
MAXWELL RELATIONS

7.I THE MAXWELL RELATIONS

In Section 3.6 we observed that quantities such as the isothermal
compressibility, the coefficient of thermal expansion, and the molar heat
capacities describe properties of physical interest. Each of these is
essentially a derivative Qx/0Y)r.r..,. in which the variables are either
extensive or intensive thermodynaini'c parameters. with a wide range of
extensive and intensive parameters from which to choose, in general
systems, the number of such possible derivatives is immense. But thire are

azu azu
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This relation is the prototype of a whole class of similar equalities known
as the Maxwell relations. These relations arise from the equality of the
mixed partial derivatives of the fundamental relation expressed in any of
the various possible alternative representations.
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182 Maxwell Relations

Given a particular thermodynamic potential, expressed in terms of its
(l + 1) natural variables, there are t(t + I)/2 separate pairs of mixed
second derivatives. Thus each potential yields t(t + l)/2 Maxwell rela-
tions.

For a single-component simple system the internal energy is a function
of three variables (t : 2), and the three [: (2 . 3)/2] purs of mixed
second derivatives are A2U/AS AV : AzU/AV AS, 

-arUTaS 
AN :

A2 U / A N A S, and 02 (J / AV A N : A2 U / A N 0V. Thecomplete ser of Maxwell
relations for a single-component simple system is given in the following
listing, in which the first column states the potential from which the
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U l T , P l =  Q

dG: -SdT + VdP + p.dN

T , P

T , N

P , N

/  as \- \  
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-(r"a), ," :
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d U l T , p l :  - S d T  -  P d V

-Ndt ,
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ulP,  p l ,S, P (1.2r)

dUlP, t l l :  TdS + VdP + Ndp" S,p (#) , , :  - (#) " ,  (7zz)

( f r ) , , :  - ( # ) " -  ( 723 )

7.2 A THERMODYNAMIC MNEMONIC DIAGRAM

A number of the most useful Maxwell relations can be remembered
conveniently in terms of a simple mnemonic diagram.I This diagram,
given in Fig. 7.L, consists of a square with arrows pointing upward along
the two diagonals. The sides are labeled with the four common thermody-
namic potentials, F, G, H, and U, in alphabetical order clockwise around
the diagram, the Helmholtz potential F at the top. The two corners at the
left are labeled with the extensive parameters V and S, and the two
corners at the right are labeled with the intensive parameters T and P.
("Valid Facts and Theoretical Understanding Generate Solutions to Hard
Problems" suggests the sequence of the labels.)

Each of the four thermodynamic potentials appearing on the square is
flanked by its natural independent variables. Thus {/ is a natural function
of V and S; F is a natural function of V and, T; and G is a natural
function of 7 and P. Each of the potentials also depends on the mole
numbers, which are not indicated explicitly on the diagram.

1 This diagram was presented by Professor Max Born in 1929 in a lecture heard by Professor Tisza.

It appeared in the literature in a paper by F. O. Koenig, J. Chem. Phys. 3, 29 (1935), and 56, 4556
(1972). See also L. T. Klauder, Am. Journ. Phys 36,556 (1968), and a number of other variants

presented by a succession of authors in this journal.

I  ar \  |  av\
\ a . / " . , :  \ a s / " . "

P , p
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v

FIGURE 7 T
P The thermodynamic square.

In the differential expression for each of the potentials, in terms of the
differentials of its natural (flanking) variables, the associated algebraic
sign is indicated by the diagonal arrow. An arrow pointing away from a
natural variable implies a positive coefficient, whereas an arrow pointing
toward a natural variable implies a negative coefficient. This scheme
becomes evident by inspection of the diagram and of each of the following
equations:

U

dU:  TdS -  PdV + lp ,odNo
k

d F :  - S d T -  P d V + E p o d N o
k

d G :  - S d T + V d P + L p o d N o
k

dH:  TdS +  VdP +EpodNo
k

Finally the Maxwell relations can be read from the diagram. We then
deal only with the corners of the diagram. The labeling of the four corners
of the square can easily be seen to be suggestive of the relationship

I  av\ |  aT\
( iSl ,  :  t#J" (constant N"N"" ' )

V r - - - - t  r - - - - rT
t t t l

i z  i  i  \ i
s  L _ _ _ r P  s L _ _ _ r P

(7.24)

(7.2s)

(7.26)

(7.27)

(7.2s)

By mentally rotating the square on its side, we find, by exactly the same
construction

/  a s \  t a Y \
\ a P ) r :  

- \ 7 ' t , ,

s;---, '  i--- jv
i z  i  i \ i

PL___rT  P r____ t  T

(constant N1, N2,. . .) (7.2e)
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The minus sign in this equation is to be inferred from the unsymmetrical
placement of the arrows in this case. The two remaining rotations of the
square give the two additional Maxwell relations

and

These are the four most useful Maxwell relations in the conventional
applications of thermodynamics.

The mnemonic diagram can be adapted to pairs of variables other than
S and V. lf we are interested in Legendre transformations dealing with ,S
and N, the diagram takes the form shown in Fig. 7.2a. The arrow
conneciing N, and F7 has been reversed in relation to that which previ-
ously conneciedv and P to ake into account the fact that p,, is analogous
to - P. Equations 7 .4, 7 .7, 7 .73, and 7 .19 can be read Oiie6tly from"this
diagram. other diagrams can be constructed in a similar iashion, as
indicated in the general case in Fig.7.2b.

(#).
-(K).

(#)"
(#),

(cons tan t  Nr , l f r , . . . )

(cons tan t  Nr ,  Nr , . . . )

(7.30)

(7.31)

Nj F = UITI

UlT,  t t  j l

xr

Prx2Itj

ulP2'J

UIP]

(b)

D

u[Pr, P2]

s  U lu l l
(a)

FIGURE 7 2

PROBLEMS

1.2-1. ln the immediate vicinity of the state ft, uo the volume of a particular
system of 1 mole is observed to vary according to the relationship

u :  u o +  a ( T  -  f o )  +  b ( p  -  p o )

calculate the transfer of heat dQ to the system if the molar volume is changed by
a small increment du : u - uo at constant temperature %.

/ ,.s \ 
Answer:

do : r(#),0, : 4#),dv : - f on
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7.2-2. For a particular system of 1 mole, in the vicinity of a particular state, a
change of pressure dP at corstant T is observed to be accompanied by a heat flux
dQ : A dP. what is the value of the coefficient of thermal 'expansion 

of this
system, in the same state?

7.2-3. Show that the relation

d T : (7.32)

implies thal c, is independent of the pressure

|  0 c " \
l - : - l  : 0
\ O P  J ,

7-3 A PROCEDURE FOR THE REDUCTION OF
DERIVATIVES IN SINGLE.COMPONENT SYSTEMS

1
d : j

(#) .*0,
and consequently we are interested in an evaluation of the derivative
(aT/ aP) ,.r. A number of similar problems will be considered in Section

AII first deriuatiues (inuoluing both extensiue and intensiue paramercrs)
can be written in terms of second deriuatiues of the Gibbs potential, of whicit
we haue now seen that,cp, a, and Kr constitute a complite independent set
(at constant mole numbersl.

The procedure to be followed in this "reduction of derivatives" is
straightforward in principle; the entropy s need only be replaced by
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-AG/AT and V must be replaced by 0G/0P, thereby expressing the
original derivative in terms of second derivatives of G with respect to r
and P. In practice this procedure can become somewhat involved.

It is essential that the student of thermodynamics become thoroughly
proficient in the "reduction of derivatives." To that purpose we present a
procedure, based upon the "mnemonic square" and organized in a step by
step recipe that accomplishes the reduction of any given derivative.
Students are urged to do enough exercises of this type so that the
procedure becomes automatic.

consider a partial derivative involving constant mole numbers. It is
desired to express this derivativein terms of cp, c, and rcr. we first recall
the following identities which are to be employed in the mathematical
manipulations (see Appendix A).

t a x \
\ a v ) , :

I  a x \
\ a v ) , :
l a x \
\ a v ) , :

The following steps are then to be taken in order:
1. If the derivative contains any potentials, bring them one by one to the

numerator and eliminate by the thermodynamic square (equations 7.24 to
7.2t).

Example
Reduce the derivative (0P/0U)o.*.

(bv 7.33)

(by 7.2a)

'l(#).

: t-.( #),.l(#)" " .,(#)..1(#). "]-'

( a x \  l ( a r \
\ a w l z l \ a w ) z

-ffi).1(K),

(7.33)

(7.34)

(7.3s)

(#)".:tffi),"]-'
: [ .(  #)".-,(#),"]- '

(by 7.3s)

_ [ _ r - s ( a T / a p ) s , N +  v  *  r - s ( a r / a p ) r . * +  v l - l
t  -s(ar/as)P.N -s(ar/av)P.N l

(by 7 .26)
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The remaining expression does not contain any potentials but may
involve a number of derivatives. Choose these one by one and treat eacir
according to the following procedure.

2. If the derivative contains the chemical potential, bring it to the
numerator and eliminate by means of the Gibbs-Duhem relation, dp :-sdT *  udP.

Example
Reduce (0p./0V)r.*.

Example
Consider the derivative (07/0P)r," appearing in the example of step l:

f  !q) _ (as/ar)p.N _ (N/r)c,
\ ov I p.w (av/aD p.N 

- 
evTal r^

(#),,.: -"( #), .*,(#), .

(by 7.3s)

(by 7.2e)

Example
consider the derivative Qs/av) p,N. The Maxwell relation would give
(AS/AV),,N: (AP/ID*," (equation 7.28), which would not eliminate the
entropy. we therefore do not invoke the Maxwell relation but write

(#)"":-(#) ..1(#),.
: (#), .f +,,

The derivative now contains neither any potential nor the entropy. It
consequently contains only V, p, T (and N).

4. Bring the volume to the numerator. The remaining derivative will be
expressible in terms of a and rc..

Example
Given @T/AP)v,N

(by 7 sa)

(#).. :  -(#).. l(#),*:T(by 7.3s)
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- 5. The o{elnallv given derivative has now been expressed in terms of the
four quantities c,, cpt dt and rr. The specific heat at constant volume is
diminated by the equation

cr :  cp -  Tuaz/ te , (7.36)

This useful relation, which should be committed to memory, was alluded
to in equation 3.75. The reader should be able to derive it as an exercise
(see Problem 7.3-2).

PROBLEMS

73-1. Thermodynamicists sometimes refer to the "first ?d,s equation,' and the
"second Td^S equation";

TdS : Nc,dT + (fa7rcr) aV (/f constant)

T d S : N c r d T - T V q . d P (N constant)

Derive these equations.
7.3-2. show that the second equation in the preceding problem leads directly to
the relation

,(#) u: ", - ,,"(#) 
"

and so validates equation 7.36.
7.3-3. calcularc (aH/av)2iryinterms of the standard quantities cp, d, K7, T,
and P.

Answer:

(#),.: (ru - t)/r,

7.3-4. Reduce the derivative (0u/0s)r.
7.3-5. Reduce the derivative (0s/0fl,.
7.3-6. Reduce the derivative (0s/ 0 flr.
7.3-7. Reduce the derivative (0s/0u)6.
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7.4 SOME SIMPLE APPLICATIONS

In this section we indicate several representative applications of the
manipulations described in Sectioni.3.In each case to 6e considered we

cp, l, and rc, are assumed known and if the changes in parameters are
small.

Adiabatic Compression

consider a single-component system of some definite quantity of matter
(characterizedby the mole number N) enclosed within bn adiibatic wall.

we consider in particular the change in temperature. First, we assume
4he fundamental equation to be known. By diffeientiation, we can find the

Ar :  r ( s ,  4 ,N)  -  Z (S ,  P , ,N ) (7.37)

If the fundamental equation is not known, but c", a, and K.r are given,
and if the pressure change is small, we have

d T :

By the method of Section 7.3, we then obtain

dT: 
TUA 

dP
cP

(#), *0, (7 .38)

(7.3e)



The change in chemical potential can
small pressure change

: -aVdP
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be found similarly. Thus, for a

(7.40)

(7.4r)

(7.42)

(7.43)

dp:  (#)  
"  .o '

: ( , -# ) *

I sothermal Compression

we now consider a system maintained at constant temperature and mole
number and quasi-statically compressed from an initial pressure p, to a
final pressure Pr. we may be interested in the prediction of the changes in
the values of U, S, V, and, ,r. By appropriate elimination of variables
among the fundamental equation and the equations of state, any such
parameter can be expressed in terms of T, p, and N, and the change in
that parameter can then be computed directly.

For small changes in pressure we flnd

, ' : (# ) , .0 ,

$Y). *0,

also

d U : (7.44)

(t.+s):  ( -TaV +  pVK)  dp

and similar equations exist for the other parameters.
one may inquire about the total quantity of heat that must be extracted

from the system by the heat reservoir in order to keep the system at
constant temperature during the isothermal compression. First, assume
that the fundamental equation is known. Then

LQ : rAS : TS(r, P,, N) - TS(7, P,, N) (7.46)



Finally, suppose that the pressure change is large, but that the fundamen-
tal equation is not known (so that the solution 7.46 is not available). Then,
if c and v areknown as functions of z and P, we integrate equation7.47
at constant temperature
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where S(U,V, N) is reexpressed as a function of Z, p, and N in standard
fashion.

If the fundamental equation is not known we consider an infinitesimal
isothermal compression, for which we have, from equation7.43

dQ:  -TaVdP (7.47)

L Q : (1.48)

(7.4e)

d T = (7.50)

(7.51)

-r t"ovar

This solution must be equivalent to that given in equation 7.46.

Free Expansion

septum separating the sections is suddenly fractured the gas sponta-
neously expands to the volume of the whole container. We seel to predict
the change in the temperature and in the various other parameterj of the
system.

The total internal €nergy of the system remains constant during the free
expansion. Neither heat nor work are transferred to the system bv anv
external agency.

If the temperature is expressed in terms of (J, V, and N, we find

Tr-  T , :  T ( ( r ,Vr ,N)  -  T (U,V, ,N)

If the volume change is small

i?u,*d,

&)*
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This process, unlike the two previously treated, is essentially irreversible
and is not quasi-static (Problem 4.2-3).

Example
In pr4ctice the processes of interest rarely are so neatly defined as those just
considered. No single thermodynamic parameter is apt to be constant in the

processes will occur readily to the reader, but the general methodology is well
represented by the following particular example.

Solution
we first note that rhe tabulated functions co(T, p), a(7, p), rcr(T, p), and
a(7, P) are redundant. The first three functioirs imply the last, as has already
been shown in the example of Section 3.9.

Turning to the stated problem, the equation of the path in the T-v plane is
T : A +  B V ;  A : ( 7 1 V 2 -  T 2 V ) l ( V 2 -  V r ) ;  B : ( T r -  T t ) l ( V z -  V )

Furthermore, the pressure is known at each point on the path, for the known
function u(7, P) can be inverted to express p as a function of r and u. and
thence of u alone

P  :  P ( T , V ) :  P ( A  +  B V , V )
The work done in the process is then

w: [ ' , r1,e + BV,v) dv
tv,

This integral must be performed numerically, but generally it is well within the
capabilities of even a modest programmable hand calculator.

The heat input is calculated by considering s as a function of r and, v.

d^s :  /Pq \  s r  * ( l s \
\ o r l v - -  ' \ i / v ) , d v
N  l a P \:  i r ,dr +\fr )  ,0,

: (+  -  n " ' \ a r+  Lav
\  I  r c r l  K r

But on the path, dT : B dV, so that

t)*a s : ( N a 2 - B V a 2  *
\ .f K.r
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Thus the heat input is

O: lq lu nc,  - ( , t  + BV)(BVa- r)aTtcr ldv

Again the factors in ttre integral must be evaluated at the appropriate values of p
and 7 corresponding to the point v on the path, and the integral over z must
then be carried out numerically.

It is often convenient to approximate the given data by polynomial expressions
in the region of interest; numerous packaged computer programs for such "fits"
are available. Then the inte$als can be evaluated either numerically or. analyti-
cally.

Example
In the P-u plane of a particular substance, two states, A and D, are defined by

Pt : 705 Pa ut : 2 x 10-2 rrt/mole

Po : lDa Pa uo: l0-r m3 /mole

and it is also ascertained that T,r : 350.9 K. If 1 mole of this substance is initially
in the state A, and if a thermal reservoir at temperature 150 K is available, how
much work can be delivered to a reversible work source in a process that leaves
the system in the state D?

The following data are available. The adiabats of the system are of the form

Pu2: constant (fors: constant)

Measurements of co and a are known only at the pressure of 10s pa.

Co:  Bu2/3 ( fo rP:  tO5 Pa) ;

B : 708/3 : 464.2 J/mzK

a: 3/T ( for P :  105 Pa)

and no measurements of r, are available.
The reader is strongly urged to analyze this problem independently before

reading the following solution.

Solution
In order to assess the maximum work that can be delivered in a reversible process
A --+ D it is necessary only to know z, - un and so - s,q.

The adiabat that passes through the state D is describedby puz: 102 pa . m6;
it intersects the isobar P : lOs Pa at a point C for which

Pc :  105 Pa uc: 10-3/2 m3 :  3.16 x 10-2 m3
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As a two-step quasi-static process joining A and D we choose the isobaric process
A -, c followed by the isentropic process c -- D. By considering thele two
processes in turn we seek to evaluate first a. - un and Jc - J,r and then uo - uc
and s, - s., yielding finally uo - u1 and s, - sr.

We first consider the isobaric process A -- C.

d u : T d s -  
t c -  \  / 1  \-  Pdu :  
l #  

-  P )du :  ( i r ,  t / 3 r  _  r ^ ) ^
we cannot integrate this directly for we do not yet know (u) along the isobar.
To calculate I(u) we write

( fo r  P :  Pn)

and

T : 350.9 x(s0u)1/3 (on p : 10s pa isobar)
Returning now to the calculation of u, - un

a, : l ia x 350.9 x(50)1/3 - tot] du = rls du
or

u c  -  u t :  1 0 5  x  ( u ,  -  u ) :  l . t 6  x  1 0 3  J
We now require the differenca uo - ur. Along the adiabat we have

u p -  u c :  -  
f ' o P d r :  

- r c ' [ " ' + : f i 2 [ u j L  -  r ; t ]  :  - 2 . t 6 x  1 0 3 Ju r ,  t r .  n "

Finally, then, we have the required energy difference

u o -  u t :  - 1 0 3  J
We now turn our attention to the entropy difference s o - s,q: Jc _ sr. Along

the isobar lC

^ : (#) 
"^: #a, :  !nu-,r,  a,

and

so - st - rc - s,t:  iBlryt - uf]:  6.t I /K
Knowing au and, A.r for the process, we turn to the problem of delivering

maximum work. The increase in entropy of the system permits us to extract
energy from the thermal reservoir.

( - Q , . " ) :  4 " , A r : 1 5 0  x  6 . 1  : 9 1 6 J
The total energy that can then be delivered to the reversible work source is
( -Lu )  *  ( -Q , . . ) ,  o r

l a r \  7  r
l - l

\ 0 u J p  u d .  3 u

'(;) : i"(;)

work delivered : I.92 x 103 J
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PROBLEMS

7.4-1. ln the analysis of a Joule-Thomson experiment we may be given the initial
and final molar volumes of the gas, rather than the initial and final pressures.
Express the derivative(07/0u)^ in terms of co, e, and rr.
7.4-2. T\e adiabatic bulk modulus is defined bv

F s : - , (#)" : -v(#) , .
Express this quantity in terms o-f ,?,- 

",,.a, 
and r, (do not eliminate cr). what is

the relation of your result to the identity K,/Kr: cu/co (re,call probiem 3.9-5)?
7.4-3. Evaluate the change in temperature in an inflnitesimal free expansion of a
simple ideal gas (equation 7.51). Does this result also hold if the change in volume
is comparable to the initial volume? can you give a more general argument for a
simple ideal gas, not based on equation 7.51?
7.4-4. Show that equation7.46 can be written as

Q :  U r f  p , p l  -  U J p , p l

so that uIP, trl can be interpreted as a "potential for heat at constant T and, N.,,
7.4'5. A 1% decrease in volume of a system is carried out adiabatically. Find the
change in the chemical potential in terms of. co, c, and r, (and the state
functions P, T, u, u, s, etc).
7.4-6. Two moles of an imperfect gas occupy a volume of 1 liter and are at a
temperature of 100 K and a pressure of 2 Mpa. The gas is allowed to expand
freely into an additional volurne, initially evacuated, of 10 cm3. Find the change
in enthalpy.

At the initial conditions c,:0.8 J/mole. K, Kr = 3 x 10-6 Pa-', and c :
0.002 K-r.

Answer:
I  p  - ( r " -  p u o )  IAH :  l ; - - - -z- - -^1 lAu :  15 J
| (co"r - Tua') l

7.4-7. Show that (0c,/0u)r: TGzp/072), and evaluate this quantity for a
system obeying the van der Waals equation of state.
7.4-8. Show that

Evaluate this quantity for a system obeying the equation of state

(*),: -ruf,'.(#),1

"(,* #): *



7.4'9. one mole of the system of problem 7.4-g is expanded isothermally from an
t1t1t_ry:*re 

Po to a final pressure pr. calculate the heat flux to the system inrrus process.
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Answer:

O : -RZh( 
i)  

2Aef - p,)/r ,

7.4-10. A system obeys the van der waals equation of state. one more of thissystem is expanded isothermally at temperature z from an initial volume u0 to afinal volume ur. Find the heat transfer to the system in this 
"*pu"rion.

co: 26.20 + t7.49 x 10-3r _ 3.223 x t0_6Tz

where co is in J /mole and T is in kelvins.

Answer:
P t = 1 5 x 1 0 5 P a

7-4'13- calculate the change in the molar internal energy in a throttling processin which the pressure change is dp, expressing the reiilt in terms of standardparameters.

!.4:14- Assuming that a gas undergoes a free expansion and that the remperatureis found to change by dr, calcuhtJthe difference dp between the initial and finalpressure.
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7.4-16. Assuming the expansion of the ideal van der waals fluid of problem
7.4-15 to be carried out quasi-statically and adiabatically, again find the final
temperature |.

Evaluate your result with the numerical data specified in problem 7.4-15.
7.4'17. It is observed that an adiabatic decrease in molar volume of 17o produces
a particular change in the chemical potential p. what percentage change in molar
volume, carried out isothermally, produces the same change in p?
7.4-18. A cylinder is fitted with a piston, and the cylinder contains helium gas.
The sides of the cylinder are adiabatic, impermeable, and rigid, but the bottom of
the cylinder is thermally conductive, permeable to helium, and rigid. Through this
permeable wall the system is in contact with a reservoir of constant r and pr""
(the chemical potential of He). calculate the compressibility of the system
FG/V)(dV/dP)l in terms of the properties of helium (co, u, d., K7t etc.) and
thereby demonstrate that this compressibility diverges. 

'Discuss 
the physical

reason for this divergence.

7.4'19. The cylinder in Problem 7.4-18 is initially filled with ft mole of Ne.
Assume both He and Ne to be monatomic ideal gases. The bottom of the cylinder
is again permeable to He, but not to Ne. Calculate the pressure in the cylinder
and the compressibility (-[/V)(dv/dp) as functions of Z, V, and p,s..
Hint: Recall Problems 5.3-1, 5.3-L0, and 6.2-3.
7.4'20. A system is composed of 1 mole of a particular substance. In the p-u
plane two states (l and B) lie on the locus Pu2 : constant, so that pnu) : peuzB.
The following properties of the system have been measured along this locus:
co: Cu,, a: D/u, and rr: Eu, where C, D, and E are constants. Calculate
the temperature T" in terms of Ta, P,a,u,4,us, &rrd the constants C, D, and E.

Answer:
TB: T,q * (ur - u,q)/D + 2EpAalD-rln(ur/u")

7.4-21. A system is composed of 1 mole of a particular substance. Two thermody-
namic states, designated as A and B, lie on the locus pu : constant. The
following properties of the system have been measured along this locus; co: Cu,
a : D/u2, and r": Eu, where C, D, and, E are constants. Calcullte the
difference in molar energies (u"- u) in terms of Tn,pa,u1,uB, Lrrd the con-
stants C, D, and E.

7.4-22. The constant-volume heat capacity of a particular simple system is

c,: AT3 (l : constant)

In addition the equation of state is known to be of the form

( u - u o ) r : B ( r )

where B(Z) is an unspecified function of T. Evaluate the permissible functional
form of B(1).
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In terms of the undetermined constants appearing in your functional represen-
tation of B(T), evaluate d, cD, and rc. as functions of Z and u.
Hint: Examine the derivative' |zs / 0T 0u.

Answer:
cp : AT3 + (73 / DT * .E), where D and.E are constants.

7.4-23. A system is expanded along a straight line in the p-u plane, from the

C . . K T

; : A P  ( f o r u : u o )
c_

# :  B ,  ( f o r P :  P r )

Answer:
o : +A(pf - p:) + lB(uf - r3) + iQo- p)(u:_ uo)

7.4-u. A nonideal gas undergoes a throttling process (i.e., a Joule-Thomson
expansion) from an initial pressure Po to a final pressure pr. The initial tempera-
ture is ro and the initial molar volume is uo. calculate the hnal temperature I if
it is given that

*r: 4 along the T : Toisotherm (l > 0)
D "

c : do along the T : To isotherm
and

"o: 
,| along the P : Pt isobar

what is the condition on 7i in order that the temperature be lowered by the
expansion?

7-5 GENERALIZATIONS: MAGNETIC SYSTEMS

U  :  U ( S , V , I ,  N ) (7.s2)
Legendre transformations with respect to s, v, and N simply retain the
magnetic moment I as a parameter. Thus the enthalpy is a function of s,



Maxwell Relations

P, I, and N.

H  =  U [ p ]  :  I l  +  p V :  F I ( , S ,  p , I , N ) (7.53)
An analogous transformation can be made with respect to the magnetic
coordinate

UlB. l :  IJ  -  B" I (7.s4)
and -this potential is a function of s, v, 8", and N. The condition of
equilildum for a system at constant external field is that this potential be
mrmmum.

v-arious other potentials result from multiple Legendre transformations,
as depicted in the mnemonic squares of Fig. 7.3. Maxwell relations and
the relationships-between potentials can belead from these squares in a
completely straightforward fashion.
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The "magnetic enthalpy" IIIP,B"l= U + pV - B"I is an interesting
and useful potential. It is minimum for systems maintained at constanl
pressure and constant external field. Furthermore, as in equation 6.29 for
the enthalpy, dUIP,B"l: TdS: dQ at constant p, B;, and N. Thus
the magnetic enthalpy uIP, B"l acts as a "potential for hiat" for systems
maintained at constant pressure and magnetic field.

Example
A particular material obeys the fundamental equation of the "paramagnetic
model" (equation 3.66), with To : 200 K and l3l2R : 10 Tesla2 trVm2J. Two
moles of this material are maintained at constant pressure in an external field of
B, = 0.2 Tesla (or 2000 gauss), and the system is heated from an initiar tempera-
ture of 5 K to a final temperature of 10 K. what is the heat input to the system?

Solution

e: N[^o'  -  * ' :^G)]t
-- 218.314 x 5 + 10 x 0.04 x 0.11 J : 83.22J

(Note that the magnetic contribution, arising from the second term, is small
ompared to the nonmagnetic first-term contribution; in reality the nonmagnetic
ontribution to the heat capacity of real solids falls rapidly at low remperarures
end would be comparably small. Recall Problem 3.9-6.)

PROBLEMS

751. calculate the "magnetic Gibbs potential" uIT,B"l for the paramagnetic
model of equation 3.66. Conoborate that the derivative of this Dotential with
rcspect to B. at constant 7 has its proper value.
?52. Repeat Problem 7.5-1 for the system with the fundamental equation given
in Problem 3.8-2.

Answer:
utr,B"l: l*f;,t: - 

lNnrh(k,n2e)

7.$'3. calculate (01/07)" for the paramagnetic model of equation 3.66. Also
calculate @s/aB)r what is the relationship between these derivatives, as read
from the mnemonic square?
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7.5-4. Show that

and

where C"" and C,
Xr= Fo(01/08")r.

are heat

c,"_C,:#(#),.

Ca" _ Xr
Cr Xs

capacities and Xr ffid Xs are susceptibilities:


