In the special case that Pi = 1/Ω for all i, one
has S = lnΩ. This week, we read in B&B 14.8 that inserting a k to get
units right, this is the Gibbs expression for entropy: S = −kΣiPilnPi.

• In the context of information theory, S =< Q >= −kΣiPi lnPi, where
Q is the information content of a statement. In B&B section 15.1, this
is called the Shannon entropy. B&B Ch. 15 (and the optional readings



on Moodle) expand on how entropy relates to encoding information,
data compression, quantum information, and more. In G&T section
4.13, we read a compelling argument that “entropy is not disorder”.

• Entropy of mixing : B&B section 14.6 shows that two distinguishable
gasses, totaling N molecules and initially occupying volumes xV and
(1− x)V , when mixed in volume V , experience this change in entropy:

∆S = −Nk [x lnx + (1− x) ln(1− x)]

(Spoiler alert: Next week, G&T section 6.1 will show us by explicitly using

S(T, V,N), that mixing identical gas particles results in ∆S = 0, as it should

be :-)

• Maxwell’s demon can’t exist. If they could, the 2nd law of thermo
would crumble. We also read that even a cyber-demon can’t do the
job of reversing an irreversible process. It would increase the entropy
of the universe whenever it destroyed information, e.g. to erase files on
its hard drive. Entropy and information are deeply intertwined in our
universe!

• Einstein solids: G&T section 4.2 discuss these collections of distinguish-
able objects which can store discrete quanta of energy. Two Einstein
solids, A and B, with fixed numbers of energy-storing particles, NA and
NB, are brought into thermal contact. They give a a concrete illustra-
tion of the idea of B&B section 4.4. Namely, the equilibrium energy
of solid A, ĒA, corresponds to a maximum in the entropy for a given
E, NA and NB.

• We can further explore (via theory and simulation) fluctuations around
the equilibrium value ĒA. There are two things that might be large in
an Einstein solid: the total energy E and the number of particles, N .
One or both of these needs to be large in order for us to claim that stat
mech works for this system.

• Counting states is done in G&T sections 4.2 and 4.3. Two systems
whose states should be discretely counted are these:

– The Einstein solid with energy E and number of particles N:

Ω =
(E +N − 1)!

E!(N − 1)!

– N distinguishable spins in a magnetic field, with n up, so that the
energy is −(2n−N)µB.

Ω =
N !

n!(N − n)!



• 1-D Harmonic oscillator states are counted both classically and quan-
tum mechanically in G&T Section 4.3.3.

• Counting states for particles in boxes can also happen either classically
or quantum-mechanically. G&T go through both kinds of calculation
in the subsections of Ch. 4.3. They do this for a single particle 1-D,
2-D and 3-D boxes. Please hang in there; lots of counting this week ;-}

• In order to count states for the quantum mechanical particle-in-a-box
(ideal gas atom) we can count the allowed wave numbers, k, that fit in
the box of length L in 1d (or area L2 in 2d or volume L3 in 3d). The
way to translate between these two representations of states is:

h̄2k2/2m = E thus h̄2k/m dk = dE . Also g(E)dE = g(k)dk

• The functions that are most useful to count states are these, from Table
4.7 of G&T:

• It is often easier to calculate not g(E)dE but Γ(E) 1.

Γ(E) =
∫ E

0 g(E)dE. Thus, dΓ(E)
dE

= g(E)

Note: This is not just a counting aid ... typically Γ(E) is so huge that taking

ln Γ(E) is equivalent to taking ln g(E)∆E. This is like saying that the “volume”

of state space is described by the outermost layer of the surface, when ∆E << E.

1In the language of probability theory, g(E) is a probability distribution function and
Γ(E) is a cumulative distribution function.



• The formulae for Ω, Γ and g are complicated! A simple, important fea-
ture is how these states vary with energy E. This is neatly summarized
in this picture below, showing densities of states g(E) in 1d, 2d and 3d:

• An interesting thing happens if you try to find Γ(E), the number of
states with energy less than E, classically and quantum-mechanically.
G&T do this for the harmonic oscillator and also particle-in-a-box
(gas). In both cases, Γcl agrees perfectly with Γqm except that the
former has ∆x∆p for the size of a small “box” in state-space, and
the latter has h, Planck’s constant. Before quantum mechanics was
an established theory, statistical physicists had to leave this box-size
unknown. Now we know the truth: we should identify ∆x∆p ≡ h.

• So much emphasis on a single particle!? This is stat mech; what about
many particles? G&T take this up in sections 4.3.6, 4.4 and refer to
what they are doing as the semiclassical limit. With N particles in 3
dimension we have a 3N -dimensional space in which the positions live.
This is where G&T Section 4.14.1 or B&B Appendix C.8 come in ...
they help us count up states in an “’n-dimensional hypersphere”.

• You may be wondering how we know a gas can be treated semi classi-
cally? More on this next week, but the nutshell is we we calculate the
thermal deBroglie wavelength, λ̄. If this is much smaller than the mean
distance between particles, the semiclassical limit is good.

• Ensembles are introduced in B&B 4.5 and 4.6. An ensemble is a group
of systems that are reflective of equilibrium. A system like two same-
size boxes of gas, isolated from the world, would be a member of the
energy-conserving microcanonical ensemble. On the other hand, a tiny
box within a big bath would be a member of the canonical ensemble.
In any ensemble, one wants to know the partition function. Table 4.9



of G&T is a good summary. We see the natural variables written as
arguments of Ω(E, V,N) and Z(T, V,N) respectively. (Math note: It’s
a Legendre transform which takes us from E to T .)

• Using the micro canonical ensemble... Two B&T discrete-state exam-
ples are the Einstein solid and spins in a magnetic field. (These can
also be treated with canonical statistics, which we’ll do next week.)

• G&T section 4.5 leads us to an expression for S(E, V,N) for a monatomic
ideal gas:

S(E, V,N) = Nk[ln
V

N
+

3

2
ln

mE

3Nπh̄2 +
5

2
]

Now we aren’t limited to merely knowing ∆S between two states ... we
have an absolute entropy. Some good things we can do with it:

– Take partial derivatives w.r.t. E, V and N to find T , P and µ.
To wit

1

T
= (

∂S

∂E
)V,N ;

P

T
= (

∂S

∂V
)E,N ;

µ

T
= −(

∂S

∂N
)E,V

– Derive PV = NkT

– Derive E = 3
2
NkT

– Swap T for E to get another expression for entropy: S(T, V,N)
which is called the Sackur-Tetrode entropy

• The Canonical ensemble is one where the system we care about is tiny,
compared to the huge other system. They can exchange thermal energy
(but not particles). E is conserved for the combination of the two, and
we ask about the energy, E1, of the tiny system. The huge system hogs
the energy because it can use energy to create more microstates than
can the tiny system.

• What does equilibrium look like in the Canonical ensemble? We seek
the probability P (Es) that any system has energy Es, given its tem-
perature T equals that of the bath. G&T section 4.6, and B&B section



4.6 make the same argument (different notations unfortunately :-( They
find

P (Es) ∝ e−Es/kT =
1

Z
e−Es/kT

where 1
kT

= dlnΩb
dE

... the statistical definition of temperature. The
heat bath maintains the small system and itself at a fairly steady tem-
perature T by virtue of its hugeness. At the end of Section 4.6, B&B
invoke the example of two Einstein solids, one huge (bath) and one tiny
(system).

• The quantity Z is called the Canonical partition function. Above, it
appears innocently, as just a normalization for P (Es). But as we will
emphasize next week, Z(T, V,N) is the key to all of equilibrium stat
mech, for a system of constant N and V in contact with a bath at
temperature T .

• Names and notations : A notation everyone uses is β = 1
kT

. The
weighting factor e−βEs is called a Boltzmann factor. Another name for
the Canonical probability distribution is the Boltzmann distribution.

• Last week, we read that the method of Lagrange’s undetermined mul-
tipliers is a clever way to maximize a function subject to a constraints
like normalization, and it works for multiple constraints. We had a
problem about a loaded die, where the mean value of the die, n̄ was a
constraint. In Example 14.7 of B&B (p. 152), a very similar constraint
is applied: the mean of the energy is known. This leads us to Canonical
statistics.

• The Canonical partition function: its uses and some useful facts:

• One can find the expectation value of the energy: Ē = −∂ lnZ/∂T

• One can find the expected size of mean squared fluctuations in the
energy:

< E2 − Ē2 >= kT 2CV



This is pretty interesting. First off, it’s an example of a “fluctuation-
dissipation” theorem; these occur in other places in physics. Also, it’s
a way to find heat capacity, without adding any heat to a system! Just
measure the natural fluctuations ... the larger they are, the bigger the
heat capacity. Finally, the mean and variance of energy gives us another
example of relative fluctuations in an observable going like 1/

√
N .

(You may recall that this was true of fluctuations in particle number, in

a problem we did last week. It involved adjacent volumes V1 and V2 and

N = N1 + N2 particles. We found
σN1

N̄1
=
√
N
√

V 2
V 1 . )

• G&T section 4.14.2 has the details about energry fluctuations men-
tioned above. There are two problems: G&T 4.25 and 4.26, both of
whose answers turn my head around. The answers are both ”It’s a
gaussian”. Why? The Boltzmann distribution says that Ps ∝ e−βEs .
Why isn’t the answer ”It’s an exponential.”? Please take a look at
Eq. (4.161) to see that yes, while there is a Boltzmann factor, it is the
density of states g(E) that broadens the distribution, peaked around
Ē.

• If we use a label α to signify a microstate, then

Z = ΣαE
−βEα (1)

• If a macrostate whose energy is EJ has got multiple microstates , we
need to count them ... to find the degeneracy gJ . Then we can write:

Z = ΣJ gJE
−βEJ (2)

Please note that Eqs. (1) and (2) are calculating the same thing in two
different ways.

• Sometimes energy is a continuous variable. Even if discrete, sometimes
energy states are so closely spaced that there is a huge number in any
interval ∆E we could measure. An example is the semiclassical ideal
gas. In this case,what plays the role of degeneracy, gJ , is the density of
states g(E). Finding Z in these two cases is much like last week when,
when we sometimes wanted to normalize probabilites p(xi) for discrete
variables xi; and sometimes probability densities p(x) for continuous
variables. Now,

Z =
∫
g(E)e−βEdE

• A final cool idea from G&T section 4.6: The first law of thermodynam-
ics is dE = TdS − PdV . The term TdS comes from a change in the
probability distribution Ps which says how the quantum states {Es} are
occupied. When dS is positive, the distribution becomes more random!


