Physics 114 Statistical Mechanics Spring 2021
Week 4 Reading and Problem Assignment

Overview:

This week we study the fundamentals of probability theory. We go over the
definition of a probability distribution, both for discrete and continuous ran-
dom variables. We use a computer to generate random numbers, and either
use pre-written G&T codes or write our own, with algorithms involving ran-
dom numbers. We practice counting states for systems of interest, so that we
can derive probability distributions - like the ubiquitous binomial distribu-
tion. We learn to calculate the moments of a probability distribution, with
especial emphasis on the concepts of mean and variance. For discrete distri-
butions involving a large number N, we will find it useful to use Stirling’s
approximation. We (finally!) encounter a definition of entropy based on the
probability of observing a macrostate. Section 3.4.1 of G&T talks about en-
tropy in terms of uncertainty. A recommended reading by Pratt talks about
ignorance. With these in mind, we are meant to believe that S(€2) o Inf2
is an excellent definition of how uncertain/ignorant we are about the results
of a measurement, if all measurement results, €2, are equally probable. The
more general case, if a measurement result has a probability of P;, would be
S=—k P, InP; .

Spoiler alert: Next week, we will continue to think about in entropy in a statis-
tical way. Section 14.8 of B&B will call S = —k P; InP; the Gibbs entropy of a
thermodynamic system. B&B Ch. 15 defines the Shannon entropy, which applies
beyond thermodynamics, to fields like cryptography, data compression and quan-
tum mechanics.

Suggested Reading:
G&T Sections

e Ch. 3.1-1.7 and 3.11.1
Notes:

— We will save Bayes Theorem, section 3.4.2 for next week

— It’s up to you whether you want to read the rather technical sec-
tion 3.11.2, a proof of the Central Limit Theorem. It introduces
key concepts of probability theory: cumulants and characteristic
functions.

e Section 4.1
B&DB sections

e Section 1.4



e Ch. 3

e Appendices C.1, C.2, C.3 and C. 13
Optional Reading:

e There is a short reading by Pratt on “ignorance” and Lagrange’s un-
determined multipliers Resources” area of our Moodle site.

e Calculating Lagrange’s undetermined multipliers: a Wolfram Widget:
http://www.wolframalpha.com/widgets/view. jsp7id=1451afdfe5a25b2a316377c1cd488883
There is also this demo, a Wolfram Demonstrations Project:

http://demonstrations.wolfram.com/LagrangeMultipliersInTwoDimensions/

Warmup Problems:

1: Independent spins G&T Problem 4.1

2: The exponential distribution G&T Problem 3.39

Hint: You can check your answer to (a) b/c it is given in GET section 3.9.

Problems to discuss in our meeting
Note: The * means that these problems are to be handed in. They are due

the day after we meet.

1: I heart Random numbers ... a numerical problem
This is a problem asking you to do some amount of numerical computation.
Preferably using Python ...

a) Generate a set of 200 random numbers {x;} ,where ¢ = 1, ..., 200. These
numbers should be uniformly distributed between 0 and 1. Please give the
lines of code you used to generate these, as your answer to this problem.

b) For a uniform distribution of random numbers, p(x)dx = dz. In other
words, p(z) = 1 for all . Plot a histogram of these numbers, to see if indeed
all numbers seem equally likely.

c¢) Find the mean and variance of your numbers, Z and o?. Comment
on whether they are close to what’d you expect from a uniform probability
distribution between 0 and 1.

d) Calculate a new random number X which is the sum of all 200 numbers:
X = %2%2;. Do this lots of times, until you have a set of 500 numbers {X;}
where j = 1,500. Plot a histogram of these numbers. How close is your
histogram to the shape of a Gaussian? Does the probability distribution
of these numbers, p(X), have a mean and variance that is close to what is
predicted by the central limit theorem?


http://www.wolframalpha.com/widgets/view.jsp?id=1451afdfe5a25b2a316377c1cd488883
http://demonstrations.wolfram.com/LagrangeMultipliersInTwoDimensions/

2: Binomial and Gaussian* B&B Problem 3.7

Hint: In Part b) B&B say it’s hard to show that the binomial distribution
approaches a Gaussian. GET do show it on pages 145-146 using Stirling’s
approrimation.

3: Basic probability:

i) What are the rules? G&T Problem 3.7

ii) Likelihood of various outcomes? G&T Problem 3.18

Note: ii) assumes gender is binary :-{

iii) Expectation values: B&B Problem 3.5 parts (a), (c), and (e)

4*: How big is that pond, and how many fish are in it?
i) G&T Problem 3.58
ii) G&T Problem 3.59

5: Monte Carlo Integration G&T Problem 3.60

6: Poisson distribution B&B Problem 3.3

7: Binomial distribution for magnets and gasses
i) G&T Problem 3.27
ii) G&T Problem 3.34

8*: Lagrange’s undetermined multipliers G&T Problem 3.51

9: Stirling’s approximation G&T Problem 3.33

10: Hands-on with simulations: Since you now know how to generate
a set of random numbers from Problem 1 do something cool with random
numbers: Here are some ideas ... you only need to choose one.

i) Explore one of the G&T simulations we did not use yet in a problem.
That is, run the code, become familiar with what it does, and be ready to
share this information and the results with your colleagues in seminar. You
can find these from the Jar Launcher App or the https://www.compadre.
org/stp as shown below


https://www.compadre.org/stp
https://www.compadre.org/stp

ii) Write your own Python code to create a random walk in one dimen-
sion. (This would be tantamount to your own version of G&T Problem 3.36.)

ii) Code up a random walk in two dimensions, where the particle can
move one step left, right, up or down with equal probabilities, and visualize
it for us with either a graph of the trajectory or, even cooler, an animation of
the path taken by the walker. Calculate the square of the distance traveled
from the origin, < r?(N) > where N is the number of steps taken, How does
this square distance depend on N?

iv) Visualize many walkers at once in two or three dimensions, and you
have the bones of the kinds of simulation of “approach to equilibrium” that
were associated with Ch. 1.

v) Turn your uniform random numbers {z;} into Gaussian-distributed
random numbers, {z;} using the Box-Muller algorithm. (See Wikipedia, or
http://mathworld.wolfra.m.com/Box—MullerTransformation.html.) In a nutshell:
You can transform your set of uniformly-distributed {z;} in pairs to generate
pairs of Gaussian-distributed random numbers:

2 = \/T?"L.’L’Z COS(27TZ’¢+1), zi+1=+v—-2lIlnx; 8in<2ﬂ'.’l§'i+1>.

vi) Build a probability distribution of your choice. Yes, Python’s numpy
library already knows a lot of distributions, but there is a cool Monte Carlo
trick for doing this in a few lines of code. See for example

https://stackoverflow.com/questions/4265988/generate-random-numbers-with-a-given-numerical-distribution.
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Jar Launcher simulations

Simulations visible at
https://www.compadre.org/stp/filingcabinet/share.cfm?UID=10986&FID=22830

G&T Codes that can be used for option i) in this problem


http://mathworld.wolfram.com/Box-MullerTransformation.html
https://stackoverflow.com/questions/4265988/generate-random-numbers-with-a-given-numerical-distribution

