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2 General Principles of Classical Thermodynamics

INTRODUCTION

The Nature of Thermodynamics and the Basis of ThermoStatistics

Whether we are physicists, chemists, biologists, or engineers, our primary
interface with nature is through the properties of macroscopic matter.
Those properties are subject to universal regularities and to stringent
limitations. Subtle relationships exist among apparently unconnected
properties.

The existence of such an underlying order has far reaching implications.
Physicists and chemists familiar with that order need not confront each
new material as a virgin pu;zzle. Engineers are able to anticipate limita-
tions to device designs predicated on creatively imagined (but yet undis-
covered) materials with the requisite properties. And the specific form of
the underlying order provides incisive clues to the structure of fundamen-
tal physical theory.

Certain primal concepts of thermodynamics are intuitively familiar. A
metallic block released from rest near the rim of a smoothly polished
metallic bowl oscillates within the bowl, approximately conserving the
sum of potential and kinetic energies. But the block eventually comes to
rest at the bottom of the bowl. Although the mechanical energy appears to
have vanished, an observable effect is wrought upon the material of the
bowl and block; they are very slightly, but perceptibly, "warmer." Even
before studying thermodynamics, we are qualitatively aware that
the mechanical energy has merely been converted to another form, that
the fundamental principle of energy conservation is preserved, and
that the physiological sensation of "warmth" is associated with the
thermodynamic concept of " temperature."

Vague and undefined as these observations may be, they nevertheless
reveal a notable dissimilarity between thermodynamics and the other
branches of classical science. Two prototypes of the classical scientific
paradigm are mechanics and electromagnetic theory. The former ad-
dresses itself to the dynamics of particles acted upon by forces, the latter
to the dynamics of the fields that mediate those forces. In each of these
cases a new "law" is formulated-for mechanics it is Newton's Law (or
Lagrange or Hamilton's more sophisticated variants); for electromag-
netism it is the Maxwell equations. In either case it remains only to
explicate the consequences of the law.

Thermodynamics is quite different. It neither claims a unique domain of
systems over which it asserts primacy, nor does it introduce a new
fundamental law analogous to Newton's or Maxwell's equations. In
contrast to the specificity of mechanics and electromagnetism, the hall-
mark of thermodynamics is generality. Generality flrst in the sense that
thermodynamics applies to all types of systems in macroscopic aggrega-
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Introduction

tion, and second in the sense that thermodynamics does not predict
rpecific numerical values for observable quantities. Instead, thennody-
naqtg.s-sets limits (inequalities) on permissible physical processes, andit

tablishes relationships among apparently unrelated properties.
The contrast between thermodvnamics enrl itc m'nre-o'rcontrast between thermodynamics and its counterpart sciences

r:aises fundamental questions which we shall address directly only in the
final chapter. There we shalt see that whereas thermodynimici is not

on a new and particular law of nature, it instead reflects a
ommonality or universal feature of all laws. In brief, thermodynamics is
the study of the restrictions on the possible properties of matter ihat fottow

the symme.try properties oJ the fundamental laws of physics.
The connection between the symmetry of fundamentil la*s and the

properties of matter is not trivially evident, and we do not
to derive the latter from the former. Instead we follow the

stulatory formulation of thermodynamics developed in the first edition
this text, returning to an interpretive discussion of symmetry origins in

fier 27. Bur everr the preliminary assertion of this basis of thermodv-
ics may help to prepare the reader for the somewhat uncommon forin

thermodynamic theory. Thermodynamics inherits its universality, it
tmetric nature, and its emphasis on relationships from its symmetry

tage.



THE PROBLEM AND THE POSTULATES

I-I THE TEMPORAL NATURE OF
MACROSCOPIC MEASUREMENTS

Perhaps the most striking feature of macroscopic matter is the incredi-
ble simplicity with which it can be characterized. we go to a pharmacy
and request one liter of ethyl alcohol, and that meager specification il
pragmatically sufficient. Yet from the atomistic point of view, we have
specified remarkably little. A complete mathematical characterization of
the system would entail the specification of coordinates and momenta for
each molecule in the sample, plus sundry additional variables descriptive
of the internal state of each molecule-altogether at least 1023 numbers to

Like all sciences, thermodynamics is a description of the results to be
obtained in particular types of measurements. The character of the
contemplated measurements dictates the appropriate descriptive variables ;
these variables, in turn, ordain the scope and structure of thermodynamic
theory.

The key to the simplicity of macroscopic description, and the criterion
for the choice of thermodynamic coordinates, lies in two attributes of
macroscopic measurement. Macroscopic measurements are extremely slow
on the atomic scale of time, and they are extremely coarse on the atomic
scale of distance.

While a macroscopic measurement is being made, the atoms of a system
go through extremely rapid and complex motions. To measure the length
of a bar of metal we might choose to calibrate it in terms of the
wavelength of yellow light, devising some arrangement whereby reflection
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from the end of the bar produces interference fringes. These fringes are
then to be photographed and counted. The duration of the measurement
is determined by the shutter speed of the camera-typically on the order
of one hundredth of a second. But the characteristic period of vibration of
the atoms at the end of the bar is on the order of 10-15 seconds!

A macroscopic observation cannot respond to those myriads of atomic
coordinates which vary in time with typical atomic periods. Only those few
particular combinations of atomic coordinates that are essentially time
independent are macroscopically obseruable.

The word essentially is an important qualification. In fact we are able to
observe macroscopic processes that are almost, but not quite, time inde-
pendent. With modest difficulty we might observe processes with time
scales on the order of 10-i s or less. Such observable processes are still
enormously slow relative to the atomic scale of 10-rs s. it is rational then
to first consider the limiting case and to erect a theory of time-indepen-
dent phenomena. Such a theory is thermodynamics.

By definition, suggested by the nature of macroscopic obseruations, ther-
modynamics describes only static states of macroscopic systems.

Of all the 1023 atomic coordinates, or combinations thereof, only a few
are time independent.

Quantities subject to conservation principles are the most obvious
candidates as time-independent thermodynamic coordinates: the energy,
each component of the total momentum, and each component of the total
angular momentum of the system. But there are other time-independent
thermodynamic coordinates, which we shall enumerate after exploring the
spatial nature of macroscopic measurement.

I.2 THE SPATIAL NATURE OF'
MACROSCOPIC MEASUREMENTS

Macroscopic measurements are not only extremely slow on the atomic
scale of time, but they are correspondingly coarse on the atomic scale of
distance. We probe our system always with "blunt instruments." Thus an
optical observation has a resolving power defined by the wavelength of
light, which is on the order of 1000 interatomic distances. The smallest
resolvable volume contains approximately 10e atoms! Macroscopic ob-
seruations sense only coarse spatial auerages of atomic coordinates.

The two types of averaging implicit in macroscopic observations to-
gether effect the enormous reduction in the number of pertinent variables,
from the initial 1023 atomic coordinates to the remarkably small number
of thermodynamic coordinates. The manner of reduction can be il-
lustrated schematically by considering a simple model system, as shown in
Fig. 1.1. The model system consists not of 1023 atoms, but of only 9.
These atoms are spaced along a one-dimensional line, are constrained to
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The Spatial Nature of Macroscopic Measurements
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FIGURE 11

Three normal modes of oscillation in a nine-atom model system. The wave lengths of the
tbree modes are four, eight and sixteen interatomic distances. The dotted curves are a
transverse representation of the longitudinal displacements.

move only along that line, and interact by linear forces (as if connected by
springs).

The motions of the individual atoms are strongly coupled, so the atoms
tend to move in organized patterns called normal modes. Three such
normal modes of motion are indicated schematically in Fig. 1.1. The
rrrows indicate the displacements of the atoms at a particular moment;
the atoms oscillate back and forth, and half a cycle later all the arrows
would be reversed.

Rather than describe the atomic state of the system by specifying the
position of each atom, it is more convenient (and mathematically equiv-
dent) to specify the instantaneous amplitude of each normal mode. These
enplitudes are called normal coordinates, and the number of normal
ooordinates is exactly equal to the number of atomic coordinates.

In a "macroscopic" system composed of only nine atoms there is no
precise distinction between "macroscopic" and "atomic" observations.
For the purpose of illustration, however, we think of a macroscopic
observation as a kind of "blurred" observation with low resolving power;
the spatial coarseness of macroscopic measurements is qualitatively analo-
gous to visual observation of the system through spectacles that are
somewhat out of focus. Under such observation the fine structure of the
rrrst two modes in Fig. 1.1 is unresolvable, and these modes are rendered
unobservable and macroscopically irrelevant. The third mode, however,
orresponds to a relatively homogeneous net expansion (or contraction) of
the whole system. Unlike the first two modes, it is easily observable
rhrough "blurring spectacles." The amplitude of this mode describes the
length (or volume, in three dimensions) of the system. The length (or
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uolume) remains as a thermodynamic uariable, uridestroyed by the spatial
aueraging, because of its spatially homogeneous (longwauelength) structure.

The time averaging associated with macroscopic measurements aug-
ments these considerations. Each of the normal modes of the system has a
characteristic frequency, the frequency being smaller for modes of longer
wavelength. The frequency of the third normal mode in Fig. 1.1 is the
lowest of those shown, and if we were to consider systems with very large
numbers of atoms, the frequency of the longest wavelength mode would
approach zero (for reasons to be explored more fully in Chapter 21). Thus
all the short wavelength modes are lost in the time averaging, but the long
wauelength mode corresponding to the "uolume" is so slow that it suruiues
the time aueraging as well as the spatial aueraging.

This simple example illustrates a very general result. Of the enormous
number of atomic coordinates, a very few, with unique symmetry proper-
ties, survive the statistical averaging associated with a transition to a
macroscopic description. Certain of these surviving coordinates ilre me-
chanical in nature-they are volume, parameters descriptive of the shape
(components of elastic strain), and the like. Other surviving coordinates
are electrical in nature-they are electric dipole moments, magnetic dipole
moments, various multipole moments, and the llke. The study of mechanics
(including elasticity) is the study of one set of suruiuing coordinates. The
subject of electricity (including electrostatics, magnetostatics, and ferromag-
netism) is the study of another set of suruiuing coordinates.

Thermodynamics, in contrast, is concerned with the macroscopic conse-
quences of the myriads of atomic coordinates that, by uirtue of the coarseness
of macroscopic obseruations, do not appear explicitly in a macroscopic
description of a system.

Among the many consequences of the "hidden" atomic modes of
motion, the most evident is the ability of these modes to act as a
repository for energy. Energy transferred via a "mechanical mode" (i.e.,
one associated with a mechanical macroscopic coordinate) is called me-
chanical work. Energy transferred via an "electrical mode" is called electri-
cal work. Mechanical work is typified by the term - P dV (P is pressure,
Z is volume), and electrical work is typified by the term -E"dg (8" is
electric fi,eld, I is electric dipole moment). These energy terms and
various other mechanical and electrical work terms are treated fully in the
standard mechanics and electricity references. But it is equally possible to
transfer energy via the hidden atomic modes of motion as well as via those that
happen to be macroscopical$ observable. An energy transfer via the hidden
atomic modes is called heat. Of course this descriptive characterization of
heat is not a sufficient basis for the formal development of thermody-
namics, and we shall soon formulate an appropriate operational defini-
tion.

With this contextual perspective we proceed to certain definitions and
conventions needed for the theoretical development.
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The Composition of Thermodynamic Systems

I.3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS

Thermodynamics is a subject of great generality, applicable to systems
of elaborate structure with all manner of complex mechanical, electrical,
end thermal properties. We wish to focus our chief attention on the
Oermal properties. Therefore it is convenient to idealize and simplify the
nechanical and electrical properties of the systems that we shall study

tially. Similarly, in mechanics we consider uncharged and unpolarized
ms; whereas in electricity we consider systems with no elastic com-
ibility or other mechanical attributes. The generality of eithnr subject

not essentially reduced by this idealization, and after the separate
tent of each subject has been studied it is a simple matter to combine
theories to treat systems of simultaneously complicated electrical and
hanical properties. Similarly, in our study of thermodynamics we
ize our systems so that their mechanical and electrical properties are

trivially simple. When the essential content of thermodynamics has
been developed, it again is a simple matter to extend the analysis to

with relatively complex mechanical and electrical structure. The
ial point to be stressed is that the restrictions on the types of

considered in the following several chapters are not basic limita-
on the generality of thermodynamic theory but are adopted merely

simplicity of exposition.
We (temporarily) restrict our attention to simple systems, defined as

that are macroscopically homogeneous) isotropic, and uncharged,
are large enough so that surface effects can be neglected, and that are

acted on by electric, magnetic, or grauitational fields.
For such a simple system there are no macroscopic electric coordinates

tsoever. The system is uncharged and has neither electric nor magnetic
quadrupole, or higher-order moments. A11 elastic shear compo-

and other such mechanical parameters are zero. The volume Z does
in as a relevant mechanical parameter. Furthermore, a simple system
a definite chemical composition which must be described by an

riate set of parameters. One reasonable set of composition parame-
is the numbers of molecules in each of the chemically pure compo-

of which the system is a mixture. Alternatively, to obtain numbers
more convenient size, we adopt the mole numbers, defined as the actual

rer of each type of molecule divided by Avogadro's number (Ne :
17  x  1023) .

This definition of the mole number refers explicitly to the "number of
les," and it therefore lies outside the boundary of purely macro-

ic physics. An equivalent definition which avoids the reference to
les simply designates 12 grams as the molar mass of the isotope

. The molar masses of other isotopes are then defined to stand in the
ratio as the conventional "atomic masses," a partial list of which is

n in Table 1.1.
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TABLE 1.1
Atomic Masses (g) of Some Naturally
Occuning Elements (Mixtures of Isotopes)o

H 1.0080 F

Li 6.941 Na

c L2.Ot1 Al

N 14.0067 S

o L5.9994 Cl

18.9984

22.9898

26.9815

32.06

35.453

;fiil:H'"t*?#i*;:-"""ar 
Union or Pure and

If a system is a mixture of r chemical components, the r ratios
No/(D',:rN,) (k : 1,2,. . ., r) are called the mole fractions. The sum of all
r mole fraitions is unity. The quantity V/(Lir_tNr) is called the molar
uolume.

then just twice the value of the volume for a single subsystem. Similarly,
each of the mole numbers of the composite system is twice that for a
single subsystem. Parameters that have values in a composite system equal
to the sum of the values in each of the subsystems are called extensiue
parameters. Extensive parameters play a key role throughout thermody-
namic theory.

PROBLEMS

1.3-1. One tenth of a kilogram of NaCl and 0.15 kg of sugar (CrrHrrOrr) are
dissolved in 0.50 kg of pure water. The volume of the resultant thermodynamic
system is 0.55 x l0-3 m3. what are the mole numbers of the three components of
the system? What are the mole fractions? What is the molar volume of the
system? It is sufficient to carry the calculations only to two significant figures.

Answer: ,.
Mole fraction of NaCl : 0.057;

molar volume : 18 x 10-6m3/mole.

1.3-2. Naturally occurring boron has an atomic mass of 10.811 g. It is a mixture
of the isotopes r0B with an atomic mass of 10.0129 g and llB with an atomic mass
of 11.0093 g. What is the mole fraction of r0B in the mixture?
f3-3. Twenty cubic centimeters each of ethyl alcohol (CrHrOH; density :0.79
g/cm3), methyl alcohol (CHTOH; density: 0.8f e)"irfi, and water (HzO;

l3-z
Perc
lvtst
0.3?

Lt-l
I
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The Internal Energt I1

y : I g/crrt) are mixed together. What are the mole numbers and mole
of the three components of the system?

Answer:
mole fractions : 0.17, 0.26,0.57

A 0.01 kg sample is composed of 50 molecular percent H2, 30 molecular
nt HD (hydrogen deuteride), and20 molecular percent Dr. What additional
of D, must be added if the mole fraction of D, in the final mixture is to be

A sdution of sugar (Cr2H22Or1) in water Is 20% sugar by weight. What is
mole fraction of sugar in the solution?

An aqueous solution of an unidentified solute has a total mass of 0.1029
The mole fraction of the solute is 0.1. The solurion is diluted with 0.036 kg of

, after which the mole fraction of the solute is 0.07. What would be a
able guess as to the chemical identity of the solute?

7. One tenth of a kg of an aqueous solution of HCI is poured into 0.2 kg of an
solution of NaOH. The mole fraction of the HCI solution was 0.1,

that of the NaOH solution was 0.25. What are the mole fractions of each
the components in the solution after the chemical reaction has come to
rpletion?

Answer:
xHro : Naro/N: 0.84

THE INTERNAL ENERGY

The development of the principle of conservation of energy has been
B of the most significant achievements in the evolution of physics. The
sent form of the principle was not discovered in one magnificent stroke
insight but was slowly and laboriously developed over two and a half

vitational field. As additional types of systems were considered the
form of the conservation principle repeatedly failed, but in

case it was found possible to revive it by the addition of a new
ical term-a "new kind of energy." Thus consideration of

systems necessitated the addition of the Coulomb interaction
(QrQz/r) and eventually of the energy of the electromagnetic field.

ries. The first recognition of a conservation principle, by Leibniz in
referred orrly to the sum of the kinetic energy (L*r,) and the,.-

tial energy (mgh) of a simple mechanical mass point in the terrestrial

1905 Einsteirr extended the principle to the relativistic region, adding
h terms as the relativistic rest-mass energy. In the 1930s Enrico Fermi
rtulated the existence of a new particle called ihe neutrino solely for the
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purpose of retaining the energy conservation principle in nuclear reac-
tions. The principle of energy conservation is now seen as a reflection of
the (presumed) fact that the fundamental laws of physics are the same
today as they were eons ago, or as they will be in the remote future; the
laws of physics are unaltered by a shift in the scale of time (r -, t +
constant). Of this basis for energy conservation we shall have more to say
in Chapter 21. Now we simply note that the energy conservation principle
is one of the most fundamental, general, and significant principles of
physical theory.

Viewing a macroscopic system as an agglomerate of an enormous
number of electrons and nuclei, interacting with complex but definite
forces to which the energy conservation principle applies, we conclude
that macroscopic systems haue definite and precise energies, subject to a
definite conseruation principle. That is, we now accept the existence of a
well-defined energy of a thermodynamic system as a macroscopic mani-
festation of a conservation law, highly developed, tested to an extreme
precision, and apparently of complete generality at the atomic level.

The foregoing justification of the existence of a thermodynamic energy
function is quite different from the historical thermodynamic method.
Because thermodynamics was developed largely before the atomic hy-
pothesis was accepted, the existence of a conservative macroscopic energy
function had to be demonstrated by purely macroscopic means. A signifi-
cant step in that direction was taken by Count Rumford in 1798 as he
observed certain thermal effects associated with the boring of brass
cannons. Sir Humphry Davy, Sadi Carnot, Robert Mayer, and, finally
(between 1840 and 1850), James Joule carried Rumford's initial efforts to
their logical fruition. The history of the concept of heat as a form of
energy transfer is unsurpassed as a case study in the tortuous development
of scientific theory, as an illustration of the almost insuperable inertia
presented by accepted physical doctrine, and as a superb tale of human
ingenuity applied to a subtle and abstract problem. The interested reader
is referred to The Early Deuelopment of the Concepts of Temperature and
Heat by D. Roller (Harvard University Press, 1950) or to any standard
work on the history of physics. !., l

Although we shall not have recourse explicitly to the experiments of
Rumford and Joule in order to justify our postulate of the existence of an
energy function, we make reference to them in Section 1.7 in our discus-
sion of the measurability of the thermodynamic energy.

Only differences of energy, rather than absolute values of the energy,
have physical significance, either at the atomic level or in macroscopic
systems. It is conventional therefore to adopt some particular state of a
system as a fiducial state, the. energy of which is arbitrarily taken as zero.
The energy of a system in any other state, relative to the energy of the
system in the fiducial state, is then called the thermodynamic internal
energl of the system in that state and is denoted by the symbol U. Like
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uolume and the mole numbers, the internal energ/ is an extensiue

THERMODYNAMIC EQUILIBRIUM

Macroscopic systems often exhibit some "memory" of their recent
rtory. A stirred cup of tea continues to swirl within the cup. Cold-worked

maintains an enhanced hardness imparted by its mechanical treat-
But memory eventually fades. Turbulences damp out, internal
yield to plastic flow, concentration inhomogeneities diffuse to
ity. Systems tend to subside to very simple states, independent of

eir specific history.
In some cases the evolution toward simplicity is rapid; in other cases it

proceed with glacial slowness. But in all systems there is a tendency to
toward states in which the properties are determined by intrinsic
and not by preuiously applied external influences. Such simple
states are, by defnition, time independent. They are called equi-

S,ATES.

Thermodynamics seeks to describe these simple, static "equilibrium"
to which systems eventually evolve.

To convert this statement to a formal and precise postulate we first
oognize that an appropriate criterion of simplicity is the possibility of

tion in terms of a small number of variables. It therefore seems
le to adopt the following postulate, suggested by experimental
ion and formal simplicity, and to be verified ultimately by the
of the derived theory:

1. There exist particular states (called equilibrium states) of
systems that, macroscopically, are characterized completely by the
energ) U, the uolume V, and the mole numbers Ny N2,..., N, of the
components.

As we expand the generality of the systems to be considered, eventually
itting more complicated mechanical and electrical properties, the

of parameters required to characterize an equilibrium state in-
to include, for example, the electric dipole moment and certain

ic strain parameters. These new variables play roles in the formalism
are completely analogous to the role of the volume V for a simple

A persistent problem of the experimentalist is to determine somehow
a given system actually is in an equilibrium state, to which
namic analysis can be applied. He or she can, of course, observe
the system is static and quiescent. But quiescence is not sufficient.

the state is assumed to be characterized completely by the extensive
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parameters, U,V,NyN2,...,N,, it follows that the properties of the
system must be independent of the past history. This is hardly an
operational prescription for the recognition of an equilibrium state, but in
certain cases this independence of the past history is obviously not
satisfied, and these cases give some insight into the significance of equi-
librium. Thus two pieces of chemically identical commercial steel may
have very different properties imparted by cold-working, heat treatment,
quenching, and annealing in the manufacturing process. Such systems are
clearly not in equilibrium. Similarly, the physical characteristics of glass
depend upon the cooling rate and other details of its manufacture; hence
glass is not in equilibrium.

If a system that is not in equilibrium is analyzed on the basis of a
thermodynamic formalism predicated on the supposition of equilibrium,
inconsistencies appear in the formalism and predicted results are at
variance with experimental observations. This failure of the theory is used
by the experimentalist as an a posteriori criterion for the detection of
nonequilibrium states.

In those cases in which an unexpected inconsistency arises in the
thermodynamic formalism a more incisive quantum statistical theory
usually provides valid reasons for the failure of the system to attain
equilibrium. The occasional theoretical discrepancies that arise are there-
fore of great heuristic value in that they call attention to some unsus-
pected complication in the molecular mechanisms of the system. Such
circumstances led to the discovery of ortho- and parahydrogen,l and to
the understanding of the molecular mechanism of conversion between the
two forms.

From the atomic point of view, the macroscopic equilibrium state is
associated with incessant and rapid transitions among all the atomic states
consistent with the given boundary conditions. If the transition mecha-
nism among the atomic states is sufficiently effective, the system passes
rapidly through all representative atomic states in the course of a macro-
scopic observation; such a system is in equilibrium. However, under
certain unique conditions, the mechanism of atomic transition may be
ineffective and the system may be trapped in a small subset of atypical
atomic states. Or even if the system is not completely trapped the rate of
transition may be so slow that a macroscopic measurement does not yield
a proper average over all possible atomic states. In these cases the system
is not in equilibrium. It is readily apparent that such situations are most
likely to occur in solid rather than in fluid systems, for the comparatively
high atomic mobility in fluid systems and the random nature of the

llf the two nuclei in a Hr molecule have parallel angular momentum, the molecule is called
ortho-H2; if antiparallel, pata-Hr. The ratio of ortho-H, to para-H, in a gaseous H2 system should
have a definite value in equilibrium, but this ratio may not be obtained under certain conditions. The
resultant failure of H, to satisfy certain thermodynamic equations motivated the investigations of the
ortho- and para-forms of Hr.
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collisions militate strongly against any restrictions of the
transition probabilities.

In actuality, few systems are in absolute and true equilibrium. In
te equilibrium all radioactive materials would have decayed com-
and nuclear reactions would have transmuted all nuclei to the most
of isotopes. Such processes, which would take cosmic times to

generally can be ignored. A system that has completed the
t processes of spontaneous evolution, and that can be described by

reasonably small number of parameters, can be considered to be in
able equilibrium. Such a limited equilibrium is sufficient for the

ication of thermodynamics.
In practice the criterion for equilibrium is circular. Operationally, a

is in an equilibrium state if its properties are consistently described by
lvnamic theont.

It is important to reflect upon the fact that the circular character of
ics is nol fundamentally different from that of mechanics. A

of known mass in a known gravitational field might be expected
move in a speciflc trajectory; if it does not do so we do not reject the

of mechanics, but we simply conclude that some additional force
on the particle. Thus the existence of an electrical charge on the

icle, and the associated relevance of an electrical force, cannot be
a priori. It is inferred only by circular reasoning, in that dynamical

ictions are incorrect unless the electric contribution to the force is
luded. Our model of a mechanical system (including the assignment of
mass, moment of inertia, charge, dipole moment, etc.) is 'ocorrect" if it

successful predictions.

WALLS AND CONSTRAINTS

description of a thermodynamic system requires the specification of
"walls" that separate it from the surroundings and that provide its

ry conditions. It is by means of manipulations of the walls that the
ive parameters of the system are altered and processes are initiated.

e processes arising by manipulations of the walls generally are
iated with a redistribution of some quantity among various systems

among various portions of a single system. A formal classification of
rdynamic walls accordingly can be based on the property of the
in permitting or preventing such redistributions. As a particular
tion, consider two systems separated by an internal piston within a

, rigid cylinder. If the position of the piston is rigidly fixed the
prevents the redistribution of volume between the two systems, but

the piston is left free such a redistribution is permitted. The cylinder
the rigidly fixed piston may be said to constitute a wall restrictiue
respect to the volume, whereas the cylinder and the movable piston
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may be said to constitute a wall nonrestrictiue with respect to the volume.
In general, a wall that constrains an extensive parameter of a system to
have a definite and particular value is said to be restrictive with respect to
that parameter, whereas a wall that permits the parameter to change freely
is said to be nonrestrictive with respect to that parameter.

A wall that is impermeable to a particular chemical component is
restrictive with respect to the corresponding mole number; whereas a
permeable membrane is nonrestrictive with respect to the mole number.
Semipermeable membranes are restrictive with respect to certain mole
numbers and nonrestrictive with respect to others. A wall with holes in it
is nonrestrictive with respect to all mole numbers.

The existence of walls that are restrictive with respect to the energy is
associated with the larger problem of measurability of the energy, to
which we now turn our attention.

I.7 MEASURABILITY OF THE ENERGY

On the basis of atomic considerations, we have been led to accept the
existence of a macroscopic conservative energy function. In order that this
energy function may be meaningful in a practical sense, however, we must
convince ourselves that it is macroscopically controllable and measurable.
We shall now show that practical methods of measurement of the energy
do exist, and in doing so we shall also be led to a quantitative operational
definition of heat.

An essential prerequisite for the measurability of the energy is the
existence of walls that do not permit the transfer of energy in the form of
heat. We briefly examine a simple experimental situation that suggests
that such walls do indeed exist.

Consider a system of ice and water enclosed in a container. We find
that the ice can be caused to melt rapidly by stirring the system vigor-
ously. By stirring the system we are clearly transferring energy to it
mechanically, so that we infer that the melting of the ice is associated with
an input of energy to the system. If we now observe the system on a
summer day, we find that the ice spontaneously melts despite the fact that
no work is done on the system. It therefore seems plausible that energy is
being transferred to the system in the form of heat. We further observe
that the rate of melting of the ice is progressively decreased by changing
the wall surrounding the system from thin metal sheet, to thick glass, and
thence to a Dewar wall (consisting of two silvered glass sheets separated
by an evacuated interspace). This observation strongly suggests that the
metal, glass, and Dewar walls are progressively less permeable to the flow
of heat. The ingenuity of experimentalists has produced walls that are able
to reduce the rnelting rate of the ice to a negligible value, and such walls
are correspondingly excellent approximations to the limiting idealization
of a wall that is truly impermeable to the flow of heat.
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Measurability of the Energt I 7

It is conventional to refer to a wall that is impermeable to the flow of
as adiabatic; whereas a wall that permits the flow of heat is termed

. If a wall allows the flux of neither work nor heat. it is
ictiue with respect to the energ). A system enclosed by a wall that is
ictive with respect to the energy, volume, and all the mole numbers

said to be closed.2
The existence of these several types of walls resolves the first of our

with the thermodynamic energy. That is, these walls demonstrate

we can now proceed to our second concern-that of measurabilitv of.
energy. More accurately, we are concerned with the measurability of
rgy dffirences, which alone have physical significance. Again we

the existence of adiabatic walls, and we note that for a simple
enclosed by an impermeable adiabatic wall the only type of

Lissible energy transfer is in the form of work. The theory of me-
ics provides us with quantitative formulas for its measurement. If the

k is done by compression, displacing a piston in a cylinder, the work is
product of force times displacement; or if the work is done by stirring,

the product of the torque times the angular rotation of the stirrer
. In either case, the work is well defined and measurable bv the

of mechanics. We conclude that we are able to measure the energy
of two states prouided that one state can be reached from the

some mechanical process while the system is enclosed by an
impermeable wall.

Jhe entire matter of controllability and measurability of the energy can
nrccinctly stated as follows: There exist walls, called adiabatic. with the'y that the work done in taking an adiabatically enclosed system

two giuen states is determined entirely by the states, independent of
cxternal conditions. The work done is the dffirence in the internal energl

two states.

the energy is macroscopically controllable. It can be trapped by
ictive walls and manipulated by diathermal walls. If the energy of a

is measured today, and if the system is enclosed by a wall
ictive with respect to the energy, we can be certain of the energy of
system tomorrow. Without such a wall the concept of a macroscopic
modynamic energy would be purely academic.

a specific example suppose we are given an equilibrium system
rsed of ice and water enclosed in a rigid adiabatic impermeable wall.

a small hole in this wall we pass a thin shaft carrying a propellor
at the inner end and a crank handle at the outer end. By turning the
handle we can do work on the system. The work donl is .qoil to

angular rotation of the shaft multiplied by the viscous torque. After
ing the shaft for a definite time the system is allowed to cbme to a

by

equilibrium state in which some definite amount of the ice is observed

is definition of closure differs from a usage common in chemistry, in which closure implies only
restrictive with respect to the transfer of matter.
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to have been melted. The difference in energy of the final and initial states
is equal to the work that we have done in turning the crank.

We now inquire about the possibility of starting with some arbitrary
given state of a system, of enclosing the system in an adiabatic imperme-
able wall, and of then being able to contrive some mechanical process that
will take the system to another arbitrarily specified state. To determine the
existence of such processes, we must have recourse to experimental
observation, and it is here that the great classical experiments of Joule are
relevant. His work can be interpreted as demonstrating that for a system
enclosed by an adiabatic impermeable wall any two equilibrium states with
the same set of mole numbers Nr, Nr,..., N, can be joined by some possible
mechanical process. Joule discovered that if two states (say ,4 and .B) are
specified it may not be possible to find a mechanical process (consistent
with an adiabatic impermeable wall) to take the system from A to B blt
that it is always possible to flnd either a process to take the system from
A to B or a process to take the system from ,B to ,4. That is, for any states
A and B with equal mole numbers, either the adiabatic mechanical
process A --+ B or B + I exists. For our purposes either of these processes
is satisfactory. Experiment thus shows that the methods of mechanics
permit us to measure the energl dffirence of any two states with equal mole
numbers.

Joule's observation that only one of the processes .,4 --+ B or B --+ A
may exist is of profound significance. This asymmetry of two given states
is associated with the concept of irreuersibility, with which we shall
subsequently be much concerned.

The only remaining limitation to the measurability of the energy
difference of any two states is the requirement that the states must have
equal mole numbers. This restriction is easily eliminated by the following
observation. Consider two simple subsystems separated by an imperme-
able wall and assume that the energy of each subsystem is known (relative
to appropriate fiducial states, of course). If the impermeable wall is
removed, the subsystems will intermix, but the total energy of the com-
posite system will remain constant. Therefore the energy of the final
mixed system is known to be the sum of the energies of the original
subsystems. This technique enables us to relate the energies of states with
different mole numbers.

In summary, w€ have seen that by employing adiabatic walls and by
measuring only mechanical work, the energt of any thermodynamic system,
relatiue to an appropriate reference state, can be measured.

1-8 QUANTITATTVE DEFINITION OF HEAT-UNITS

The fact that the energy difference of any two equilibrium states is
measurable provides us directly with a quantitative definition of the heat:
The heat flux to a system in any process (at constant mole numbers) is
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QuantitatiDe Definition of Heat- IJnits 19

the dffirence in internal energt between the final and initial states,
ninished by the work done in that process.
consider some specified process that takes a system from the initial

A to the final state B. We wish to know the amount of energy
ferred to the system in the form of work and the amount transferred

the form of heat in that particular process. The work is easily measured
the method of mechanics. Furthermore, the total energy difference
- Un is measurable by the procedures discussed in Section 1.7. Sub-
ing the work from the total energy difference gives us the heat flux in

specified process.
should be noted that the amount of work associated with different

resses may be different, even though each of the processes initiates in
same state A and each terminates in the same state B. Similarlv. the

flux may be different for each of the processes. But the sum of the
and-heat fluxes is just the total energy difference UB - Un and is

same for each of the processes. In referring to the total energy flux we
need specify only the initial and terminal states, but in referring

t or work fluxes we must specify in detail the process considered.
our attention to thermodynamic simple systems, the quasi-

work is assocrated with a change in volume and is given quantita-
by

d W M :  - P d V ( 1 . 1 )

P is the pressure. In recalling this equation from mechanics, we

second noteworthy feature of equation 1.1 is the sign convention. The
r is taken to be positive if it increases the energy oi the system. If the

bme of the system is decreased, work is done on the system. increasing
cnergy; hence the negative sign in equation 1.1.

th the quantitative expression dW, : - P dV for the quasi-static
, we can now give a quantitative expression for the heat flux. In an
rle_slmal quasr-statrc process at constant mole numbers the quasi-static
dQ is defined by the equation

; that the equation applies only to quasi-static processes. A precise
ition of quasi-static processes will be given in Section 4.Z,but now we

indicate the essential qualitative idea of such processes. Let us
r that we are discussing, as a particular system, a gas enclosed in a
r fitted with a moving piston. If the piston is pushed in very
, the gas immediately behind the piston acquires kinetic energy and

into turbulent motion and the pressure is not well defined. In iuch a
the work done on the system is not quasi-static and is not given by
ion 1.1. If, however, the piston is pushed in at a vanishingly slow rate
i-statically), the system is at every moment in a quiesceniequilibrium
and equation 1.1 then applies. The "infinite slowness,, of the process
rghly, the essential feature of a quasi-static process.

dQ : dU - dW, at constant mole numbers (7.2)
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or
dQ : dU + P dV at constant mole numbers (1.3)

It will be noted that we use the terms heat and heat flux interchange-
ably. Heat, like work, is only a form of energy transfer. Once energy is
transferred to a system, either as heat or as work, it is indistinguishable
from energy that might have been transferred differently. Thus, although
dQ and dW, add together to give dU, the energy U of. a state cannot be
considered as the sum of "work" and "heat" components. To avoid this
implication we put a stroke through the symbol d: infinitesimals such as
dW, and dQ are called imperfect dffirentials. The integrals of dll', and
dQ for a particular process are the work and heat fluxes in that process;
the sum is the energy difference AU, which alone is independent of the
process.

The concepts of heat, work, and energy may possibly be clarified in
terms of a simple analogy. A certain farmer owns a pond, fed by one
stream and drained by another. The pond also receives water from an
occasional rainfall and loses it by evaporation, which we shall consider as
"negative rain." In this analogy the pond is our system, the water within it
is the internal energy, water transferred by the streams is work, and water
transferred as rain is heat.

The flrst thing to be noted is that no examination of the pond at any
time can indicate how much of the water within it came by way of the
stream and how much came by way of rain. The term rain refers only to a
method of water transfer.

Let us suppose that the owner of the pond wishes to measure the
amount of water in the pond. He can purchase flow meters to be inserted
in the streams, and with these flow meters he can measure the amount of
stream water entering and leaving the pond. But he cannot purchase a rain
meter. However, he can throw a tarpaulin over the pond, enclosing the
pond in a wall impermeable to rain (an adiabatic wall). The pond owner
consequently puts a vertical pole into the pond, covers the pond with his
tarpaulin, and inserts his flow meters into the streams. By damming one
stream and then the other, he varies the level in the pond at will, and by
consulting his flow meters he is able to calibrate the pond level, as read on
his vertical stick, with total water content (U). Thus, by carrying out
processes on the system enclosed by an adiabatic wall, he is able to
measure the total water content of any state of his pond.

Our obliging pond owner now removes his tarpaulin to permit rain as
well as stream water to enter and leave the pond. He is then asked to
evaluate the amount of rain entering his pond during a particular day. He
proceeds simply; he reads the difference in water content from his vertical
stick, and from this he deducts the total flux of stream water as registered
by his flow meters. The difference is a quantitative measure of the rain.
The strict analogy of each of these procedures with its thermodynamic
counterpart is evident.



or 10 / ergs.
A practical unit of energy is the calorie,3 or 4.1858 J. Historically, the

introduced for the measurement of heat flux before thewas rntroducecl tor the measurement of heat flux before the
rhip of heat and work was clear, and the prejudice toward the use

lhe calorie for heat and of the joule for work still persists. Nevertheless,

asured in energy units. In the cgs system the unit of energy, and hence
work and heat, is the erg. In the mks system the unit of energy is the

; calorie and the joule are simply alternative units of energy, either of
ich is acceptable whether the energy flux is work, heat, or some

Quantitatiue Defnition of Heat- Units 2I

work and heat refer to particular modes of energy transfer, each is

ination of both.
common units of energy are the British thermal unit (Btu), the

atmosphere, the foot-pound and the watt-hour. Conversion factors
energy units are given inside the back cover of this book.

r gas is enclosed in a cylinder with a moveable piston. It is observed
if the walls are adiabatic, a quasi-static increase in volume results in a

in pressure according to the equation

P3Vs : constant (for e : 0)

the quasistatic work done on the system and the net heat transfer to the
m in each of the three processes (ADB, ACB, and the direct linear process
as shown in the figure.

v(m3)+

the process ADB the gas is heated at constant pressure (p: 105 pa) until
Lume increases from its initial value of 10-3 m3 to its final value of g x 10-3

The gas is then cooled at constant volume until its pressure decreases to
Pa. The other processes (ACB and AB) can be similariy interpreted,
g to the figure.

refer to a kilocalorie as a "calorie"-presumably to spare calorie counters the
of large numbers. To compound the confusion the initial capital c is often dropped, so that a

\
"ol

8 x lo-3

ie becomes a "calorie"!
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6) A small paddle is installed inside the system and is driven by an external
motor (by means of a magnetic coupling through the cylinder wall). The motor
exerts a torque, driving the paddle at an angular velocity @, and the pressure of
the gas (at constant volume) is observed to increase aI a rale given by

X torque
d P  2 a
d t - i v

Show that the energy difference of any two states' of equal volumes can be
determined by this process. In particular, evaluate U, - Un and U, - Ur.

Explain why this process can proceed only in one direction (vertically upward
rather than downward in the P-V plot).
c) Show Ihat any two states (any two points in the P-V plane) can be connected
by a combination of the processes in (a) and (b). In particular, evaluate Uo - Un.
d) Calculate the work Wno in the process A --+ D. Calculate the heat transfer
Quo.Repeat for D - B, and for C -- A. Are these results consistent with those
of (a)?

The reader should attempt to solve this problem before reading the
following solution!

Solut ion
a) Given the equation of the "adiabat" (for which Q : 0 and LU : W\ we find

u"- un : wtB : - Ii;r r, - - ,^ I;:(?)"' o,

?: irnv;rt1v;ztt - v;'/t)

: 
]t t - 1oo) : -rr2s I

Now consider process IDB:

W . t o s :  -  
[ r a v :  

- 1 0 s  x ( 8  x  1 0 - 3  -  1 0 - 3 ) :  - 7 0 0 J

But

U" -  Un: Wtoa I  QeoB

Qeoa: -172.5 + 700 :  587.5 J

Note that we are able to calculate Qnor, but not Qn, and Qo, separately, for we
do not (yet) know Uo - Un.

Similarly we find Weca : -21.9 J and Qnru: - 90.6 J. Also Wtn : - 360.9
J and Qnr:248.4 J.
b) As the motor exerts a torque, and turns through an angle dd, it delivers an
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a d(l : torque x d0 to the system. But d0 : st dt, so that

o, : ?L, (ort 
") ,at

:  ?to,
au: |van

u^ - uc: lne^ 
- Pr): r.o-3 x (to' -

To connect any two points in the plane we draw an adiabat through one and
isochor (Z: constant) through the other. These two curves intersect, thereby
necting the two states. Thus we have found (using the adiabatic process) that
- U,r : -712.5 J and (using the irreversible stirrer process) that Uo - Ua:
.5 J, Therefore Uo - Ur : 1050 J. Equivalently, if we assign the value zero

U^ then

U,t:  0,  Us: -112.5 J,  Uc: -745.3 J,  Uo :  1050 J

similarly every state can be assigned a value of U.
Now having Up - Un and Wn, we can calculate Qno.

U ,  -  Uu :  Wp  I  Qno

1 0 5 0 :  - 7 O O + Q A D

Qo, : l75O J

U" - Uo: Wpn * Qoa

- l t 6 Z . S : 0 r e o u

check, we note that Qno* Qoo:587.5 J, which is equal to Qeoa as found
( a ) .

aNote that the energy output of the motor is delivered to the system as energy that cannot be
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process is carried out at constant V and furthermore dU > 0 (and conse-
y dP > 0). The condition dU > 0 follows f.rom dU: torque x d0, for the

of the rotation d0 is the same as the sign of the torque that induces that
:ted
uA.
sfer
X)se

the I ro-  u" :  l , reo-  
p" ) :  

t  " rx  
10-3 x( ro '  -  

+  " to ' )  
:  r62sr

ion. In particular

3
1 x $ r ro') : 145.3 r

I).9

i a n fied either as work or as heat-it is a non-quasi-static vansfet of energy
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PROBLEMS

1.8-1. For the system considered in Example 1, calculate the energy of the state
w i t h  P : 5  x  1 0 4  P a  a n d V : 8  x  1 0 - 3  m 3 .

1.8-2. Calculate the heat transferred to the system considered in Example 1 in the
process in which it is taken in a straight line (on the P-V diagram) from the state
A to the state referred to in the preceding problem.

1.8-3. For a particular gaseous system it has been determined that the energy is
given by

U : 2 . 5 P V * c o n s t a n t

The system is initially in the state P : 0.2 MPa (mega-Pascals), Z: 0.01 m3;
designated as point I in the figure. The system is taken through the cycle of three
processes (A + B, B -- C, and C --+ l) shown in the figure. Calculate Q and W
for each of the three processes. Calculate Q and W for a process frorh ,4 to B
along theparabola P : 105 + 10e x (V - .0D2.

0 0 3

Answer:
W n c : 7  x  1 0 3  J ;  Q n c :  - 9 . 5  x  1 0 3  J

1.8-4. For the system of Problem 1.8-3 find the equation of the adiabats in the
P-V plane (i.e., find the form of the curves P : P(V) such that dQ : 0 along
the curves).

Answer:
VTP' : constant

+
I

0 0.3
>-
q o.z

0.1
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The energy of a particular system, of one mole, is given by

A is a positive constant

U :  A P Z V

of dimensions [P]-r. Find the equation of the
bats in the P- Z plane.

For a particular system it is found that if the volume is kept constant at the
Vo and the pressure is changed from Po to an arbitrary pressure p,, the heat
r to the svstem is

Q '  :  A ( p ' -  p o )  ( , 1  t  o )

addition it is known that the adiabats of the svstem are of the form

PVr : constant (y a positive constant)

the energy U(P,V) for an arbitrary point in the p-V plane, expressing
P,V) in terms of Ps, Vs, A, Uo= U(Po,Vi and 7 (as well as P and V).

Answer:
U - Uo= A(Prr -&) + IPV/Q - l )Kt -  r t -r)  where r  = V/Vo

7. Two moles of a particular single-component system are found to have a
of internal energy U on pressure and volume given by

U : A P V 2  ( f o r N : 2 )

that doubling the system doubles the volume, energy, and mole number, but
the pressure unaltered. Write the complete dependence of U on p, V, and

for arbitrary mole number.

THE BASIC PROBLEM OF THERMODVNAMICS

thermodynamic coordinates. Identifying the criteria for those coordi-
es revealed the role of measurement. The distinction between the
roscopic coordinates and the incoherent atomic coordinates suggested
distinction between work and heat. The completeness of the dJscrip-
by the thermodynamic coordinates defined equilibrium states. The

ic coordinates will now provide the framework for thenodynanuc coordrnates will now provide thr
ion of the central problem of thermodynamics.

There is, in fact, one central problem that defines the core of thermodv-

The preliminaries thus completed, we are prepared to formulate first the
minal problem of thermodynamics and then its solution.
Surveying those preliminaries retrospectively, it is remarkable how far
rching and how potent have been the consequences of the mere choice

theory. All the results of thermodynamics propagate from iis
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The single, all-encompassing problem of thermodynamics is the determina-
tion of tie equilibrium state that euentually results after the remoual of
internal constraints in a closed, composite system.

Let us suppose that two simple systems are contained within a closed
cylinder, separated from each other by an internal piston. Assume that the
cylinder walls and the piston are rigid, impermeable to matter, and
adiabatic and that the position of the piston is firmly fixed. Each of the
systems is closed. If we now free the piston, it will, in general, seek some
new position. Similarly, if the adiabatic coating is stripped from the fixed
piston, so that heat can flow between the two systems, there will be a
iedisribution'of energy between the two systems. Again, if holes are
punched in the piston, there will be a redistribution of matter (and also of
energy) between the two systems. The removal of a constraint in each case
results in the onset of some spontaneous process, and when the systems
finally settle into new equilibrium states they do so with new values of the
para;eters 11G),y(r),Nftt . . .  and IJQ),y(z),1tJtz) . . .  .  The basic prob-
lem of thermodynamics is the calculation of the equilibrium values of
these parameters.

ytt) ytt) iyft1,. . Utz) ytzt IIlz)...

Piston

Cylinder

FIGURE 1.2

Before formulating the postulate that provides the means of solution of
the problem, we rephrase the problem in a slightly more general form
without reference to such special devices as cylinders and pistons. Given
two or more simple systems, they may be considered as constituting a
single composite system. The composite system is termed closed if it is
surrounded by a wall that is restrictive with respect to the total energy, the
total volume, and the total mole numbers of each component of the
composite system. The individual simple systems within a closed com-
posite system need not themselves be closed. Thus, in the particular
example referred to, the composite system is closed even if the internal
piston is free to move or has holes in it. Constraints that prevent the flow
of energy, volume, or matter among the simple systems constituting the
composite system are known as internal constraints. If a closed composite
system is in equilibrium with respect to internal constraints, and if some
of these constraints are then removed, certain previously disallowed
processes become permissible. These processes bring the system to a new
equilibrium state. Prediction of the new equilibrium state is the central
problem of thermodynamics.

Th
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The Entropy Maximum Postulates 27

I.IO THE ENTROPY MAXIMUM POSTULATES

The induction from experimental observation of the central principle
rhat provides the solution of the basic problem is subtle indeed. The
historical method, culminating in the analysis of Caratheodory, is a tour
de force of delicate and formal logic. The statistical mechanical approach
pioneered by Josiah willard Gibbs required a masterful stroke of induc-
tive inspiration. The symmetry-based foundations to be developed in
Chapter 21 will provide retrospective understanding and interpretation,
but they are not yet formulated as a deductive basis. we therefore merely
formulate the solution to the basic problem of thermodynamics in a set of

rtes depending upon a posteriori rather than a priori justification.
postulates are, in fact, the most natural guess that we might lnake,

providing the simplest conceiuable formal solution to the basic problem. on
6is basis alone the problem might have been solved; the tentative

ulation of the simplest formal solution of a problem is a conventional
frequently successful mode of procedure in theoretical physics.

what then is the simplest criterion that reasonably can be imagined for
e determination of the final equilibrium state? From our experience with

y physical theories we might expect that the most economical form
the equilibrium criterion would be in terms of an extremum principle.
t is, we might anticipate the values of the extensive parameters inlhe
equilibrium state to be simply those that maximizes some function.

, straining our optimism to the limit, we might hope that this
rthetical function would have several particularly simple mathematical

ies, designed to guarantee simplicity of the derived theory. We
this proposed solution in a series of postulates.

ll. There exists a function (called the entropy S) of the extensiue
s of any composite system, defined for all equilibrium states and

zg the following propertyi The ualues assumed by the extensiue parame-
in the absence of an internal constraint are those that maximize the

ouer the manifold of constrained equilibrium states.

lt must be stressed that we postulate the existence of the entropy only
r equilibrium states and that our postulate makes no reference

to nonequilibrium states. In the absence of a constraint the
:m is free to select any one of a number of states, each of which might
be realized in the presence of a suitable constaint. The entropy of eich

these constrained equilibrium states is definite, and the entropy is
;est in some particular state of the set. In the absence of the constraint
state of maximum entropy is selected by the system.

JOr minimize the function, this being purely a matter of convention in the choice of the sisn of the
having no consequence whatever in the logical structure of the theory.



28 The Problem and the Postulotes

In the case of two systems separated by a diathermal wall we might
wish to predict the manner in which the total energy U distributes
between the two systems. We then consider the composite system with the
internal diathermal wall replaced by an adiabatic wall and with particular
values of U(1) and UQ) (consistent, of course, with the restriction that
g(r) L, gtz) : U). For each such constrained equilibrium state there is an
entropy of the composite system, and for some particular values of U(1)
and (JQ) this entropy is maximum. These, then, are the values of U(r) and
U(2) that obtain in the presence of the diathermal wall, or in the absence
of the adiabatic constraint.

All problems in thermodynamics are derivative from the basic problern
formulated in Section 1.9. The basic problem can be completely solved
with the aid of the extremum principle if the entropy of the system is
known as a function of the extensive parameters. The relation that gives
the entropy as a function of the extensive parameters is known as a
fundamental relation.It therefore follows that if the fundamental relation of
a particular system is known all conceiuable thermodynamic information
about the system is ascertainable from it.

The importance of the foregoing statement cannot be overemphasized.
The information contained in a fundamental relation is all-inclusive-it is
equivalent to all conceivable numerical data, to all charts, and to all
imaginable types of descriptions of thermodynamic properties. If the
fundamental relation of a system is known, every thermodynamic attri-
bute is completely and precisely determined.

Postulate lll. The entropy of a composite system is additiue ouer the
constituent subsystems. The entropy is continuous and dffirentiable and is a
monotonically increasing function of the energt.

Several mathematical consequences follow immediately. The additivity
property states that the entropy S of the composite system is merely the
sum of the entropies S(") of the constituent subsystems:

S :  f  5 t " ) (1 .4)

The entropy of each subsystem is a function of the extensive parameters
of that subsvstem alone

5(a)  :  5 ( " ) (y (a ) ,  y ( " ) ,7 ,1 { " ) , .  . . ,  N , ( " ) ) (1 .5 )

The additivity property applied to spatially separate subsystems re-
quires the following property: The entropy of a simple system is a homoge-
neous first-order function of the extensiue parameters. That is, if all the
extensive parameters of a system are multiplied by a constant tr, the
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is multiplied by this same constant. Or, omitting the superscript

s ( I t / , I z , I N r , . . . ,  I N , )  :  I S ( U ,  V ,  N 1 , . . . ,  N , ) (1 .6 )

' The monotonic property postulated implies that the partial deriuatiue
AS/AU)v.Nr. . ,"  is a posit ive quant i ty,

(#),,.,, ,", '  0

s(u,v,  N) :  NS(U/N,V/N,t)

U/N is the energy per mole, which we denote by a.

(1 .7 )

As the theory develops in subsequent sections, we shall see that
rcal of this partial derivative is taken as the definition of

mperature. Thus the temperature is postulated to be nonnegative.6
The continuity, differentiability, and monotonic property imply that the

function can be inverted with respect to the energy and that the
?rgy is a single-ualued, continuous, and dffirentiable function of
V,  Ny. . . ,  N, .The funct ion

,S  :  S ( { / ,  V ,  N1 , . . . , 4 )

be solved uniquely for U in the form

U  :  U ( 5 , V ,  N 1 , . . . ,  N , )

ions 1.8 and 1.9 are alternative forms of the fundamental relation.

the
the

( r .8)

(1.e)

d each contains all thermodynamic information about the system.
we note that the extensivity of the entropy permits us to scale the

ies of a system of N moles from the properties of a system of 1
The fundamental equation is subject to the identity

s (u ,v ,  N1 ,  N2 , . . . , 4 )  :  NS(U /N ,V /N ,  N r /N , . . . ,  N , /N )  (1 .10 )

which we have taken the scale factor l, of equation 1.6 to be equal to
N = l/D*Aio. For a single-component simple system, in particular,

(1  .11)

(7.r2)u=  U /N

6The possibility of negative values of this derivative (i e, of negative temperatures) has been
by N. F. Ramsey, Phys. Reu.103, 20 (i956). such states are not equilibrium states in real

and they do not invalidate equation 1.7 They can be produced only in certain very unique
ts (specifically in isolated spin systems) and they spontaneously decay away. Nevertheless the
of these states is of statistical mechanical interest, elucidating the statistical mechanical concept

temperature.
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Also, V/N is the volume per mole, which we denote by u.

u = v/N (1.13)

Thus S(U/N,V/N,1) = S(r.r,u,1) is the entropy of a system of a single
mole, to be denoted by s(u, u).

eqr
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s (u,  u)  = ,S(r . r ,  u ,  1)

Equation 1.11 now becomes

(1.14)

S(U,V,  N)  :  t /s ( r . r ,  u) (1 . l s )

Postulate IY. The entropy of any system uanishes in the state for which

(AU/ AS) v,N,, , N. : 0 (that is, at the zero of temperature)

We shall see later that the vanishing of the derivative (AU/AS)v.N,.....N"
is equivalent to the vanishing of the temperature, as indicated. Henc'e thti
fourth postulate is that zero temperature implies zero entropy.

It should be noted that an immediate implication of postulate IV is that
S (like V and N, but unlike U) has a uniquely defined zero.

This postulate is an extension, due to Planck, of the so-called Nernst
postulate or third law of thermodynanics. Historically, it was the latest of
the postulates to be developed, being inconsistent with classical statistical
mechanics and requiring the prior establishment of quantum statistics in
order that it could be properly appreciated. The bulk of thermodynamics
does not require this postulate, and I make no further reference to it until
Chapter 10. Nevertheless, I have chosen to present the postulate at this
point to close the postulatory basis.

The foregoing postulates are the logical bases of our development of
thermodynamics. In the light of these postulates, then, it may be wise to
reiterate briefly the method of solution of the standard type of thermody-
namic problem, as formulated in Section 1.9. We are given a composite
system and we assume the fundamental equation of each of the con-
stituent systems to be known in principle. These fundamental equations
determine the individual entropies of the subsystems when these systems
are in equilibrium. If the total composite system is in a constrained
equilibrium state, with particular values of the extensive parameters of
each constituent system, the total entropy is obtained by addition of the
individual entropies. This total entropy is known as a function of the
various extensive parameters of the subsystems. By straightforward differ-
entiation we compute the extrema of the total entiopy fiinction, and then,
on the basis of the sign of the second derivative, we classify these extrema
as minima, maxima, or as horizontal inflections. In an appropriate physi-
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terminology we flrst find the equilibrium states and we then classify
n on the basis of stability.It should be noted that in the adoption of

is conventional terminology we augment our previous definition of
uilibrium; that which was previously termed equilibrium is now termed

equilibrium, whereas unstable equilibrium states are newly defined in
tcrms of extrema other than maxima.

It is perhaps appropriate at this point to acknowledge that although all
epplications of thermodynamics are equivalent in principle to the proce-
dure outlined, there are several alternative procedures that frequently
prove more convenient. These alternate procedures are developed in
nrbsequent chapters. Thus we shall see that under appropriate conditions
lhe energy U(S,V,N',...) may be minimized rather than the entropy
S(U,V, Nr,. ..), maximized. That these two procedures determine the
rame final state is analogous to the fact that a circle may be characterized
cither as the closed curve of minimum perimeter for a given area or as the
closed curve of maximum area for a given perimeter. In later chapters we
slrall encounter several new functions, the minimization of which is
logically equivalent to the minimization of the energy or to the maximiza-
tion of the entropy.

The inversion of the fundamental equation and the alternative state-
ment of the basic extremum principle- in terms of a minimum of the
cnergy (rather than a maximum of the entropy) suggests another view-
point from which the extremum postulate perhaps may appear plausible.
In the theories of electricity and mechanics, ignoring thermal effects, the
cnergy is a function of various mechanical parameters, and the condition
of equilibrium is that the energy shall be a minimum. Thus a cone is stable
lying on its side rather than standing on its point because the first position
is of lower energy. If thermal effects are to be included the energy ceases
to be a function simply of the mechanical parameters. According to the
inverted fundamental equation, however, the energy is a function of the
mechanical parameters and of one additional parameter (the entropy). By
the introduction of this additional parameter the form of the energy-
minimum principle is extended to the domain of thermal effects as well as
to pure mechanical phenomena. In this manner we obtain a sort of
correspondence principle between thermodynamics and mechanics-
ensuring that the thermodynamic equilibrium principle reduces to the me-
chanical equilibrium principle when thermal effects can be neglected.

We shall see that the mathematical condition that a maximum of
S(U,V, Nr,. ..) implies a minimum of U(S, V, Nr,.. .) is that the deriva-
tjve (05/0U)r.*,, be positive. The motivation for the introduction of
this statement in irostulate III may be understood in terms of our desire to
ensure that the entropy-maximum principle will go over into an energy-
minimum principle on inversion of the fundamental equation.

In Parts II and III the concept of the entropy will be more deeply
explored, both in terms of its symmetry roots and in terms of its statistical
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mechanical interpretation. Pursuing those inquires now would take us too
far afield. In the classical spirit of thermodynamics we temporarily defer
such interpretations while exploring the far-reaching consequences of our
simple postulates.

PROBLEMS

1.10-1. The following ten equations are purported to be fundamental equations
of various thermodynamic systems. However, five are inconsistent with one or
more of postulates II, III, and IV and consequently are not physically acceptable.
In each case qualitatively sketch the fundamental relationship between S and U

(with N and V constant). Find the five equations that are not physically
permissible and indicate the postulates violated by each.

The quantities ue, 0, and R are positive constants, and in all cases in which
fractional exponents appear only the real positive root is to be taken.

I  o z  \ r / 3
4) ,s : t* I 

(Nvsytt

b) s:|,+)"'( ry\*" ) "  \ e r l  \ v t
r n f/zl R1Vr\'/'

" )  s : l ; l  l n u +  + l\ o /  \  u o '  I

, S :

s :

s :

s :

, s :

U :

U :

d )

e )

f )

c)

h )

i )

i )

(#) r/NU

(#)"i" zvu2tL/s

NRln(UV/NzR'uo1

(#)"', * u l' /2 exp( - v 2 7 z u 2 u2o1

(t)"'r*^'z'"*p( - #d)
(#)# exp(s/NR)

(#)""( ' .  * )exp(-s l 'R)

1.10-2. For each of the five physically acceptable fundamental equations in
problem 1.10-1 find U as a function of S, V, and N.
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1.10-3. The fundamental equation of system A is

I  o 2  \ r / t
s: l : l  1r,rvuy'/ '

\ u o u l

and similarly for system B. The two systems are separated by a rigid, imperme-
able, adiabatic wall. System A has a volume of 9 x 10-6 m3 and a mole number
of 3 moles. System B has a volume of 4 x 10-6 m3 and a mole number of 2
moles. The total energy of the composite system is 80 J. Plot the entropy as a
function of Un/(Un + U").If the internal wall is now made diathermal and the
system is allowed to come to equilibrium, what are the internal energies of each of
the individual systems? (As in Problem 1.10-1, the quantities us, 0, and R are
positive constants.)


