
Physics 114 Statistical Mechanics Spring 2021

Week 4 Conceptual Overview

Concept checklist from Readings:

• Prof. David Park of Williams College always told us “Probabilty doesn’t
tell you whether you will win, but it tells you how to play the game.” It
also tells us how gas molecules, electrons, photons, ... play their games.

• We imagine a space of exclusive outcomes of experiments {xi}, called
the sample space. The function P (xi) represents the likelihood of seeing
result xi upon one trial of the experiment. If we do many trials, the
number of times outcome xi occurs is proportional to P (xi).

• P (xi) is for outcomes with discrete results, like numbers show on a pair
of dice. If experiments have continuously distributed outcomes, like the
location x of a particle, we adopt the notation p(x). Now x is a real
number and p(x) is the probability density. The likelihood of seeing any
outcome x is zero! However, p(x)dx is the probability of seeing x fall
somewhere within x and x+ dx. It is nonzero, in general, for finite dx.

• Some rules for probability are P (xi) ≥ 0 and ΣiP (xi) = 1 ... proba-
bilities are positive and normalized. Normalization for p(x) would be∫
p(x)dx = 1.

• The addition rule of probability applies when we do an experiment with
an exclusive outcome, but ask a less-exclusive question. For example,
we can ask about the likelihood of an outcome being xi OR xj when
the experiment is done once. The answer is:
Prob(xi OR xj) = P (xi) + P (xj).

• Another rule has to do with doing more than one trial, or doing tri-
als of two different kinds of experiments as in B&B section 3.6 which
talks about “independent random variables”. The most basic ques-
tion is: What is the likelihood of seeing xi AND xj as results of
two trials. If trials are independent, the multiplication rule applies:
Prob(xi AND xj) = P (xi)P (xj).

• The mean or average of a probability distribution is an important con-
cept: x̄ = ΣixiP (xi). For continuous distributions, it is x̄ =

∫
xp(x)dx.

• A related idea, is the expected value of a function, f(x). If outcome x
has a probability density p(x), then
f̄ =

∫
f(x)p(x)dx.



• The moments of a probability distribution are µj ≡ xj. The first mo-
ment, µ1 is the mean. Often, people calculate “central moments” in-
stead: ∆µj ≡ (x− x̄)j. The first central moment is thus zero. The
second central moment, ∆µ2 is also known as the variance:
σ2 = (x− x̄)2. Its square root is, for many distributions we will en-
counter, a measure of the “width” of the distribution, in that most
outcomes fall within ±σ of the mean, x̄.

• Having more than one independent random variable, finding mean or
variance of a product or sum, is treated in B&B sections 3.5 and 3.6.

• A Bernoulli process concerns an object which can have only two states,
for example, a coin showing heads or tails, but N independent objects
are considered ... either by repeating the experiment with one object N
times, or by examining N objects all at once. An important parameter
of the distribution is p, the probability of the first outcome (heads, say)
Thus q = 1− p is the probability of tails. A “fair” coin has p = q. The
distribution PN(n) with n the number of heads among N tosses is the
Binomial distribution.

PN(n) =
N !

n!(N − n)!
pnqN−n

Please know how to calculate its mean, Np, and variance, Npq, and
note that the entries of Pascal’s triangle correspond to the values
PN(n).

• Below is a graph of PN(n) from the G&T Binomial applet for increas-
ingly larger values of N : If you look at an early version of this applet,

still visible at
http://stp.clarku.edu/simulations/binomial/index.html, you will see that for
N > 20, G&T used Stirling’s approximation for N ! :

lnN ! ≈ NlnN −N +
1

2
ln(2πN)

We often need N ! for very large N values, so please get comfortable
with Stirling’s approximation, derived in Appendix C.3 of B&B.
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• Another Bernoulli process is the random walk. Random walks in space
(shape of polymers) and time (paths of photons in the stellar interior)
show up a lot in physics!

• Mathematical functions and integrals everyone should know:

– The factorial integral (in Appendix C.1 of B&B)

– The gaussian integrals (in Appendix C.2 of B&B)

– The combination (or binomial coefficient)

C(n, r) ≡
(
n
r

)
≡ n!

(n−r)! r!

• Trials of an experiment yield samples for a histogram. You can estimate
the moments of the true, underlying probability distribution from the
histogram. The law of large numbers says that the more trials you do,
the closer the mean, variance, ... will come to the one predicted by the
true distribution.

• Suppose you find the sum of the results of a set of trials: S = ΣN
i si.

Even if p(si) is not a Gaussian distribution, p(S) approaches a Gaussian
as you sum an arbitrarily large number, N , of results. This is the
Central Limit Theorem.

p(S) =
1√

2πσ2
S

exp[−(S − S̄)2/2σ2
S] ; S̄ = Ns̄ ; σ2

S = Nσ2

• How can we quantify ignorance? G&T section 3.4.1 says that uncer-
tainty in a system with probabilities {Pi} can be characterized by a
function S({Pi}). In order for uncertainties for subsystems to be addi-
tive, S = −ΣiPiln(Pi). In the special case that Pi = 1/Ω for all i, one
has S = lnΩ.

• Normalization is a constraint on the function p(x). The method of La-
grange’s undetermined multipliers is a clever way to maximize a func-
tion subject to a constraint like this. (It also works for multiple con-
straints ... we’ll exploit this next week.)



• The normalization constraint on p(x) is a simple idea with huge phys-
ical consequences. S subject to this constraint implies that all states
are equally probable. This is discussed in the Pratt reading. (Next

week, a second constraint is applied: the mean of the energy is known. This

will lead us to the Boltzmann distribution of states: Pj ∝ e−βEJ .)

• G&T Ch. 4.1 begins to outlines the methods of stat mech:

– Specify macrostates and the microstates that contribute to each
macrostate.

– Choose the ensemble. This is a collection of identically-prepared
systems, like the different trials from probability theory. For ex-
ample, if energy is the same for all members, this is called the
microcanonical ensemble

– Calculate statistical properties.

• Section 4.1 of G&T has a classic example: distinguishable particles
with two spin states (identical statistics to the atoms of Section 1.4
in B&B). (Next week we’ll read Section 4.2 and consider another classic

example: the Einstein solid.)


