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THE EXTREMUM PRINCIPLE

IN THE LEGENDRE

TRANSFORMED REPRESENTATIONS

6-1 THE MINIMUM PRINCIPLES FOR THE POTENTIALS

We have seen that the Legendre transformation permits expression of
the fundamental equation in terms of a set of independent variables
chosen to be particularly convenient for a given problem. Clearly, how-
ever, the advantage of being able to write the fundamental equation in
various representations would be lost if the extremum principle were not
itself expressible in those representations. We are concerned, therefore,
with the reformulation of the basic extremum principle in forms ap-
propriate to the Legendre transformed representations.

For definiteness consider a composite system in contact with a thermal
reservoir. Suppose further that some internal constraint has been removed.
We seek the mathematical condition that will permit us to predict the
equilibrium state. For this purpose we first review the solution of the
problem by the energy minimum principle.

In the equilibrium state the total energy of the composite system-plus-
reservoir is minimum:

dU+U")=0 (6.1)
and

d*(U+U")=d*U>0 (6.2)
subject to the isentropic condition

d(S+8)=0 (6.3)
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154 The Extremum Principle in the Legendre Transformed Representations

The quantity d?U" has been put equal to zero in equation 6.2 because
d?U’ is a sum of products of the form

a2Ur r '
X7 Xy .o
which vanish for a reservoir'(the coefficient varying as the reciprocal of the
mole number of the reservoir).

The other closure conditions depend upon the particular form of the
internal constraints in the composite system. If the internal wall is
movable and impermeable, we have

AN® = dN® =d(VY® + V@) =0 (forall j) (6.4)

whereas, if the internal wall is rigid and permeable to the kth component,
we have

A(N® + N@) = dNO = dN® = VO =dv®@ =0 (j #k)
(6.5)

These equations suffice to determine the equilibrium state.

The differential dU in equation 6.1 involves the terms TWdS™ +
T@4S®, which arise from heat flux among the subsystems and the
reservoir, and terms such as —POdV® — POGY® and pPdN{ +
p@ dN@, which arise from processes within the composite system. The
terms TV dS® + T®4dSP combine with the term dU” = T"dS" in equa-
tion 6.1 to yield

TOGSD + TOGSD 4 TrdsS" = TOISD + TP GS@ — T7d(SD + §@)
= (6.6)

whence
T ="ne =T (6.7)

Thus one evident aspect of the final equilibrium state is the fact that the
reservoir maintains a constancy of temperature throughout the system.
The remaining conditions of equilibrium naturally depend upon the
specific form of the internal constraints in the composite system.

To this point we have merely reviewed the application of the energy
minimum principle to the composite system (the subsystem plus the
reservoir). We are finally ready to recast equations 6.1 and 6.2 into the
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language of another representation. We rewrite equation 6.1
dU+ U )=dU+T'dS"=0 (6.8)
or, by equation 6.3
dU—-T"dS =0 (6.9)
or, further, since 7" is a constant
dU-T'S)=0 (6.10)

Similarly, since 7" is a constant and S is an independent variable,
equation 6.2 implies’

dU=d*(U-T'S)> 0 (6.11)

Thus the quantity (U — T'S) is minimum in the equilibrium state. Now
the quantity U — TS is suggestive by its form of the Helmholtz potential
U — TS. We are therefore led to examine further the extremum properties
of the quantity (U — T'S) and to ask how these may be related to the
extremum properties of the Helmholtz potential. We have seen that an
evident feature of the equilibrium is that the temperature of the composite
system (i.e., of each of its subsystems) is equal to T’. If we accept that
part of the solution, we can immediately restrict our search for the
equilibrium state among the manifold of states for which 7= T'. But
over this manifold of states U — TS is identical to U — T’S. Then we can
write equation 6.10 as

dF =d(U-TS)=0 (6.12)
subject to the auxiliary condition that
T=T" (6.13)

That is, the equilibrium state minimizes the Helmholtz potential, not
absolutely, but over the manifold of states for which 7= T’". We thus
arrive at the equilibrium condition in the Helmholtz potential representa-
tion.

Helmholtz Potential Minimum Principle. The equilibrium value of any
unconstrained internal parameter in a system in diathermal contact with a
heat reservoir minimizes the Helmholtz potential over the manifold of states
for which T = T".

'd?U represents the second-order terms in the expansion of U in powers of dS; the linear term
—T'S in equation 6.11 contributes to the expansion only in first order (see equation A.9 of
Appendix A).
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The intuitive significance of this principle is clearly evident in equations
6.8 through 6.10. The energy of the system plus the reservoir is, of course,
minimum. But the statement that the Helmholtz potential of the system
alone is minimum is just another way of saying this, for dF = d(U — TS),
and the term d(—TS) actually represents the change in energy of the
reservoir (since T = T" and —dS = dS"). It is now a simple matter to
extend the foregoing considerations to the other common representations.

Consider a composite system in which all subsystems are in contact
with a common pressure reservoir through walls nonrestrictive with re-
spect to volume. We further assume that some internal constraint within
the composite system has been removed. The first condition of equi-
librium can be written

dU+U)=dU—-P'dV"=dU+ P"dV =0 (6.14)
or
dlU+PV)=0 (6.15)
Accepting the evident condition that P = P’, we can write
dH =d(U+ PV)=0 (6.16)
subject to the auxiliary restriction
P =P’ (6.17)
Furthermore, since P" is a constant and V is an independent variable
d*H=d*(U+ P'V)=d*U>0 (6.18)
so that the extremum is a minimum.
Enthalpy Minimum Principle. The equilibrium value of any unconstrained
internal parameter in a system in contact with a pressure reservoir minimizes
the enthalpy over the manifold of states of constant pressure (equal to that of

the pressure reservoir).

Finally, consider a system in simultaneous contact with a thermal and a
pressure reservoir. Again

d{U+ U")=dU - T'dS + P"dV =0 (6.19)
Accepting the evident conditions that T = T” and P = P’, we can write

dG=d(U—-TS + PV)=0 (6.20)
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subject to the auxiliary restrictions
LisidigubP =L’ (6.21)
Again
d*G=d*(U-T'S+ P'V)=d*U >0 (6.22)
We thus obtain the equilibrium condition in the Gibbs representation.

Gibbs Potential Minimum Principle. The equilibrium value of any uncon-
strained internal parameter in a system in contact with a thermal and a
pressure reservoir minimizes the Gibbs potential at constant temperature and
pressure (equal to those of the respective reservoirs).

If the system is characterized by other extensive parameters in addition
to the volume and the mole numbers the analysis is identical in form and
the general result is now clear:

The General Minimum Principle for Legendre Transforms of the Energy.
The equilibrium value of any unconstrained internal parameter in a system in
contact with a set of reservoirs (with intensive parameters P], P;,...)
minimizes the thermodynamic potential U[P,, P,, ...] at constant P,, P,, . ..
(equal to P[, P;,...).

6-2 THE HELMHOLTZ POTENTIAL

For a composite system in thermal contact with a thermal reservoir the
equilibrium state minimizes the Helmholtz potential over the manifold of
states of constant temperature (equal to that of the reservoir). In practice
many processes are carried out in rigid vessels with diathermal walls, so
that the ambient atmosphere acts as a thermal reservoir; for these the
Helmholtz potential representation is admirably suited.

The Helmholtz potential is a natural function of the variables
T,V,N,, N,,....The condition that T is constant reduces the number of
variables in the problem, and F effectively becomes a function only of the
variables V' and N;, N,,.... This is in marked contrast to the manner in
which constancy of T would have to be handled in the energy representa-
tion: there U would be a function of S,V, N;, N,,... but the auxiliary
condition 7 = T would imply a relation among these variables. Particu-
larly in the absence of explicit knowledge of the equation of state
T = T(S,V, N) this auxiliary restriction would lead to considerable awk-
wardness in the analytic procedures in the energy representation.

As an illustration of the use of the Helmholtz potential we first consider
a composite system composed of two simple systems separated by a
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"Hotplate”, T°

FIGURE 6.1

movable, adiabatic, impermeable wall (such as a solid insulating piston).
The subsystems are each in thermal contact with a thermal reservoir of
temperature 7" (Fig. 6.1). The problem, then, is to predict the volumes V®
and V@ of the two subsystems. We write

PO(T, VD NO ND,...) = PO(T", VO, NO, ND,...) (6.23)

This is one equation involving the two variables V® and ¥ ®; all other
arguments are constant. The closure condition

VO 4+ V3 =V, aconstant (6.24)

providg the other required equation, permitting explicit solution for ¥'®
and V9,

In the energy representation we would also have found equality of the
pressures, as in equation 6.23, but the pressures would be functions of the
entropies, volumes, and mole numbers. We would then require the equa-
tions of state to relate the entropies to the temperature and the volumes;
the two simultaneous equations, 6.23 and 6.24, would be replaced by four.

Although this reduction of four equations to two may seem to be a
modest achievement, such a reduction is a very great convenience in more
complex situations. Perhaps of even greater conceptual value is the fact
that the Helmholtz representation permits us to focus our thought
processes exclusively on the subsystem of interest, relegating the reservoir
only to an implicit role. And finally, for technical mathematical reasons to
be elaborated in Chapter 16, statistical mechanical calculations are enor-
mously simpler in Helmholtz representations, permitting calculations that
would otherwise be totally intractable.

For a system in contact with a thermal reservoir the Helmholtz poten-
tial can be interpreted as the available work at constant temperature.
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Consider a system that interacts with a reversible work source while being
in thermal contact with a thermal reservoir. In a reversible process the
work input to the reversible work source is equal to the decrease in energy
of the system and the reservoir

dWews = —dU — dU" = —dU — T'dS" (6.25)
= —dU+ T'dS = —d(U - T'S) (6.26)
= —dF (6.27)

Thus the work delivered in a reversible process, by a system in contact with a
thermal reservoir, is equal to the decrease in the Helmholtz potential of the
system. The Helmholtz potential is often referred to as the Helmholtz
“free energy,” though the term available work at constant temperature
would be less subject to misinterpretation.

Example 1

A cylinder contains an internal piston on each side of which is one mole of a
monatomic ideal gas. The walls of the cylinder are diathermal, and the system is
immersed in a large bath of liquid (a heat reservoir) at temperature 0°C. The
initial volumes of the two gaseous subsystems (on either side of the piston) are 10
liters and 1 liter, respectively. The piston is now moved reversibly, so that the
final volumes are 6 liters and 5 liters, respectively. How much work is delivered?

Solution
As the reader has shown in Problem 5.3-1, the fundamental equation of a
monatomic ideal gas in the Helmholtz potential representation is

F, T Vv i
i NRT{ NoRT, ~ '“[('TZ) 7l 5%)
At constant 7" and N this is simply

F = constant — NRT InV
The change in Helmholtz potential is
AF = —NRT[In6 + In5—In10 — In1}= —NRTIn3 = —2.5kJ

Thus 2.5 kJ of work are delivered in this process.

It is interesting to note that all of the energy comes from the thermal reservoir.
The energy of a monatomic ideal gas is simply 2 NRT and therefore it is constant
at constant temperature. The fact that we withdraw heat from the temperature
reservoir and deliver it entirely as work to the reversible work source does not,
however, violate the Carnot efficiency principle because the gaseous subsystems
are not left in their initial state. Despite the fact that the energy of these
subsystems remains constant, their entropy increases.
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PROBLEMS

6.2-1. Calculate the pressure on each side of the internal piston in Example 1, for
arbitrary position of the piston. By integration then calculate the work done in
Example 1 and corroborate the result there obtained.
6.2-2. Two ideal van der Waals fluids are contained in a cylinder, separated by an
internal moveable piston. There is one mole of each fluid, and the two fluids have
the same values of the van der Waals constants b and c; the respective values of
the van der Waals constant “a” are a, and a,. The entire system is in contact
with a thermal reservoir of temperature T. Calculate the Helmholtz potential of
the composite system as a function of T and of the total volume V. If the total
volume is doubled (while allowing the internal piston to adjust), what is the work
done by the system? Recall Problem 5.3-2.
6.2-3. Two subsystems are contained within a cylinder and are separated by an
internal piston. Each subsystem is a mixture of one mole of helium gas and one
mole of neon gas (each to be considered as a monatomic ideal gas). The piston is
in the center of the cylinder, each subsystem occupying a volume of 10 liters. The
walls of the cylinder are diathermal, and the system is in contact with a thermal
reservoir at a temperature of 100°C. The piston is permeable to helium but
impermeable to neon.

Recalling (from Problem 5.3-10) that the Helmholtz potential of a mixture of
simple ideal gases is the sum of the individual Helmholtz potentials (each
expressed as a function of temperature and volume), show that in the present case

T 3 iy v N,

F=N Tof° SNRTIn T N,RT In N,
VN, VN,
~NORTIn——2 — N®RT In ¢
Vo VoNS?

where T, f,, V;, and N, are attributes of a standard state (recall Problem 5.3-1),
N is the total mole number, NV is the mole number of neon (component 2) in
subsystem 1, and V® and V@ are the volumes of subsystems 1 and 2, respec-
tively.

How much work is required to push the piston to such a position that the
volumes of the subsystems are 5 liters and 15 liters? Carry out the calculation
both by calculating the change in F and by a direct integration (as in Problem
6.2-1).

Answer:
work = RT In(%) = 893 J

6-3 THE ENTHALPY: THE
JOULE-THOMSON OR “THROTTLING” PROCESS

For a composite system in interaction with a pressure reservoir the
equilibrium state minimizes the enthalpy over the manifold of states of
constant pressure. The enthalpy representation would be appropriate to
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processes carried out in adiabatically insulated cylinders fitted with adia-
batically insulated pistons subject externally to atmospheric pressure, but
this is not a very common experimental design. In processes carried out in
open vessels, such as in the exercises commonly performed in an elemen-
tary chemistry laboratory, the ambient atmosphere acts as a pressure
reservoir, but it also acts as a thermal reservoir: for the analysis of such
processes only the Gibbs representation invokes the full power of Legendre
transformations. Nevertheless, there are particular situations uniquely
adapted to the enthalpy representation, as we shall see shortly.

More immediately evident is the interpretation of the enthalpy as a
“potential for heat.” From the differential form

dH =TdS + VdP + p,dN; + p,dN, + --- (6.28)

it is evident that for a system in contact with a pressure reservoir and
enclosed by impermeable walls

dH = dQ  (where P, N, N,,... are constant) (6.29)

That is, heat added to a system at constant pressure and at constant values of
all the remaining extensive parameters (other than S and V') appears as an
increase in the enthalpy.

This statement may be compared to an analogous relation for the
energy

dU = dQ (where V, N, N,, ... are constant) (6.30)

and similar results for any Legendre transform in which the entropy is not
among the transformed variables.

Because heating of a system is so frequently done while the system is
maintained at constant pressure by the ambient atmosphere, the enthalpy
is generally useful in discussion of heat transfers. The enthalpy accord-
ingly is sometimes referred to as the “heat content” of the system (but it
should be stressed again that “heat” refers to a mode of energy flux
rather than to an attribute of a state of a thermodynamic system).

To illustrate the significance of the enthalpy as a “potential for heat,”
suppose that a system is to be maintained at constant pressure and its
volume is to be changed from V, to V. We desire to compute the heat
absorbed by the system. As the pressure is constant, the heat flux is equal
to the change in the enthalpy

Qi—»f"z_ fdQ = H,— H, (6.31)

If we were to know the fundamental equation

H = H(S,P,N) (6.32)
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then, by differentiation

JdH
V= 2P V(S,P,N) (6.33)
and we could eliminate the entropy to find H as a function of ¥, P, and
N. Then

0,.; = H(V;,P,N) = H(V,, P, N) (6:34)

A process of great practical importance, for which an enthalpy repre-
sentation is extremely convenient, is the Joule-Thomson or “throttling”
process. This process is commonly used to cool and liquify gases and as a
second-stage refrigerator in “cryogenic” (low-temperature) laboratories.

In the Joule-Thomson process or “Joule-Kelvin” process (William
Thomson was only later granted peerage as Lord Kelvin) a gas is allowed
to seep through a porous barrier from a region of high pressure to a region
of low pressure (Fig. 6.2). The porous barrier or “throttling valve” was
originally a wad of cotton tamped into a pipe; in a laboratory demonstra-
tion it is now more apt to be glass fibers, and in industrial practice it is
generally a porous ceramic termination to a pipe (Fig. 6.3). The process
can be made continuous by using a mechanical pump to return the gas
from the region of low pressure to the region of high pressure. Depending
on certain conditions, to be developed in a moment, the gas is either
heated or cooled in passing through the throttling valve.

Piston Piston
maintaining maintaining
high Porous low

pressure pressure

FIGURE 6.2
Schematic representation of the Joule-Thomson process.

For real gases and for given initial and final pressures, the change in
temperature is generally positive down to a particular temperature, and it
is negative below that temperature. The temperature at which the process
changes from a heating to a cooling process is called the inversion
temperature; it depends upon the particular gas and upon both the initial
and final pressures. In order that the throttling process operate as an
effective cooling process the gas must first be precooled below its inversion
temperature.

To show that the Joule-Thomson process occurs at constant enthalpy
consider one mole of the gas undergoing a throttling process. The piston
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Pump

FIGURE 6.3

Schematic apparatus for liquefaction of a gas by throttling process. The pump maintains
the pressure difference (P, — Pyoy ). The spherical termination of the high pressure pipe
is a porous ceramic shell through which the gas expands in the throttling process.

(Fig. 6.2) that pushes this quantity of gas through the plug does an
amount of work P,v,, in which v, is the molar volume of the gas on the
high pressure side of the plug. As the gas emerges from the plug, it does
work on the piston that maintains the low pressure P;, and this amount of
work is P.v,. Thus the conservation of energy determmes the final molar
energy of the gas; it is the initial molar energy, plus the work P,v; done on

the gas, minus the work P,v, done by the gas.
or

u,+ Py =u, + Py, (6.36)
which can be written in terms of the molar enthalpy 4 as
h,=h, (6.37)

Although, o%the basis of equation 6.37, we say that the Joule—
Thomson process occurs at constant enthalpy, we stress that this simply
implies that the final enthalpy is equal to the initial enthalpy. We do not
imply anything about the enthalpy during the process; the intermediate
states of the gas are nonequilibrium states for which the enthalpy is not
defined.

The isenthalpic curves (“isenthalps”) of nitrogen are shown in Fig. 6.4
The initial temperature and pressure in a throttling process determine a
particular isenthalp. The final pressure then determines a point on this
same isenthalp, thereby determining the final temperature.
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FIGURE 6.4

Isenthalps (solid), inversion temperature (dark), and coexistence curve for nitrogen;
semiquantitative.

The isenthalps in Fig. 6.4 are concave, with maxima. If the initial
temperature and pressure lie to the left of the maximum the throttling
process necessarily cools the gas. If the initial temperature lies to the right
of the maximum a small pressure drop heats the gas (though a large
pressure drop may cross the maximum and can either heat or cool the
gas). The maximum of the isenthalp therefore determines the inversion
temperature, at which a small pressure change neither heats nor cools the
gas.

The dark curve in Fig. 6.4 is a plot of inversion temperature as a
function of pressure, obtained by connecting the maxima of the isenthalpic
curves. Also shown on the figure is the curve of liquid—gas equilibrium.
Points below the curve are in the liquid phase and those above are in the
gaseous phase. This coexistence curve terminates in the “critical point.” In
the region of this point the “gas” and the “liquid” phases lose their
distinguishability, as we shall study in some detail in Chapter 9.

If the change in pressure in a throttling process is sufficiently small we
can employ the usual differential analysis.

aT
¢0 ( dP ) H N, N,,...
The derivative can be expressed in terms of standard measurable quanti-
ties (c,, a, k) by a procedure that may appear somewhat complicated on

dpP (6.38)
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first reading, but that will be shown in Chapter 7 to follow a routine and
straightforward recipe. By a now familiar mathematical identity (A.22),

(5%)./(57). (=

where we suppress the subscripts N;, N,, ... for simplicity, noting that the
mole numbers remain constant throughout. However, dH = TdS + VdP
at constant mole numbers, so that

_T(85/8P); + V
T(3S/9T)»

dT = —

dT =

dpP (6.40)

The denominator is Nc,. The derivative (dS/dP) is equal to — (¥ /dT),
by one of the class of “Maxwell relations,” analogous to equations 3.62 or
3.65 (in the present case the two derivatives can be corroborated to be the
two mixed second derivatives of the Gibbs potential). Identifying
(0S/dP); = —(dV/dT)p = — Va (equation 3.67) we finally find

dT = ci(Ta —1)dpP (6.41)
P

This is a fundamental equation of the Joule-Thomson effect. As the
change in pressure dP is negative, the sign of dT is opposite that of the
quantity in parentheses. Thus if Ta > 1, a small decrease in pressure (in
transiting the “throttling valve™) cools the gas. The inversion temperature
1s determined by

aTinversion =1 (642)

For an ideal gas the coefficient of thermal expansion a is equal to 1/T,
so that there is no change in temperature in a Joule-Thomson expansion.
All gases approach ideal behavior at high temperature and low or mod-
erate pressure, and the isenthalps correspondingly become “flat,” as seen
in Fig. 6.4. It is left to Example 2 to show that for real gases the
temperature change is negative below the inversion temperature and
positive above, and to evaluate the inversion temperature.

Example 2
Compute the inversion temperature of common gases, assuming them to be
described by the van der Waals equation of state (3.41).

Solution
We must first evaluate the coefficient of expansion a. Differentiating the van der
Waals equation of state (3.41) with respect to T, at constant P
a—l(ﬂ) | T  2a(v-b)]"
v\aT P v—>b sz
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To express the right-hand side as a function of 7 and P is analytically difficult.
An approximate solution follows from the recognition that molar volumes are on
the order of 0.02 m*,\ whence b/vis on the order of 10~* and a/RTvis on the order
of 1072 — 10~* (see Table 3.1). Hence a series expansion in b/v and a/RTvcan
reasonably be terminated at the lowest order term. Let

a9 €25 RTv
Then
T 2T =
a=[lT£1— ?(v—b)EZ]
17 4 ¢
=7[I_—81~2(1—81)62] ‘

Returning to equation 6.41

dT = cl(Ta - 1)dP
from which we recall that ’

iy 02,1
It then follows that at the inversion temperature
[1-g+28+:---1=1
or

g =2¢g,

The inversion temperature is now determined by
2a

Tinv 3 bR
with cooling of the gas for temperature below T, ., and heating above. From
Table 3.1, we compute the inversion temperature of several gases: T}, (H,) = 224
K, T,,(Ne) = 302 K, T, (N,) =850 K, T,,,(0,) = 1020 K, T;,,(CO,) = 2260
K. In fact the inversion temperature empirically depends strongly on the pressure
—a dependence lost in our calculation by the neglect of higher-order terms. The
observed inversion temperature at zero pressure for H, is 204 K, and for neon it
is 228 K —in fair agreement with our crude calculation. For polyatomic gases the
agreement is less satisfactory; the observed value for CO, is 1275 K whereas we
have computed 2260 K.

PROBLEMS

6.3-1. A hole is opened in the wall separating two chemically identical single-
component subsystems. Each of the subsystems is also in interaction with a
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pressure reservoir of pressure P’. Use the enthalpy minimum principle to show
that the conditions of equilibrium are T® = T® and p® = p®,

6.3-2. A gas has the following equations of state

U v\
PI=p T—3B(W)

where B is a positive constant. The system obeys the Nernst postulate (S — 0 as
T — 0). The gas, at an initial teperature 7; and initial pressure P;, is passed

through a “porous plug” in a Joule-Thomson process. The final pressure is P,.
Calculate the final temperature 7,.

6.3-3. Show that for an ideal van der Waals fluid
i b 2t +RT(c+ L)
v v—2>b

where # is the molar enthalpy. Assuming such a fluid to be passed through a
porous plug and thereby expanded from v; to v, (with v, > v;), find the final
temperature T in terms of the initial temperature 7, and the given data.

Evaluate the temperature change if the gas is CO,, the mean temperature is
0°C, the mean pressure is 107 Pa, and the change in pressure is 10® Pa. The molar
heat capacity ¢, of CO, at the relevant temperature and pressure is 29.5
Jmole-K. Carry calculation only to first order in b/vand a/RTw.

6.3-4. One mole of a monatomic ideal gas is in a cylinder with a movable piston
on the other side of which is a pressure reservoir with P, = 1 atm. How much
heat must be added to the gas to increase its volume from 20 to 50 liters?

6.3-5. Assume that the gas of Problem 6.3-4 is an ideal van der Waals fluid with
the van der Waals constants of argon (Table 3-1), and again calculate the heat
required. Recall Problem 6.3-3.

6-4 THE GIBBS POTENTIAL; CHEMICAL REACTIONS

For a composite system in interaction with both thermal and pressure
reservoirs the equilibrium state minimizes the Gibbs potential over the
manifold of states of constant temperature and pressure (equal to those of
the reservoirs).

The Gibbs potential is a natural function of the variables
T,P,N,, N,,..., and it is particularly convenient to use in the analysis of
problems involving constant 7" and P. Innumerable processes of common
experience occur in systems exposed to the atmosphere, and thereby
maintained at constant temperature and pressure. And frequently a pro-
cess of interest occurs in a small subsystem of a larger system that acts as
both a thermal and a pressure reservoir (as in the fermentation of a grape
in a large wine vat).

The Gibbs potential of a multicomponent system is related to the
chemical potentials of the individual components, for G = U — TS + PV,
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and inserting the Euler relation U = TS — PV + u N, + p,N, + - -+ we
find

G=puN +p,N, + -+ (6.43)

Thus, for a single component system the molar Gibbs potential is identi-
cal with p

(6.44)

z(Q
I
=

but for a multicomponent system
G
R 2 Topaxy oo HpLx, (6.45)

where x; is the mole fraction (N,/N) of the jth component. Accordingly,
the chemical potential is often referred to as the molar Gibbs potential in
single component systems or as the partial molar Gibbs potential in
multicomponent systems.

The thermodynamics of chemical reactions is a particularly important
application of the Gibbs potential.

Consider the chemical reaction

02 Yr4, (6.46)

where the », are the stoichiometric coefficients defined in Section 2.9. The
change in Gibbs potential associated with virtual changes dN, in the mole
numbers is

dG = —SdT + VdP + ¥ p,aN, (6.47)
J

However the changes in the mole numbers must be in proportion to the
stoichiometric coefficients, so that

dN. dN. N
—t=—2=...=4N (6.48)
4 Vs
or, equivalently,
dN; = v;dN (6.49)

where dN is simply a proportionality factor defined by equation 6.48. If
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the chemical reaction is carried out at constant temperature and pressure
(as in an open vessel) the condition of equilibrium then implies

dG=dNY vp,=0 (6.50)
J

or

Zvj,u,j =0 (6.51)
J

If the initial quantities of each of the chemical components is N; % the
chemical reaction proceeds to some extent and the mole numbers assume
the new values

N,=N'+ [dN,= N®+ » AN (6.52)

where AN is the factor of proportionality. The chemical potentials in
equation 6.51 are functions of 7, P, and the mole numbers, and hence of
the single unknown parameter AN. Solution of equation 6.51 for AN
determines the equilibrium composition of the system.

The solution described is appropriate only providing that there is a
sufficient quantity of each component present so that none is depleted
before equ111brt1§xlm is reached. That is, none of the quant1t1es N, in
equation 6.52 can become negative. This consideration is most conveni-
ently expresSed in terms of the degree of reaction.

The maximum value of AN for which all N, remain positive (in
equation 6.52) defines the maximum permissible extent of the reaction.
Similarly the minimum value of AN for which all N, remain positive
defines the maximum permissible extent of the reverse reaction. The
actual value of AN in equ111br1um may be anywhere between these two
extremes. The degree of reaction ¢ is defined as

AN — AN,
E== m (6.53)

It is possible that a straightforward solution of the equation of chem1cal
equilibrium (6.51) may yield a value of AN that is larger than AN,
smaller than AN, . In such a case the process is terminated by the
depletion of one of its components. The physically relevant value of AN is
then AN, . (or AN, )=Although L »;p; does not attain the value zero, it
does altam the smallest absolute value accessible to the system.

Whereas the partial molar Gibbs potentlals characterize the equilibrium
condition, the enthalpy finds its expression in the heat of reaction. This
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fact follows from the general significance of the enthalpy as a “potential
for heat flux” at constant pressure (equation 6.29). That is, the flux of heat
from the surroundings to the system, during the chemical reaction, is
equal to the change in the enthalpy. This change in enthalpy, in turn, can
be related to the chemical potentials, for

aG

3T)P,N1,N2,... (6.54)

H=G+TS=G— T(

If an infinitesimal chemical reaction dN occurs, both H and G change and

dH aG d (dG -
dN — T—| == N S
L dN o= dN THT( dN)P,Nl,NZ,... d g
But the change in Gibbs function is
= ;”dej= (;Vj”j) dN (6.56)
whence
dG -
o s levj,uj (6.57)

At equilibrium dG/dN vanishes (but the temperature derivative of dG/dN
does not) so that in the vicinity of the equilibrium state equation 6.55
becomes

dH
~ T Y
T (E V‘U‘j)p, o (6.58)

The quantity dH/dN is known as the heat of reaction; it is the heat
absorbed per unit reaction in the vicinity of the equilibrium state. It is
positive for endothermic reactions and negative for exothermic reactions.

We have assumed that the reaction considered is not one that goes to
completion. If the reaction does go to completion, the summation in
equation 6.57 does not vanish in the equilibrium state, and this summa-
tion appears as an additional term in equation 6.58.

As the summation in equation 6.58 vanishes at the equilibrium com-
position, it is intuitiely evident that the temperature derivative of this
quantity is related to the temperature dependence of the equilibrium
concentrations. We shall find it convenient to develop this connection
explicitly only in the special case of ideal gases, in Section 13.4. However,
it is of interest here to note the plausibility of the relationship and to
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gnize that such a relationship permits the heat of reaction to be
measured by determinations of equilibrium compositions at various tem-
pexatures rather than by relatively difficult calorimetric experiments.

The general methodology for the analysis of chemical reactions becomes
specific and definite when applied to particular systems. To anchor the
foregoing treatment in a fully explicit (and practically important) special
tase, the reader may well wish here to interpolate Chapter 13—and
particularly Section 13.2 on chemical reactions in ideal gases.

Example 3
Five moles of H,, 1 mole of CO,, 1 mole of CH,, and 3 moles of H,O are

‘allowed to react in a vessel maintained at a temperature T, and pressure P,. The
“relevant reaction is

4H, + CO, = CH, + 2H,0

‘Solution of the equilibrium condition gives the nominal solution AN = — L
What are the mole numbers of each of the components? If the pressure is then
ncreased to P, (P, > P,) and the temperature is maintained constant (= T} the
equilibrium condition gives a new nominal solution of AN = 1, 2. What are the
mole numbers of each of the components?

Solution

We first_write: the analogue of equation 6.52 for each component: Ny =
5 = 4AN, Neo, =1 - AN, New, =1+ AN, Ny o=3+2AN. Setting each of
these mole numbers equal to zero successively we find four roots for AN: 31,
=1, and — 3. The positive and negative roots of smallest absolute values are,
respectively,

AN.=1 AN = -1

These two bounds on AN correspond to depletion of CO, if the reaction proceeds
100 far in the *“forward” direction, and to depletion of CH, if the reaction

proceeds too far in the “reverse” direction.
The degree of reaction is now, by equation 6.53

AN+1 1.,
e CLE )
If the nomfnal solution of the equilibrium condition gives AN = — L then e = |

and Ny, =3, Neo, = 3, Ney, = 3 and Nyyo =2 o

If the increase in pressure shifts the nominal solution for AN to + 1.2 we reject
this value as outside the acceptable range of AN (i.e., greater than AN_,); it
would lead to the nonphysical value of £ = 1.1 whereas £ must be between zero and
wnity. Hence the reaction is terminated at AN = AN,,,, = 1 (or at ¢ = 1) by the
depletion of CO,. The final mole numbers are Ny, = 1, Neo, = 1, New , = 2,and
NH20 = 5.
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PROBLEMS

6.4-1. One half mole of H,S,  mole of H,0, 2 moles of H,, and 1 mole of SO,
are allowed to react in a vessel maintained at a temperature of 300 K and a
pressure of 10* Pa. The components can react by the chemical reaction
3H, + SO, = H,S + 2H,0

a) Write the condition of equilibrium in terms of the partial molar Gibbs
potentials.
b) Show that 5

Ny, =2 - 3AN
and similarly for the other components. For what value of AN does each N;
vanish?
c) Show that AN, = % and AN_, = — 3. Which components are depleted in
each of these cases?
d) Assume that the nominal solution of the equilibrium condition gives AN = 1.
What is the degree of reaction &? What are the mole fractions of each of the
components in the equilibrium mixture?
e) Assume that the pressure is raised and that the nominal solution of the
equilibrium condition now yields the value AN = 0.8. What is the degree of
reaction? What are the mole fractions of each of the components in the final
state?

Answers:
¢) H,and H,O depleted

5

d) ENS %, tzo = E
e) AN~ = %, tzo = .59

6-5 OTHER POTENTIALS

Various other potentials may occasionally become useful in particular
applications. One such application will suffice to illustrate the general
method.

Example 4

A bottle, of volume V, contains N, moles of sugar, and it is filled with water and
capped by a rigid lid. The lid though rigid is permeable to water but not to sugar.
The bottle is immersed in a large vat of water. The pressure in the vat, at the
position of the bottle, is P, and the temperature is 7. We seek the pressure P and
the mole number N,, of water in the bottle.

Solution
We suppose that we are given the fundamental equation of a two-component
mixture of sugar and water. Most conveniently, this fundamental equation will be
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€ast in the representation U[T, V, u,, N,]; that is, in the representation in which §
and N, are replaced by their corresponding intensive parameters, but the volume
¥ and the mole number of sugar N, remain untransformed. The diathermal wall
ensures that T has the value established by the vat (a thermal reservoir), and the
semipermeable lid ensures that p, has the value established by the vat (a “water
reservoir’). No problem remains! We know all the independent. variables of the
generalized potential U[T, V, u,, N,]. To find the pressure in the bottle we
merely differentiate the potential:

‘?UII ‘/) My, N, s]

v

B (6.59)

It is left to the reader to compare this approach to the solution of the
same problem in energy or entropy representations. Various unsought for
variables enter into the analysis—such as the entropy of the contents of
the bottle, or the entropy, energy, and mole number of the contents of the
vat. And for each such extraneous variable, an additional equation is
needed for its elimination. The choice of the appropriate representation
clearly is the key to simplicity, and indeed to practicality, in thermody-
namic calculations.

6-6 COMPILATIONS OF EMPIRICAL DATA;
THE ENTHALPY OF FORMATION

In principle, thermodynamic data on specific systems would be most
succinctly and conveniently given by a tabulation of the Gibbs potential
as a function of temperature, pressure, and composition (mole fractions of
the individual components). Such a tabulation would provide a fundamen-
tal equation in the representation most convenient to the experimentalist.

In practice it is customary to compile data on h(T, P), s(T, P), and
u(T, P), from which the molar Gibbs potential can be obtained (g = 7 —
Ts). The tabulation of A, s, and v is redundant but convenient. For
multicomponent systems analogous compilations must be made for each
composition of interest.

Differences in the molar enthalpies of two states of a system can be
evaluated experimentally by numerical integration of dh = dQ/N+ v dP,
for dQ as well as P and vcan be measured along the path of integration.

The absolute scale of the enthalpy A, like that of the energy or of any
other thermodynamic potential, is arbitrary, undetermined within an
additive constant. For purposes of compilation of data, the scale of
enthalpy is made definite by assigning the value zero to the molar
enthalpy of each chemical element in its most stable form at a standard
temperature and pressure, generally taken as

T, = 298.15K = 25°C P, = 0.1 MPa = 1 atm
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The enthalpy defined by this choice of scale is called the enthalpy of
formation.

The reference to the “most stable state” in the definition of the
enthalpy of formation implies, for instance, that the value zero is assigned
to the molecular form of oxygen (O,) rather than to the atomic form (O);
the molecular form is the most stable form at standard temperature and
pressure.

If 1 mole of carbon and 1 mole of O, are chemically reacted to form 1
mole of CO,, the reaction being carried out at standard temperature and
pressure, it is observed that 393.52 X 103 J of heat are emitted. Hence the
enthalpy of formation of CO, is taken as —393.52 X 10° J/mole in the
standard state. This is the standard enthalpy of formation of CO,. The
enthalpy of formation of CO, at any other temperature and pressure is
obtained by integration of dh = dQ/N + v dP.

The standard molar enthalpy of formation, the corresponding standard
molar Gibbs potential, and the molar entropy in the standard state are
tabulated for a wide range of compounds in the JANAF Thermochemical
Tables (Dow Chemical Company, Midland, Michigan) and in various
other similar compilations.

Tables of thermodynamic properties of a particular material can be-
come very voluminous indeed if several properties (such as 4, s, and v),
or even a single property, are to be tabulated over wide ranges of the-
independent variables T and P. Nevertheless, for common materials such
as water very extensive tabulations are readily available. In the case of
water the tabulations are referred to as “Steam Tables.” One form of
steam table, referred to as a “superheated steam table,” gives values of the
molar volume v, energy u, enthalpy A, and entropy s as a function of
temperature, for various values of pressure. An excerpt from such a table
(by Sonntag and van Wilen), for a few values of the pressure, is given in
Table 6.1. Another form, referred to as a “saturated steam table,” gives
values of the properties of the liquid and of the gaseous phases of water
for values of P and T which lie on the gas-liquid coexistence curve. Such
a “saturated steam table” will be given in Table 9.1.

Another very common technique for representation of thermodynamic
data consists of “thermodynamic charts,” or graphs. Such charts neces-
sarily sacrifice precision, but they allow a large amount of data to be
summarized succinctly and compactly. Conceptually, the simplest such
chart would label the two coordinate axes by T and P. Then, for a
single-component system one would draw families of curves of constant
molar Gibbs potential p. In principle that would permit evaluation of all
desired data. Determination of the molar volume, for instance, would
require reading the values of u for two nearby pressures at the tempera-
ture of interest; this would permit numerical evaluation of the derivative
(Ap/AP),, and thence of the molar volume. Instead, a family of iso-
chores is overlaid on the graph, with each isochore labeled by v. Similarly,
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families of constant molar entropy s, of constant molar enthalpy 4, of
constant coefficient of thermal expansion «a, of constant Ky, and the like
are also overlaid. The limit is set by readability of the chart.

It will be recognized that there is nothing unique about the variables
assigned to the cartesian axes. Each family of curves serves as a (curvilinear)
coordinate system. Thus a point of given v and s can be located as the
intersection of the corresponding isochore and adiabat, and the value of
any other plotted variable can then be read.

In practice there are many variants of thermodynamic charts in use. A
popular type of chart is known as a Mollier chart —it assigns the molar
enthalpy 4 and the molar entropy s to the cartesian axes; whereas the
1sochores and isobars appear as families of curves overlaid on the di-
agram. Another frequently used form of chart (a temperature—entropy
chart”) assigns the temperature and the entropy to the coordinate axes,
and overlays the molar enthalpy 4 and various other thermodynamic
functions, the number again being limited mainly by readability (Figure
6.5).

Such full thermodynamic data is available for only a few systems, of
relatively simple composition. For most systems only partial thermody-
namic data are available. A very large scale international program on data
compilation exists. The International Journal of Thermophysics (Plenum
Press, New York and London) provides current reports of thermophysical
measurements. The Center for Information and Numerical Data Analysis
and Synthesis (“CINDAS"), located at Purdue University, publishes
several series of data collections; of particular note is the Thermophysical
Properties Research Literature Retrieval Guide: 1900—-1980. (seven volumes)
edited by J. F. Chancy and V. Ramdas (Plenum Publishing Corp., New
York, 1982).

Finally, we briefly recall the procedure by which a fundamental equa-
tion for a single-component system can be constructed from minimal
tabulated or measured data. The minimal information required is a( T, P),
¢,(T, P), and k,(T, P), plus the values of Uy, 8o In one reference state
(and perhaps the enthalpy of formation). Given these data the molar
Gibbs potential can be obtained by numerical integration of the
Gibbs-Duhem relation d(G/N)= —sdT + vdP—but only after pre-
liminary evaluations of s(7, P) and o(7, P) by numerical integration of
the equations

s

@~ (57),47+(55

cP
) dP = — dT — vadP
T T

and

dv = vadT — vk, dP
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FIGURE 6.5
Temperature—entropy chart for water vapor (“steam”). From Keenan, Keyes, Hill and
Moore, Steam Tables, copyright © 1969, John Wiley and Sons, Inc.

Note that “quality” is defined as the mole fraction in the gaseous state (in the
two-phase region of the diagram).
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Each of these integrations must be carried out over a network of paths
covering the entire 7-P plane—often a gigantic numerical undertaking.

6-7 THE MAXIMUM PRINCIPLES FOR
THE MASSIEU FUNCTIONS

In the enérgy representation the energy is minimum for constant
entropy, and from this it follows that each Legendre transform of the
energy is minimum for constant values of the transformed (intensive)
variables. Similarly, in the entropy representation the entropy is maximum
for constant energy, and from this it follows that each Legendre transform
of the entropy is maximum for constant values of the transformed
(intensive) variables.

For two of the three common Massieu functions the maximum princi-
ples can be very easily obtained, for these functions are directly related to
potentials (i.e., to transforms of the energy). By equation 5.61, we have

S[—;—,] = —% (6.60)

and, as F is minimum at constant temperature, S[1/7] is clearly maxi-
mum. Again, by equation 5.63,

SH,;] = —% (6.61)

and, as G is minimum at constant pressure and temperature, S{1/T, P/T]
is clearly maximum.

For the remaining common Massieu function S[P/T] we can repeat
the logic of Section 6.1. We are concerned with a system in contact with a
reservoir that maintains P/T constant, but permits 1/7T to vary. It is
readily recognized that such a reservoir is more of a mathematical fiction
than a physically practical device, and the extremum principle for the
function S[P/T]is correspondingly artificial. Nevertheless, the derivation
of this principle along the lines of Section 6.1 is an interesting exercise
that I leave to the curious reader.



