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5 Free Energy and

Chemical Thermodynamics

5.1 FYee Energy as Available Work

In Section 1.6 I defined the enthalpy of a system as its energy plus the work needed

to make room for it, in an environment u'ith constant pressure P:

H:U+PV' (5'1)

This is the total energy you would need, to create the system out of nothing and

put it in such an "rr.äoï-"rrt. 
(since the initial volume of the system is zeto,

-LV : V.) Or, if you could completely annihilate the system, f1 is the enelgy you

could recover: the system,s energy plus the work done by the collapsing atmosphere'

Ofben,however,we'tenotinterestedinthetotalenergyneededorthetotal
energy that can be recovered. If the environment is one of constant temperature,

ther-

Thepreviouschapterappliedthelalvsofthermodynamicstocyclicprocesses:the
operation of engines urrå ,"f,lg"'ators whose energy and entropy are unchanged

over the long term. But manyìmportant thermodynamic processes are not cyclic'

chemical reactions, for example, are constrained by the lav¡s of thermodvnamics

but do not end. with the system in the same state where it started'

The purpose of the pràsent chapter is to apply the laws of thermodynamics to

chemical reactions and other transformations of matter. one complication that

arises immediately is that these transformations most often occur in systems that

are not isolated but are interacting with their surroundings, thermaþ and ofben

mechanically. The energy of the system itself is usually not fixed; rather its temper-

ature \s held. flxed, thro"ugh interaction with a constant-temperature environment'

Similarly, in måny 
"us"s 

il is not the volume of the system that is fixed but rather

the pressure' Our frrst task' then, is to d'evelop the conceptual tools needed to

understand constant-temperature and constant-pressure processes'

Wrffi
:d by

t49



150 Chapter 5 Flee Energy and Chemical Thermodynamics

the system can extÌact heat from this environnent for free, so all we need to
provide, to create the system fì'om nothing, is any additional tuorÀ needecl. And if
we annihilate the system, we generally can't recover all its energy as work, because
we have to dispose of its entropy by dumping solne heat into the environment.

So I'd lilte to introduce two more useful quautities that are lelated to energy
and analogous to 11. One is the Ffelmholtz fuee energy,

F - tr - TS. (5.2)

This is the total energy needed to cleate the system, minus the heat you can get
for free fi'om an environrnent at temperatur-e ?. This heat is given by TLS:TS,
where ,s is the system's (final) entr-opy; the more entropy a system has, the more of
its energy can enter as heat. Thus F is the energy that must be provided as work,
if you're creating the system out of nothing.* Or if you annihilate the s¡,stem, the
energy that comes out as u'ork is F, since you have to dump some heat, equal to ?,S,
into the environment in order to get rid of the s¡rstem's entropy. The aua,ilable, or
"free," energy is F.

The word "work" in the previous paragraph means øll work, including any
that is done automatically by the system's surroundings. If the system is in an
environment with constant pressure P and constant temperature ?, then the work
Eou need to do to create it, or the work you can recover when you destroy it, is
given by the Gibbs free energy,

G:U-TS+PV. (5.3)

This is just the system's energ)', minus the heat term that's in ,F , plus the atmo-
spheric work term that's in 11 (see Figure 5,1).

TS
G--

{t )

Ir
Figure 5.1' To create a rabbit out of nothing and place it on the table, the
magician need not summon up the entire enthalpy, H : U + pV. Some energy,
equal to TS, can flow in spontaneously as heat; the magician must provide only
the difference, G: H - 75, as work.

*In the context of creating a system, the term free energy is a misnomer. The energy
that comes for free is 7,9, the term we subtracted to get F . In this context, F shouid be
called the costlg energy. The peopie who named F were instead thinking of the reverse
process) where you annihilate the system and recover F as work.

p
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Figure 5.2. To get Il from U or G from F',
add PV; to get F' from (/ or G from Ëf, sub-
tract 7,S.
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_TS
--------..->

+PV
U F

H G

)

)

The four functions U, H, .t', and G are collectively called thermodynamic
potentials. Figure 5.2 shows a diagram that I use to remember the definitions.

Usually, of course, we deal with processes that are much less dramatic than the
creation or annihilation of an entire system. Then instead of F and G themselves,
we want to look at the changes in these quantities.

For any change in the system that takes place at constant temperature ?, the
change in .t. is

A¡': LU -r LS: Q +W -T LS, (5.4)

where Q is the heat added and IrZ is the work done on the system. If no new entropy
is created during the process, then Q :T LS, so the change in f is precisely equal
to the work done on the system. If new entropy as created, then T 4,9 will be
greater than Q, so A.F' will be less than W.In general, therefore,

(5.5)

(5.7)

LF < W at constant ?

This W includes all work done on the system, including any work done automati-
cally by its expanding or collapsing environment.

If the environment is one of constant pressure, and if we're not interested in
keeping track of the work that the environment does automaticall¡ then we should
think about G instead of f'. For any change that takes place at constant T and P,
the change in G is

AG: LU -TLS+pLV:e+W -TLS+pAV. (5.6)

Again, the difference Q -T A^9 is always zero or negative. Meanwhile, W'includes
the work done by the environment, -P AIl, plus any "other" work (such as elec-

trical work) done on the system:

ã W : -P LV *Wot¡u,

This P AIl cancels the one in equation 5.6, leaving

L.G 4 Wo¡¡", &t constant ?, P (5.8)

Because free energy is such a useful quantit¡ values of AG for an enormous
variety of chemical reactions and other processes have been mea^sured and tabulated.
There are many ways to measure AG. The easiest conceptually is to first mea,sure

Aff for the reaction, by measuring the heat absorbed when the reaction takes
place at constant pressure and no "other" work is done. Then calculate 4,9 from

t'
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Nzt3Hz-2NHs,

the entropies of the initiar and finar states of the system, deterrnined separateryfrom heat capacity data as described in sections 3.2 and 3.4. Finaay, compute

AG: AII _ 
"A,S. (5 9)

ounds and solutions (at T : 296 74
ck of this book. you can compute
that ea,ch reactant is converted to

ts are converted into the products.
or G is unambiguous only if we include

e rest energy (mc2) of every particle. In

:1"¿åffiî:ïJî#iï:åï?î,î::,ï.:iî:J_i:;iJî"ffi :.,r"ïi*i:* Hetmhottz free energy, ""j,cilL f..J 
"ru.gy.

Probrem 5'2' consider the production of ammonia from nitrogen and hydrogen,

at 298 K and 1 bar. Fbom the varues of ar{ and ,s taburated at the back of this
H:ltïä:1ïrîG 

ror this 
'"u"tio,' uoa lheck that u i;;;ä wth the varue

Electrolysis, F\rel Cells, and Batteries
As an example of using aG, consider the chemicar reaction

H2o ------+ Hz r loz, (5.10)
the eiectrolvsis of riquid-water into hydrogen and oxygen gas (see Figure 5.3).ffiiîtli"i#:li;Jl oo" -oi" ;í;;ì"', 'o -u "oJ*itñ a more or hvdrogá

ne the change in the system's entropy.
for one mole of each species are

SH,o : T0 J/I<; ,SH, : I37 J/K; So, : 205 J/K. (b.11)
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Figure 5.3. To separate I'ater into h)'drogen and oxygen' iust run an electric

cu.rent thlough it. In this home experiment the electrodes are mechanical pencil

leads (graphite). Bubbles of hydrogen (too small to see) form at the negative

electroãe (left) r,r'hite bubbles of oxygen form at the positi'r'e electrode (right).
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P LV :4 kJ (pushing
atmosphere away)

+

LG :237 kJ
(electrical work)

A[,'= 2lì2 k.l +

System

T,AS:49kJ
(heat)

Figure 5.4. Energy-flor¡'diagram for electrolysis der ideal

.onditior,r, 49 kJ of energy enter as heat (TAS), quired is

only 237 kJ: AG : L'H - TA,S. The difference PLV :
4 kJ, the work done to make room for the gases produced'

Subtra,ct Z0 from (131 + |.ZOS¡ and you get +163 JIK-the system's entropy

increases by this amount. The maximum amount of heat that can enter the system

is therefore f A,9: (298 K)(163 JIK):49kJ. The amount of energy that must

enter as electrical work is the difierence between 49 and 286, that is, 237 kJ'

This number,237 kJ. is the change in the system's Gibbs free energy; it is

the minimum "othel" wolk Iequiled to make the reaction go. To summalize the

computation,
AG:AH-TAS,

237 kJ : 286 kJ - (2e8 K)(163 J/K)
(5.12)

For convenience, standard tables (like the one at the back of this book) generalll'

include aG values, saving you ftom having to do this kind of arithmetic.

L\¡e can also apply AG to the reverse leaction. If you can combine hydrogen

and oxygen gas to produce rvater in a controlled $,'ay, you can! in principle, extract

237 kJ of eiectrical work for every mole of hydrogen consumed. This is the principle(5.11)
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+

Ho+ , ()z

--+ HzO

Figure 5.5. In a hydrogen fuel
cell, hydrogen and oxJ.gen gas
pass through porous electrodes
and react to form watet-, renìo\:-
ing electrons frorn one electrode
and depositing electrons on the
other.

of the fuel cell (see Figure 5.5), a device that might replace the internal combustion
engine in future automobiles.* In the process of producing this electrical work, the
fuel cell will also expel 49 kJ of waste heat, in order to get rid of the excess entropy
that was in the gases. But this waste heat is only lT% of the 2g6 kJ of heat that
would be produced if you burned the hydrogen and tried to run a heat engine fromit. so an ideal h¡'drogen fuel cel has an ,,efficiency', of gBTo, much better than any
practical heat engine. (In practice, the waste heat will be more and the efficiency
Iess, but a typical fuel cell still beats almost any engine.)

A similar analysis can teil you the erectricar energy output of a battery, which
is like a fuel cell b't has a fixed internar suppry of fuer (usuaily not gaseous). For
example, the familiar lead-acid cell used in car batteries runs on the reaction

pb+pbo2 +4H+ +25otr- _ 2pbSO¿ +2H2O. (b.13)

According to thermodynamic tables, aG for this reaction is -394 kJf mor, at stan-
dard pressure, temperature, and concent¡ation of the solution. So the electrical
work produced under these conditions, per mole of metallic lead, is 3g4 kJ. Nrean_
while, afl for this reaction is -316 kJf mol, so the energy that comes out of the
chemicals is actually less than the work done, by zg kJ. ihis extra energy comes
from heat, absorbed from the environment. Along with this heat comes some en_
tropy, but that's fine, since the entropy of the products is greater than the entropy
of the reactants, by (78kJ)lQ\B K) : 260 J/K (per mole). These energy flou,s are
shown in Figure 5.6. when yott charge the battery, the reaction runs in reverse,
taking the system back to its initial state. Then you have to put the 7g kJ of heat
back into the environment, to get rid of the excess entrop;,.

You can also calc'late the uortage of a battery or fuer ce1r, provided that you
know how many electrons it pushes around the circuit for each málecule that reacts.
To determine this number, it helps to rook at the chemistry in more detail. For a

(

*see sivan Kartha and patrick Grimes, ,,Fuel cells: Energy conversion f'or the Next
Century," Physics Today 47,54-61 (November, 19g4).
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-394 kJ
(electrical wolk)

,\f.j': -.316 k.l

-
78 kJ
(heat)

rel
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and A¡' = AG.)

lead-acid cell;the reaction (5'13) takes place in three steps:

in solution: 25024- +2H+ .-'-- 2HSOt;

at - elect'r-od,e: Pb + HSOt ----- PbSO¿ a g+ + 2e-;

at * electrode: PbOz * HSO; + 3H+ |_2e- + PbSO¿ + 2H2O

Thus,tt.oelectronsareptlshedaloundthecircuiteâchtimetheful]reactionoccurs
The electrióal work produced per electron ts

394 kJ :3.27x10-1eJ:2.04eV (5.15)

2 6.02 x 1023

But 1 volt is just the voltage needed to give each electron 1 ev of energy' so the cell

has a 
'oltag 

e of 2.04 V. Ii practice the voltage may be slightly different, because

the concentrations used ur" åiff"r"nt from the Jandard concentration (one mole per

kilogramofwater)assulnedinthermodynamictables'(Bytheway,acarbattery
contains six lead-acid cells' giving a total of about 12 V')

ProblemS'3'UsethedataatthebackofthisbooktoverifirthevaluesolL'H
and AG quote.d above for the lead-acid reaction 5'13'

Problem Ú'4. Ina hydrogen fuel cell' the steps of the chemicai reaction are

at - electrode: Hz * 2OH- ' 2lF'zC) l2e-;

at t electrode: lOz + H2O + 2e- + 2OH-'

Calculatethevoltageoftheceil.Whatistheminimumvoltagerequiredforelec-
trolysis of water? ExPiain brieflY'

Problems.S.Considerafuelcellthatusesmethane(..naturalgas'')asfuel.The
reaction is 

cH¿ -l- 2o2 + 2H2o t coz'

(a)UsethedataatthebackofthisbooktodeterminethevaluesofAl/and
AG for this reaction, for one mr Ie of methane' Assume that the reaction

takes place at room temperature and atmospheric pressure'

(b)Assumingidealperformance,howmuchelectricalworkcanvougetoutof
the cell' for each mole of methal e fuei?

(5.14)
rstion
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(c) Hou' much rÀ¡aste heat is produced, for each rlore of methane fuer?
(d) The steps of this reaction ar.e

at - electr.ode: CH+ + 2H2O _ COz + gH+ + ge-;
at f electrode: 2Oz * BH+ + ge ---- 4HzO.

What is the voltage of the cell?

Problem 5.6' A mrrscÌe can be thought of as a fuel cerl, pr.ocrucing work fro¡r the
metabolism of glucose:

CoHtzOo a 602 
- 

6COz * 6HzO.

(a) Use the data at the back of ues of AI1 and
AG for this reaction, for on at the reaction
takes place at room tempera

(b) \\'hat is the maximum amount of work that a muscre can perform, for each
moÌe of giucose consumed, assuming ideal operation?

(c) still assurning ideal operation, how much heat is absorbed or expelled by
the chemicals during the metaboÌism of a more of grucose? (Be sure to say
¡¡'hich direction the heat flows.)

(d) use the concept of entropy to exprain why the heat flou.s in the directionit does.

(e) Horv would your anslvers to parts (b) and (c) change, if the operation of
the muscle is not ideal?

Thermodynamic Identities
If 1'ou're given the enthalpy or free energ)' of a substance under one set of con-
ditions, but need to know its value under some other conditions, there are some
handv fot-mulas that are often useful. These formulas resemble the thermodynamic
identity,

dU : T dS - p dV -t ¡L,dN, (b.16)

but are written for ,II or F or G insteacl of [/.
I'll start by deriving the formura for the change in H. rf we imagine changing
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H, U, P, and V by infinitesimal amounts, then the definition H : U * PV tells us

that
d,H : d,U + P dV +V dP. (5.17)

The last two terms give the change in the product PV, according to the product

ruie for derivatives. Now use the thermodynamic identity 5.16 to eliminate dU, and

cancel the P clV terms to obtain

d,H:TdS +V dP I ¡-t,dN. (5.18)

This "thermodynamic identity for H" tells you how ff changes as you change the
entrop¡ pressure, andf or number of particles.*

Similar logic can be applied to ,F' or G. Flom the definition of the Helmholtz
free energl' (F : U - 7,9), we have

dF: dU -TdS - SdT (5.1e)

Plugging in equation 5.16 for dU and canceling tlrre T d'S terms gives

d,F : -S dT - P dV + F,dN. (5.20)

I'll caÌl this result the "thermodynamic identity lor F." Flom it one can derive
a variety of formuìas for partial derivatives. For instance, holding V and l/ fixed

'ields 
the identitr' 

,s : - rqr) (5.21)
\ar /r,*'

Similarly, holding ? and either -ô/ or I/ fixed gives

P: _rôP\ / aF\/: -\a, )r,*' tl: (*/r,"

Finall¡', you can derive the thermodynamic identity for G,

d,G: -S d,T +V dP I ¡,t,dN,

and from it the following partial derivative formulas:

(5.22)

(5.23)

's: -(#)""' ': (#),,.' ': (#)'," (624)

These formulas are especiaily useful for computing Gibbs free energies at nonstan-
dard temperatures and pressures. For example, since the volume of a mole of

ron-
)me

,m1C
*Because of the thermodynamic identity for U, it is most natural to think of U as a

function of the variables ,9, V, and N. Similarly, it is most natural to think of -Éf as a

function of S, P, and .fy'. Adding lhe PV term to U is therefore a kind of change of

variables, from V to P. Similarly, subtracting TS changes variables from ^9 
to 7. The

technical name for such a change is Legendre transformation.



158 Chapter 5 Ftee Energy and Chemical Thermodynamics

gaphite is 5.3 x 10-6 m3, its Gibbs free energy increases by b.3 x 10-6 J for each
pascal (N/-') of additional pressure.

In all of these formulas I have implicitly assumed that the system contains only
one type of particles. If it is a mixture of several types, then you need to replace
p dI/ with D pn dNo in every thermodynamic identity. In the partial-derivative
formulas with l/ frxed, all the N's must be held fixed. And each formula with
ô/ô-l/ becomes several formulas; so for a mixture of two types of particres,

/ôG\ /âc\
P' : \'aa¡ /".",r, 

and 
": \*r )r,r,*,' (5'25)

Problem 5.8. Derive the thermodynamic identity for G (equation 5.23), and from
it the three partial derivative relations 5.24.

Problem 5.9. Sketch a qualitatively accurate graph of G vs. T for a pure sub-
stance as it changes from solid to liquid to gas at fixed pressure. Think carefully
about the slope of the graph. Mark the points of the phase transformations and
discuss the features of the graph briefly.

Problem 5,10. Suppose you have a mole of watei. aL 25"C and atmospheric
pressure. Use the data at the back of thìs book to determine what happens to its
Gibbs free energy if you raise the temperature to 30oc. To compensate for this
change, you could increase the pressure on the water. How much pressure would
be required?

Problem 5'11. suppose that a hydrogen fuel cell, as described in the text, is to
be operated at 75"c and atmospheric pressure. we wish to estimate the maximum
electricai work done by the cell, using only the room-temperature data at the back
of this book. It is convenient to first establish a zero-point for each of the three
substances, Hz, Oz, and H2O. Let us take G for both H2 and 02 to be zero at
25oC, so that G for a mole of H2O is -237 kJ at 25oC.

(a) Using these conventions, estimate the Gibbs free energy of a mole of H2 at
75"C. Repeat for 02 and HzO.

(b) using the resujts of part (a), calculate the maximum electrical work done
by the cell at 75"C, for one mole of hydrogen fuel. Compare to the ideal
performance of the cell at 26"C.

Problem 5'12. F\rnctions encountered in physics are generally wel enough be-
haved that their mixed partial derivatives do not depend on which derivative is
taken first. Therefore, for instance,

a /au\ a /õtr\
n\a') : æ\av ),

where each 0l0V is taken with ,9 fixed, each 0lõS is taken with V fixed, and Iy'
is always held fixed. FYom the thermodynamic identity (for u) you can evaluate
the partial derivatives in parentheses to obtain

/ aT\ / aP\
\* ),: -\* )"'

a nontrivial identity called a Maxwell relation. Go through the derivation of
this relation step by step. Then derive an analogous Maxwell relation from each of
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ach

nly

discussed in the text (for H, F,, and G).
; other N{a_xwell ¡elations cøn be derivá

spect to .ò/, but after you,ve done four of
applications of these Maxwell relations,

Problem 5'18' use a Maxwe'reration from the previous probrem and the thirdlaw of the¡modynamics to prove that the theìmd expansion coefficient É (definedin Ploblem 1.2) must be zero at Z: 0.

Problem 5'14' The partiar-derivative relations derived in problems 1.46, 8.83,and 5'12, pius a bit more partial-derivative trickery can be used to derive a com_pletely general relation between C¡, and, Cy 
-^

(a) With rhe he
sider ,g to b m problem 3.38 in mind, first con_jïirä*j '^iff1i., 

"'åiËî,.":j å::,iål":l
(b) To bring in Cp, consider V tobe

terms of partial derivatives in a s
into the result ofpart (a), then se
a nontrivial expression for @S/you now have a formula for the

(c) write the remaining partial derivatives in terms of measurable quantitiesusing a Maxwelr reration and the resurt of problem 1.46. your final resurtshould be

ace

,ive

'ith

25)

Ce: Cv +TVP2
K.I,

(d) cleck that this formura gives the correct varue of cp -cv for an ideal
blÐ.

(e) Use this formula to argue that Cp cannot be less than Cy.(f) use the data in probrem 1.46 to evaruate ce-cvfor water and for mercuryat room temperature. By'r'hat percentageão thå two rr"ui-"ãpi"iti"s differ?(g) Figure 1'14 shows measured values of cp fot three erementar sorids, com-pared to predicted varues of cv. rt turns out that a graph of B vs. ? fora solid has same general appearance as a graph of heat capacity. Use thisfact to explain ú, -Cl "a Cv rgru" ut lowtemperat"r"J ù"t diverge inthe way they do at higher t"mpera"tu.es.
Problem 5 

' 15' The folm¡ra fgr c p - cv derived in the previous problem can arsobe derived starting with the definiiions;f ,ü" quantities in terms of u and fr.Do so' Most of the derivation is very ri-il"r,-uìt at one point you need to use therelation P: -@F/AV)7.
Problem 5'16' A formura anarogous to that for cp- cv rerates the isothermaland isentropic compressibilities oia *utu.iui, 

^

TVß2KT: KS * _",

!n"t", "" .: -(t/v)@"/g?: is rhe reciprocar of the adiabaric burk modurusconsidered in Problem 1.89.) Derive tr,* roiÀ,ri". Arso check that it is true for anideal gas.
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^- I -- L'f'l'l-- lJ-
tlo V'

(a) Imagine making an infinitesimal change in the current in the rn ire, resulting
in infinitesimal changes in B, M, and'11. use Faraday's law to show that
the u'ork required (from the power suppry) to accomplish this change is
lVøtut:V'Ìl dB. (Neglect the resistance of the rn,ire.)

(b) Rewrite the result of part (a) in terms or'11 and, IvI , L]^en subtract off the
work that wouid be required e'en if the specimen were not present. If
we define W,Lhe *ork done on the system,l to be v,.hat,s left, show that
l.l/ : ¡tsjl d.M.

(c) what is the thermodynamic identity for this system? (Inclucle magnetic
work but not mechanical work or particie flow.)

(d) How would you define analogues of the y fbr
a magnetic system? (The Heimholtz fre way
as for a mechanical system.) Derive the each
of these quantities, and discuss their interpretations.

Figure 6,7. 
^ 

long solenoid, surrounding a magnetic specimen, connected
to a power supply that can change the current, performing magnetic work.

*This problem requires some familiarity with the theory of magnetism in matter. See,
for instance, David J. Griffiths, Introduction to Electrodynamics, ìhird edition (prentice-
Hall, Englewood Cliffs, NJ, 1999), Chaprer 6.

lThis is not the only possible definition of the "system " Different definitions are
suitable for different physical situations, unfortunately leading to much confusion in ter-
minoÌogy. For a more complete discussion of the thermocÌynamics of magnetism see l\{ancll
(1988), Carrington (1994), and/or pippard (19b2).
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6.2 Fbee Energy as a Force toward Equilibrium
For an 'isolated system, the entropy tends to increase; the system,s entropy is what
governs the direction of spontaneous change. But what if a system is noú isolated?
Suppose' instead, that our system is in good thermal contact with its environment
(see Figure 5.8). Now energ'y can pass between the system and the environment,
and the thing that tends to increase is not the system's entropy but rather the total
entropy of system plus environment. In this section I'd like to restate this rule in
a more useful form.

I'll assume that the environment acts as a ,,reservoir" of energ¡ large enough
that it can absorb or release unlimited amounts of energy without changing its
temperature. The total entropy of the univetse can be written as 

^g + ^9¿, where
a subscript R indicates a property of the reservoir, while a quantity without a
subscript refers to the system alone. The fundamental rule is that the total entropy
ofthe universe tends to increase, so let's consider a small change in the totaÌ entropy:

dStoøt: d"S * d'Sn. (5.26)

I would like to write this quantity entirely in terms of system variables. To do
so, I'11 apply the thermodynamic identit¡ in the form

-lP
ot : +du + 

rrav 
- fiaw, 6.27)

to the reservoir. First I'll assume that V and .ðy' for the reservoir a,re fixed-only
energy travels in and out of the system. Then d^9¿ : d,(IpfT¡l, so equation 5.26
can be written

dStot,r:d,Sl_|or¡' (b.28)
-LR

But the temperature of the reservoir is the same a^s the temperature of the system,
while the change du¡: in the reservoir's energy is minus the change d,(I in the
system's energy. Therefore,

4s,o,ur : d.s - iou : -|fou -rd,s) : -ior. (5.2s)

Aha! under these conditions (frxed r,v, and,l[), an increase in the total entropy
of the universe is the same thing as a decrease in the Helmholtz free energy of the

Figure 5.8. For a system that can exchange
energy with its environment, the total en-
tropy of both tends to increase.

Environment (resewoir)
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system. So we can forget about the reservoir, and just remember that the system
will do whatever it can to rninirn'ize its Helmholtz free energy. By the way, we could
have guessed this result from equation 5.5, A-t' < W. If no work is done on the
system, f' can only decrease.

If instead we let the volume of the system change but keep it at the same
constant pressure as the reservoir, then the same line of reasoning gives

ds,o,.r : ds - í0, - lo, : -|ø, - rd.s + pd,v): -*or, (5.30)

so it is the Gibbs free energy that tends to decrease. Again, we could have guessed
this from equation 5.8, AG ( Iz7oth"..

Let me summarize these points, just for emphasis:

¡ At constant energy and volume, S tends to increase.

o At constant temperature and volume, F tends to decrease.

o At constant temperature and pressure, G tends to decrease.

AII three statements assume that no particles are allowed to enter or leave the
system (but see Problem 5.23).

We can understand these tendencies intuitively by looking again at the defini-
tions of the Helmhohz and Gibbs free energies. Recall that

F:U-TS (5.31)

So in a constant-temperature environment, saying that f' tends to decrease is the
same as saying that U tends to decrease while ,S tends to increase. Well, we already
know that ,9 tends to increase. But does a system's energy tend to spontaneously
decrease? Your intuition probably says yes, and this is correct, but only because
when the system loses energy, its environment gains that energy, and therefore the
entropy of the environment increases. At low temperature, this effect tends to be
more important, since the entropy transferred to the environment for a given energ'y
transfer is iarge, proportional to rlT. But at high temperature, the environment
doesn't gain as much entropy, so the entropy of the system becomes more important
in determining the behavior of I'.

Similar considerations apply to the Gibbs free energy,

G:U+PV-TS (5.32)

Now, however, the entropy of the environment can increase in two ways: It can
acquire energJ¡ from the system, or it can acquire volume from the system. So
the system's U and V "waÍtt" to decrease, while ,9 "wants" to increase, all in the
interest of maximizing the total entropy of the universe.

Problem 5.18. Imagine that you drop a brick on the ground and it lands with
a thud. Apparently the energy of this system tends to spontaneously decrease.
Explain why.
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Problem 5.19. In the previous section I derived the formula (ïF/AV)7: _p.
Explain why this formura makes intuitive seïìse) by discussing graphs of -F. vs. r/
with different slopes.

Problem 5.20. The first excited energy rever of a hydrogen atom has an energy of
10.2 ev' if we take the ground-state energy to be zàro. i{o*"rru., the first excited
level is really four independent states, ail with the same energy. 

'w" 
"u., 

therefore
assign it an entropy of S : fr1n4, since for this given valtä'of the energy, themultiplicity is 4. Question: For what temperatures is the Helmho Itz ihee energy ofa hydrogen atom in th" tl:l excited rever positive, and for what temperatures isit negative? (comment: when F for the revel is negative, the atom wil sponta-
neously go from the ground state into that rever, since ¡.:0 for the ground state
and F always tends to decrease. However, for a system this sma[, the conclusion
is only a probabiiistic statement; random fluctuations wilr be very significant.)

Extensive and Intensive euantities
The number of potentially interesting thermodynamic variables has been growing
lateiy. We now have fI, V, N, S, T, p, þ, H, F,and G, among others. O;" *.y
to organize all these quantities is to pick out the ones that double if you simpty
double the amount of stuff, adding the new alongside what you had originally G";Figure 5.9). under this h¡'pothetical operation) you end up with twice the 

"rru.gyand twice the volume, but not twice the temperature. Those quantities that do
double are called extensive quantities. Those quantities that are unchanged,
when the amount of stuff doubles are called intensive quantities. Here,s a list,
divided according to this classification:

163

v, N, s, u, H, F, G, mass

T, P, þ, density

If you multiply an extensive quantity by an intensive quantity, you end up with
an extensive quantity; for example, volume x density: mass. By the sameìoken,
if you divide one extensive quantity by another, you get an intensive quantity. If
you multiply two extensive quantities together, you get something that is ne,ither;if you're confronted with such a product in one of your calculations, there,s a
good chance you did something wrong. Adding two quantities of the same type

Extensive

Intensive
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V,U, S, P,T 2V,2(J,25, P,T
Figure 5.9. Two rabbits have twice as much volume, energy, and entropy as one
rabbit, but not twice as much pressure or temperature.
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yields another quantity of that type; for instance, H : U + PV. Adding an
extensive quantity to an intensive one isn't allowed at all, so (for instance) you'll
never encounter the sum G + p, even though G ald p have the same units. Thele's
nothing wrong with exponentiating an extensive quantity, however; then you get a
quantity that is multipl'icat'iue, like 0 : es/k.

It's a good exercise to go back over the various equations involving F and G
and show that they make sense in terms of extensiveness and intensiveness. For
instance, in the thermodynamic identity for G,

dG: -S dT +V dP +D.þ¡dN¡, (5.33)

each term is extensive, because each product ln rjlrr", one extensive and one inten-
sive quantity.

Problem 5.21. Is heat capacity (C) extensive or intensive? What about specific
heat (c)? Explain briefly.

Gibbs Flee Energy and Chemical Potential
Using the idea of extensive and intensive quantities, .we can now derive another
useful relation involving the Gibbs free energy. First recall the partial-derivative
relation

/ aG',: (ffi),,, (5 34)

This equation says that if you add one particle to a system, holding the temper-
ature and pressure fixed, the Gibbs free energy of the system increases by ¡; (see

Figure 5. 10) . If you keep adding more particles, each one again adds ¡-r to the Gibbs
free energy. Now you might think that during this procedure the value of ¡; could
gradually change, so that by the time you've doubled the number of particies, ¡-i has
a very different value from when you started. But in fact, if T and P are held fixed,
this can't happen: Each additional particle must add exactly tlte same amount
to G, because G is an extensive quantity that must simpl¡' grow in proportion to
the. number of particles. The constant of proportionality, according to equation
5.34, is simply ¡^r.:

G: Np^ (5.35)

This amazingÌy simple equation gives us a new interpretation of the chemicai po-
tential, at least for a pure system with onl¡' one type of particle: ¿l is just the Gibbs
free energy per particle.

Figure 5.10. When you add a particle
to a system, holding the temper-ature and
pressure fixed, the system's Gibbs free
energy increases by ¡r.
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The preceding axgument is subtle, so piease think it through carefully. perhaps
the best way to understand it is to think about rvhy the same logic can,t be applied
to the Helmholtz free energy, starting with the true relation

ôF
¡i¡

(5.36)
T,V

The problern here is that to increase F b¡' ¿¡ arrount p.t yoLt ha¡.,e to add a particle
whiÌe holding the temperature a:nd uolume fixed.. Now, a^s you add more and more
particles, ¡t does gradually change, because the system is becoming more d,ense. It,s
true that F is al extensive quantity, but this does not impl¡, ¡þ¿¡ F doubles when
you double the density' of the system, holding its volume fixed. In the previous
paragraph it was crucial that the two variables being held fixed in equation 5.J4, T
and P, were both intensive, so that all extensive quantities could grow in proportion
to l/.

For a system containing more than one type of particle, equation 5.35 generalizes
in a natural u'ay:

G: NtÆ* Nzttz+.. ': D*orn. (b.sz)

The proof is the same as before, except that we irnugi" building up the system in in-
finitesimal increments keeping the proportions of the various species fixed through-
out the process. This result does not impl¡ however, that G for a mixture is simply
equal to the sum of the G's for the pure components. The p's in equation b.37 are
generally di'fferent from their values for the corresponding pure substances.

As a first appìication of equation 5.35, let me now derive a very generai formula
for the chemical potential of an ideai gas. Consider a flxed amount of gas at a fixed
temperature, as ln'e vary the pressure. By equations 5.3b and 5.24,

ðP NAP ¡T
(5.38)

But by the ideal gas law this quantity is just k:rlP. Integrating both sides from
Po ltp to P therefore gives

p,(r, P) - þ(7, P") : kTln(PlP"). (b.sg)

Here Po can be any convenient reference pressure. usually we take Po to be
atmospheric pressure (1 bar, to be precise). The standard symbol for p for a gas
at atmospheric pressure is po, so we can write

p(]:,P): p"(r) + kTtn(PlP"). (5.40)

Values of p' (at least at room temperature) can be gotten from tables of Gibbs free
energies (tt:GlN).Equation 5.40 then tells you how ¡-r, varies as the pressure (or
equi'r'alently, the density) changes. And in a mixture of ideal gases, equation b.40
applies to each species separatel¡ if you take P to be the pørtial pressure of that
species. This ¡n'orks because ideal gases are mostly empty space: How an ideal gas

u exchanges particles with its environment isn't going to be afiected by the presence
of another ideal gas.
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Prot¡Iem 5.22. sho¡n, that eqr-ration 5.40 is in agreement u'ith the explicit formula

for the chemical potential of a monatomic ideal g s derivecl in Section 3'5 show

how to calculate po for a monatomic ideal gas'

Problern 5.23. By subtracting ply' from (J , H , F ' or G' one can obta'in four new

thermodynamic poientials. Of the four, the most useful is the grand free energy

(or grand potential),
@:U-TS-¡1"N.

(a) Derive the thermodynamic identity for Õ, d the related formulas for the

paltial derivatives of Q with respect to T, V, and ¡'r''

(b)Provethat,forasysteminthermalanddifiusiveequilibrium(withareser-
voirthatculrsupplybothenergyandparticles)'Þtendstodecrease'

(c) Prove that Õ : -PV'
(d)Asasimpleapplication'letthesystembeasingleproton,¡¡'hichcanbe

,,occupieã', either by a single electron (making a hydrogen atom, with en-

".8y-13.6eV)orbynone(withenergyzero).Neglecttheexcitedstatesof the atom and the trvo spin states of the electron, so that both the oc-

cupiedandunoccupiedstatesoftheprotonhavezeroentropy.Suppose
that this proton is in the atmosphere of the sun, a reservoir r¡'ith a tem-

perature of b800 K and an el""iro.r concentration of about 2 x 1019 per

cubic meter. Calculate Õ for both the occupied and unoccupied states' to

determine which ís more stable under these conditions. To compute the

chemicalp.tentialoftheelectrons,treatthemasanidealgas.Atabout
what tern,erature would the occupied and unoccupied states be equally

stable, for this value of the electron concentration? (As in Problem 5'20,

thepredictionforsuchasmallsystemisonlyaprobabilisticone.)

5.3 Phase Tbansformations of Pure Substances
,^r.rioq of a, sub-



4O4 Reference Data

Thermodynamic Properties of Selected Substances

All of the values in this table are for one mole of material at 298 K and 1 bar' Following

the chemical formula is the form of the substance, either solid (s), liquid (l), gas (g), or

aqueous solution (aq). When there is more than one common solid form' the mineral

name or crystal structure is indicated. Data for aqueous solutions are at a standard

concentration of 1 mole per kilogram water. The enthalpy and Gibbs free energy of

formation, A¡I1 and A¡G, represent the changes in I1 and G upon forming one mole of

the material starting u'ith elements in their most stable pure states (".g., C (graphite),

Oz (S), etc.). To obtain the value of AIl or AG for another reaction, subtract A¡ of the

reactants from A¡ of the products. For ions in solution there is an ambiguity in dividing
thermodynamic quantities between the positìve and negative ions; by convention, H+ is

assigned the value zero and all others are chosen to be consistent .,r'ith this value. Data

from Atkins (1998), Lide (1994), and Anderson (1996). Please note that, while these data
are sufficiently accurate and consistent for the examples and problems in this textbook.

not all of the digits shown are necessarily significant; for research purposes you should

always consult original literature to determine experimental uncertainties.

Substance (form) Al¡r (kJ) A/G (kJ) S (JIK) Cp QIK) V (cm3)

Al (s)
Al2SiO5 (kyanite)
AlzSiOs (andalusite)
AlzSiOs (sillimanite)

A' (e)

C (graphite)
C (diamond)
CH¿ (e)

CzHo (e)
csHa (e)

C2H5oH (l)
C6H1206 (glucose)

co (e)
coz (e)
H2CO3 (aq)
HCof (aq)

Ca2+ (aq)
CaCO3 (calcite)
CaCO3 (aragonite)
CaCl2 (s)

Ctz (e)
Ci- (aq)

Cu (s)

Fe (s)

0

-2594.29
-2590.27
-2587,76

0

0

-2443.88
-2442.66
-2440.99

0

2.900

-50,72
-32.82
-23.49

-r74.78
-910

-r37.t7
-394.36
-623.08
-586.77

-553.58
-1128.8
-rL27.8
-748.L

0

-L3L23

28.33
83.81
93.22
96.11

5.74
2.38

186.26
229.60
269,9L

160.7
212

t97.67
21.3.74

r87.4
97.2

223.07
56.5

24.35
72L7t
r22.72
I24.62

9.99
44.09
51.53
49.90

0 154.84 20.79

0

1.895

-74,81
-84.68

-103.85
-277.69

-1273
- 110.53

-393.51
-699.65
-691.99

8.53
6.11

35.31

52.63
73.5

trr.46
115

29,!4
37.tr

5.30
3.42

33.91

-136.4

25.10

58.4

36.93
34. r5

51.6

1a a

7.tl

-542.83
-1206.9
-t207.t
-795.8

0

-t67.16

-53.1
92.9
88.7

r04.6

81.88
8r.25
72.59

0

0

0 33.150 24,44

0 27.28
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Substance (form) a/fr (kJ) ajc (kJ) s (J/K) Cp (JlK) tz (cm3)
)wrng

I), or
ineral
rdard
gv of
ole of
hite),
rf the
riding
H+ is

Data
r data
book.
hould

Hz (g)
tl (s)
H+ (uq)
Hzo 0)
Hzo (s)

H" (e)

He (l)

Nz (e)
NHg (e)

Na+ (aq)
NaCl (s)
NaAlSi303 (atbite)
NaAlSi206 (jadeite)

N" (e)

oz (e)
oz (aq)
oH- (aq)

Pb (s)
PbO2 (s)
PbSOa (s)

sol- (aq)
ttson (aq)

SiO2 (c quartz)
HaSiOa (aq)

191.61
192.45

28.82
20.78

0
76.29
33.58

20.79

27.98

29.r2
35.06

0

-46.11

-240.t2
-411.15
-3935.1
-3030.9

0
217.97

0

-285.83
-247.82

0

203.25
0

-237.t3
-228.57

0

-16.45

-26L9t
-384.14
-3711.5
-2852.1

0

t6.4

-167.24

0

-2t7.33
-813.0

-744.53
-755.91

-856.64
-1307.67

130.68
7t4.7L

0

69.91
188.83

0 126.15

0 76.02

18.068

14.81

_t.2
27.OL

100.07
60.40

18.3

22.69

0

0

I
I
I
3

0

0 0 146.33 20.79

205.r4
110.9

-L0.75

29.38

-148.5

59.0
72.t3

207.40
133.5

64.81
68.6

148.5

20.t
131.8

46.4
50.50

205.10
160.0

0

-17.7
-229.99

0

-277.4
-920.0

-909.27
-887.34

-9L0.94
-t449.36

4L.84
21.5.r3

26.44
64.64
103.2

-293
-84

44.43
468.98

4

0
2

,3
Lb

.6

12

11


