Physics 114 Statistical Mechanics Spring 2021
Week3 Conceptual Overview

Concept checklist from Readings:

e The idea of free energy is subtle; there are a couple of ways to describe
free energy, and at first they seem to have nothing to do with each
other. G&T tell us that in order to satisfy the first and second law for
a composite made of system+bath:

AA = AE + Pyun AV — Tyoen AS < 0

The availability, AA is the energy you have to put in or get out in order
to effect a change whose energy cost is AE . This is because you create
(or destroy if AE < 0) this amount of energy in contact with the bath.
You provide AA and nature provides the rest, thanks to the the bath’s
spontaneous actions, in accord with the laws of thermodynamics.

e B&B says something very similar. Say that work dW is done on the
system ... where this work does not count the compression work ppqn,dV
from the bath, which is written explicitly as a separate term. This work
is always more than the change in A: dW > dA. In other words, when
you do work on the system, you have to do as much, or more work, than
dA. If there is work done by the system, then the system’s free energy
will drop at least as much, and perhaps more, than the magnitude of

the work it does: | dW| < |dA|.

e When no work is done on the system, dA < 0 ... hence the system
mainimizes its availability. This suggests that availability can also be
thought of as a free energy ... something that a system minimizes when
it is allowed to come to equilibrium.

e The Helmholtz free energy, F(T,V, N) is defined as F = E—TS. Here,
E and S are averages chosen by the system at equilibrium, and 7',V
and N are fixed.

e Below is another one of Schroeder’s magicians. U is the energy needed
to create a rabbit at zero temperature in a vacuum. (Poor rabbit!
Don’t do it!) But G is the energy that the magician needs to supply
to create the rabbit at finite temperature T and pressure P, assuming
the rabbit has volume V.
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e Yet another way to look at the different free energies: F(T,V,N) is
the Legendre Transform of E(S,V,N). We know that T" = (%)V,N-
A Legendre Transform is f(z) — g(m) where g(m) = f(x) — xf'(x).
Thus E(S,V,N) goes to E — T(%5)y,x. We will hopefully get details
about of Legendre Transforms in the intro to a problem this week.

e What does it mean for a free energy to be a minimum? If you remove
an internal constraint, free energy it will decrease on its way to equilib-
rium. For example, if T, V, and N are constant, it is F' that decreases.
If T,P and N are constant, it is G that decreases. Entropy is weird
just because of a sign difference: If £,V and N are held constant for a
system, S tends to increase.

e Here is a good example involving F' taken from Callen’s Ch. 6: There

are two subsystems, the L and R containers, and they share a bath,
which is a hotplate beneath them. The combined volume V;, + Vg =V
is fixed. The plug cannot let energy or particles through, but it can
move. This is a system with a constant total T, V, N, but it can adjust
to have different amounts of V' on the left or right. (We could play
the game by letting the plug allow particles through instead, so N
and Ng could adjust, but we won’t do it now.) The plug will settle
where the pressure between them is equalized: P, = Pg. One can show



that P = —(9£)7 y. One can thus argue that F/(T,V, N) is minimized
when the plug is where it wants to be so the system is in equilibrium.

Further, thermodynamic stability demands that also (%)ﬂ N > 0.

The Gibbs free energy is G = uN, where p is the chemical potential. In
other words, 1 is the Gibbs free energy per particle. (The generalization
to a multicomponent system is also important ... we’ll see this later.)

Chemistry application: Chemical reactions. The sign of AH (S, P, N)
tells you if a reaction is exothermic or endothermic. The sign of
AG(T, P,N) tells you if a reaction will spontaneously proceed at a
certain temperature 7" in a lab (so P is constant). Schroeder Ch. 5
talks about fuel cells and batteries. Though this is optional reading,
we’ll guide ourselves carefully through one of his problems this week.
Hopefully, this is practical motivation for the seemingly arcane differ-
ences in thermodynamic potentials; all of chemistry and battery /fuel
cell engineering depends on them!

AH AS Description of process

>0 >0 Endothermic, spontaneous for T > AH/AS
<0 <0 Exothermic, spontaneous for T < AH/AS
<0 >0 Exothermic, spontaneous for all T

>0 <0 Never spontaneous

Context is all. Different free energies are useful for problem doing, and
are minimized in different situations, where we hold different thermo-
dynamic variables constant. For example, suppose we want a thermo-
dynamic definition of temperature. Here are two, but the first is for a
fixed P and the second for a fixed V' system:
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Tables 2.2 in G&T and in section 16.4 of B&B are valuable summaries of
how potentials are defined and their differential forms. Important ther-
modynamics potentials are Helmholtz free energy F(T,V,N) = E=TS,
Gibbs free energy G(T, P, N) = E=TS+PV and enthalpy H(S, P, N) =
E+ PV. There is also the Landau potential Q? = F —uN = — PV which
will be less-used in what we do, until we get to Grand Canonical statis-
tics.

From the free energy definitions come differential forms, for example:
dG = —SdT + VdP + pdN and dH = TdS + vdP + udN.



e From the differential forms of E, F, G, H, S and the fact that these are
state functions, come partial derivative relations, for example:

or oF oF
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e By equating mized second partial derivatives of the thermodynamic
potentials, we get the so called Mazwell relations . Below is the most
general form for a Maxwell relation: @ is a thermodynamic potential.
The partials are taken with all other natural variables held constant.

Maxwell relations (general)
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e Though you can see a table of Maxwell relations below, you should
know how to derive them ... memorizing them is annoying. (Chemists
sometimes use mnemonics :-) My way is to start with the differential
form of a free energy, and take mixed partials as shown above. This is
done in example 16.3 of B&B. Optionally for people who know about
Jacobeans, reviewed in B&B Appendix C.9, there is an elegant alter-
native in the box on B&B p. 181.

o Thermodynamic response functions which are also called generalized
susceptibilities are important. Useful ones are the expansivity which
tells how volume changes with temperature, the compressibility which
tells how volume changes with pressure, and heat capacity which tells
how energy changes with temperature. The bulk modulus B is the
inverse of compressibility.



e Here are definitions of these response functions:

- o
— compressibility kx = _%(6%) x
(If X =T, this is the “isothermal compressibility”.)

— isobaric volume expansivity ap = &(9%)p

(This is also called “ thermal expansion coefficient”. B&B uses
symbol /3 not «.)

— heat capacity: Cy = T(22)x

Maxwell relations help us derive relationships between thermodynamic
response functions.

e What happens to a real gas during different kinds of expansions or
contractions? This is the subject of G&T 2.23.1 (in last week’s reading,
and the subject of a problem we did: G&T Problem 2.29) and also G&T
2.23.2 and B&B Ch. 27. We find out about three key cases:

— Free expansion: Irreversible! Constant energy, but the temper-
ature can change. It does this in a way controlled by the Joule
coefficient py. (It looks like a constant, but in general coefficients
like this, like specific heats, are functions of T.) Its definition is:

py = —&((g—g) P) and it is the case that AT = f“/? py dV.

— Isothermal expansion: Reversible! Constant temperature, but
the energy can change. Again the story is told by u;. B&B Eq.
(27.11) can be rewritten as AU = —Cy f“//f py dV.

— Joule-Kelvin expansion: Irreversible! Constant enthalpy, but
the entropy and temperature can change. Now the story is told
by the Joule-Kelvin coeflicient p ;. Its definition is:

Uik = C—;((‘g—g)p — V) and it is the case that AT = f“f pyk dP.

e Note about the real world: The Joule-Kelvin process is also known as
“Joule-Thompson” or a “throttling process” b/c it happens when you
push a fluid through a porous plug, or a narrow aperture known as a
“throttle valve”. The point is to obstruct the flow. In a car engine, the
throttle is a valve that directly adjusts the amount of air entering the
engine, controlling the fuel+air ratio, giving more or less power to the
engine via the burning fuel. Throttling is important for liquifying gases
for research, and also important to refrigeration and air conditioning
systems. The circulating refrigerant is at medium temperature and
high pressure when then it enters the throttling valve. Passing through
the throttling valve, the pressure and the temperature of the refrigerant
are reduced drastically. Afterward, it is able to do the necessary cooling
within the fridge or room.



e The Joule-Kelvin process is a constant-enthalphy process. Hp pign =
Hp 1o, on the two sides of the porous plug or narrow throttle valve
through which gas is being pushed from high to low pressure. While in
a free expansion, we seek (07/0V ) g, in throttling we want (01 /0P)g.
These are both equal to zero for an ideal gas - not so for a non-ideal gas.
The Maxwell relations prove their utility by showing that the temper-
ature may rise or fall depending on the size of the volume expansivity
a. Please be sure you follow the argument leading to T'a > 1 implying
the temperature drops for the gas during throttling.

e We define an inversion temperature T;,,, below which a real gas cools
when it is throttled, and above which it warms. The Joule Kelvin
coefficient, p x(7T), changes sign at that temperature: p g (Tin,) =0



