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a b s t r a c t

The ability to enter a hypometabolic state upon restriction of caloric intake is pivotal for

animal survival: balancing the energy budget in endotherms can be a real struggle when

food is not available and/or the demand for heat production to maintain homeothermy

becomes excessive. Bouts of torpor, characterized by metabolic rates well below a basal

metabolic rate and core body temperatures that may be just a few degrees above the

ambient temperature, are utilized among many organisms across the animal kingdom,

including those that could be described as typical laboratory animals, like the mouse or

hamster. Daily heterotherms, which are the focus of this commentary, enter shallow torpor

bouts and do so usually under acute food shortage conditions and a relatively cool envir-

onment. Due to their small size, the body temperature of these animals is very responsive to

food deprivation, pharmacological inhibition of metabolic rate, and cardiovascular depres-

sants. This commentary examines recent developments concerning the neuroendocrine

mechanisms in place that may mediate fasting-induced torpor in daily heterotherms.

Further this commentary highlights pharmacological induction of hypothermia in small

mammals.
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1. Introduction

The idea that all small mammals, including mice, are not true

endothermic homeotherms is not well appreciated by either

the lay public or among many life scientists. Small mammals

such as ground squirrels, marmots, chipmunks, and mice can

spend a significant portion of their day, week, or even season

at body temperatures well below 37 8C, although rats are not

known to enter these torpor bouts [1–6]. Some of these animals

obtain cues to enter bouts of torpor from day length and

ambient temperature. Many excellent reviews on these

obligate hibernators have been published [5,7–10], and are

not the focus of this review. Rather, this review will examine
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those animals that enter a hypometabolic and hypothermic

state in response to cool ambient temperature and calorie

restriction. These animals undergo a relatively shallow torpor

bout, with a minimum body temperature closer to 22 8C than

2 8C as seen in obligate hibernators [9]. Daily torpor usually

lasts less than 24 h, instead of days or weeks, where it is

interrupted with bouts of food-seeking behavior and/or

circadian rhythms within the organism. These animals that

are daily heterotherms tend to be small, typically 5–50 g, and

include hamsters, mice, shrews, gerbils, hummingbirds,

numerous marsupials and many others (see Table 1 for an

abbreviated list and Ref. [9] for a complete list of animals that

enter torpor).
.
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Table 1 – An abbreviated list of mammals that utilize torpor

Animal Typical depth of torpor Typical length of torpor Classification Reference

Mouse 20 8C 6–10 h Daily heterotherm [1,2]

Mus musculus

Peromyscus leucopus

Hamster 20 8C 10 h Daily heterotherm [5]

Phodopsus sungorus

Golden-mantled ground squirrel 5 8C 14 days Hibernator [3]

Spermophilus lateralis

Marmot 10 8C 5–6 days Hibernator [4]

Marmota marmota

Rat Does not enter torpor N/A Homeotherm [6]

Rattus rattus

Fig. 1 – Metabolism falls before body temperature in the

fasted mouse. The core body temperature (blue line) and

oxygen consumption (pink line) of an ob/ob mouse were

measured simultaneously over a 24-h fasting period. The

fast was initiated at time ‘‘0’’, which was also the

beginning of the 12 h dark cycle. Body temperature was

recorded using an abdominal temperature telemeter while

oxygen consumption was calculated from the oxygen

content leaving the mouse’s metabolic cage. Note the fall

in oxygen consumption precedes the fall in body

temperature during its entrance into this bout of torpor.

(For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the

article.)
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Upon an acute shortage of food intake, daily hetero-

therms utilize torpor to balance their energy budget as most

of their fuel comes from ingested food and not stored fat.

The metabolic savings approach 70% in animals that

undergo shallow torpor bouts. At the onset of the bout of

torpor, the metabolic rate drops precipitously before the

fall in body temperature (see Fig. 1), suggesting an

active inhibition of metabolism at least during the entrance

into torpor. Energy savings by metabolic reduction as the

torpor bout proceeds may stem more from passive pro-

cesses of the temperature dependence of enzymatic

activities [9].

Studies on torpor and exogenous compounds used to

induce hypothermia may have great therapeutic potential.

Hypothermia has been shown to have major protective

benefits for bouts of ischemia and exposure to toxic

chemicals [11]. Most studies of hypothermia have utilized

small mammals that may be inherently tolerant to

hypothermia. Because of their small size, the surface area

to volume ratio of these animals necessitates a high mass-

specific metabolic rate to offset heat loss. Indeed, it has been

known for over 100 years that metabolic rate scales with

body mass, although the value of the exponent that

describes this relationship is still under debate [12]. The

high mass-specific metabolic rate and low thermal inertia of

these small animals makes their body temperature parti-

cularly susceptible to any small disturbance in metabolic

rate. Thus, application of some exogenous compound may

result in hypothermia simply because the compound

poisons the metabolic machinery, as opposed to mimicking

a torpor pathway. The difference between these two

possibilities can be enormous: a drop in body temperature

due to a metabolic poison will invoke mechanisms to

counter the fall in temperature. That is, when body

temperature is forced below some set point, homeostatic

mechanisms engage to re-establish a warmer body tem-

perature. Fasting-induced torpor, or seasonal hibernators

for that matter, do not defend a warm body temperature

(i.e., 37 8C), but rather experience a fall in the set point for

body temperature [13], and allow their body temperature to

fall without any mitigating physiological feedbacks. Hence,

extrapolation of the use of these compounds in hypother-

mia-tolerant species like the mouse or hamster to the use of

these compounds in larger animals, perhaps humans,

should be done so with great caution.
2. Neuroendocrinology of fasting-induced
torpor

Daily heterotherms that undergo shallow bouts of torpor in

response to food deprivation are likely responding to

hormonal cues that reflect short term changes in caloric

intake. One such hormone appears to be leptin. This peptide

hormone, a product of the ob gene, is derived primarily from

white fat and relays nutritional status from the peripheral fat

stores to sites within the hypothalamus [14]. In the hypotha-

lamus, leptin binds its receptor, a product of the db gene, to

promote satiety and elevate metabolic rate [15]. While leptin

was originally thought to reflect long term energy stores, it has

become clear that circulating leptin can reflect short term

changes in energy intake. In the non-fasting animal, the

amount of circulating leptin correlates well with the total

amount of WAT [16]. However, fasting causes a fall in



Fig. 2 – Spontaneous torpor bouts in leptin-deficient mice.

Six different ob/ob mice were implanted with temperature

telemeters, allowed to recover for 10 days from the

surgery, and housed individually at 20 8C. These mice

were on a 12:12 light schedule, with the 12 h dark cycle (D)

commencing at the beginning of each day. These mice had

free access to food and water during the duration of the 5

days of data collection. Each mouse entered a torpor bout

at least once over the 5 days. On every day, at least two

mice entered a spontaneous bout of torpor. Note that the

timing of entrance into torpor was typically near the end

of the dark cycle, which was consistent across animals

and across the different days.
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circulating leptin on a time scale that is much faster than the

disappearance of fat from the animal [17,18]. Indeed, while

fasting causes a near global decline in sympathetic outflow to

organs with the net result of a decrease in metabolic rate, the

one tissue that receives elevated sympathetic input during

food deprivation is WAT [19–21]. Activation of the b3-

adrenergic receptor on WAT in response to elevated sympa-

thetic activity results in a decrease in leptin secretion and an

elevation in lipolysis with the liberation of free fatty acids to

the blood [22,23]. While the gene for leptin was discovered in

1994 [24], a lack of this circulating ‘‘factor’’ in the ob/ob mouse

was known previously [25] to be intimately involved with

torpor bouts. The ob/ob mouse, with its prolific stores of WAT

that should allow for an ample supply of stored fuel for

metabolic function, nonetheless enters deep bouts of torpor

when fasted [25–27] and can enter torpor spontaneously while

fed (see Fig. 2). Leptin replacement in calorically restricted

mice [28], ob/ob mice [26] and in the dunnart [29] blunts torpor

bouts. Dopamine beta hydroxylase�/�mice that are unable to

sympathetically activate WAT due to the lack of epinephrine

and norepinephrine do not lower circulating leptin during a

fast and do not enter torpor during a fast [18]. The ability to

enter torpor is restored in these mice with the selective

activation of the b3-adrenergic receptor and subsequent fall in

plasma leptin levels [18]. Conversely, the fasted Fxr �/�
mouse, missing a functional bile acid receptor, exhibits a

greater drop in circulating leptin than that found in fasted

wild-type mice, which correlates with a deeper level of

hypothermia during the fast [30]. This depth of torpor is also

reversed by physiological replacement of leptin [30]. However,

reduced leptin levels or reduced leptin signaling cannot be the
sole signal to induce torpor during a fast for the obvious reason

that ob/ob mice as well as db/db mice (missing a functional

leptin receptor) are not always in a torpid state. Also, leptin

replacement does not blunt bouts of torpor in a genetic model

of WAT depletion [26]. Overall, though, it appears that the fall

in circulating leptin due to sympathetic activation of WAT

during a fast plays a key role in initiation of the torpor bout (see

Fig. 3).

Satiety and hunger signals, or lack thereof, from the gut

seem to be reasonable candidates for the regulation of

torpor in daily heterotherms that are responsive to lack of

food intake. The gut influences food intake and metabolism

through a suite of factors that include ghrelin, cholecysto-

kinin, oxyntomodulin, glucagon-like peptides, and PP-fold

family of proteins, which includes PYY3–36 [31]. In addition,

vagal afferent activity is influenced by gastrointestinal

mechanoreceptors, altering appetite, and may be the

primary site of action for some gut-derived hormones

[31]. One of these hormones has been reported in detail

for the effects on torpor. Ghrelin is secreted from the

stomach during periods of fasting and is repressed after a

meal [32]. Ghrelin stimulates food ingestive behavior,

possibly via the vagus nerve [33,34], although ghrelin-

producing neurons have been found to reside within the

hypothalamus [35]. Administration of ghrelin to a fasted

mouse deepens and lengthens a torpor bout, although

ghrelin administration in a fed mouse does not influence

body temperature [36].

Ghrelin is known to activate neuropeptide Y (NPY)-

containing neurons within the arcuate nucleus [37,38].

Activity of NPY-containing neurons is also repressed during

feeding, by high circulating leptin levels, and when leptin is

administered directly into the 3rd ventricle of the brain [39].

NPY is a powerful orexigen, stimulating hunger when

administered centrally. The ingestive behavior of the Npy

�/� mouse is surprisingly normal, and these mice have a

normal body weight [40]. However, deletion of NPY neurons in

the adult mouse results in lack of food intake with subsequent

starvation and death [41], illustrating the development of

other mechanisms to stimulate food intake in the Npy �/�
mouse. While these Npy �/�mice exhibit normal endocrine

and feeding responses to fasting, they do exhibit an altered

response in body temperature. The Npy �/�mice are able to

initiate torpor bouts when fasted, but they do not sustain

those bouts of torpor [36]. Peripheral administration of

ghrelin has no impact on these aborted torpor bouts in Npy

�/�mice, suggesting that NPY mediates ghrelin’s effects on

body temperature [36]. Importantly, central injection of either

NPY or an NPY Y1 receptor agonist into the cold-adapted

Siberian hamster, another daily heterotherm, leads to torpor-

like hypothermia [42,43]. The central administration of an

NPY Y1 receptor antagonist in these hamsters blunts, the

depth of natural torpor [44]. These data firmly put NPY action

as an important player in the mediation of fasting-induced

torpor.

Adjacent to the NPY neurons reside anorexigenic neurons

that utilize alpha melanocyte stimulating hormone (aMSH) as

a neurotransmitter. aMSH partially mediates the anorexigenic

and metabolic effects of leptin through the melanocortin 3/4

receptors of secondary neurons [14,15]. Therefore, this neuron



Fig. 3 – Hypothetical mechanism for the induction of torpor in daily heterotherms. Periods of fasting in mammals are

associated with elevated sympathetic discharge to white adipose tissue. This causes a rapid decline in circulating leptin. It

is hypothesized that the combination of low leptin and elevated ghrelin from the gut during a fast increase the activity of

NPY neurons within the arcuate nucleus of the hypothalamus resulting in the large fall in metabolic rate. It is unclear

whether the increase in lipolysis and resultant release of free fatty acids to the blood also participate in initiation of torpor

or serve only as a fuel for oxidation.
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type is a reasonable candidate for mediating the suppression

of torpor bouts by leptin. The agouti mouse is a model of adult

onset obesity due to the chronic antagonism of the melano-

cortin receptors within the arcuate nucleus. The juvenile

agouti mouse enters torpor bouts normally when fasted.

However, the hyperleptinemic adult agouti mouse does not

enter torpor [36], likely due to the elevated leptin levels. While

the incidence of torpor in another model of hyperleptinemia

(the diet-induced obese mouse) has not been examined, mice

that are heavier, either strain-dependent or age-dependent,

are less likely to enter torpor after a 24 h fast (unpublished

results from SJS). These data suggest that hyperleptinemia

blunts torpor in a pathway that is independent of aMSH

signaling.

Importantly, when the region of the hypothalamus

containing the NPY and POMC neurons, so-called the

arcuate nucleus, is ablated, the ability for small mammals

to enter torpor is severely impacted. Despite the obesity

induced by ablation of the arcuate nucleus by neonatal

treatment with monosodium glutamate (MSG), treated mice

no longer enter torpor bouts [36,45]; ablation of the arcuate

nucleus within suckling aged rats which experience bouts of

torpor at such a young age also prevents torpor bouts [46];

and Siberian hamsters treated with MSG also have a blunted

torpor response [47]. These data suggest that the arcuate

nucleus, and likely the NPY neurons with the arcuate

nucleus, play a central role in mediating the torpor response

to fasting.
3. Pharmacological induction of hypothermia
in small mammals

3.1. Adenosine and adenine nucleotides

Adenosine is a logical candidate for involvement with fasting-

induced torpor in that its circulating levels are elevated during

a fast and it evokes numerous physiological changes con-

sistent with a torpid state. Among the myriad of known

functions, adenosine inhibits neural activity, is a potent

vasodilator as a particularly efficacious signal for increased

blood flow in coronary arteries, and slows heart rate.

Administration of adenosine causes profound hypothermia

in a dose-dependent fashion in gerbils [48] as well as in mice

[45]. Aminophylline, an adenosine A1 receptor antagonist,

blocks the hypothermia associated with adenosine in mice [45]

and the hypothermia associated with hypoxia in rats [49].

Importantly, adenosine inhibits the hypocretin/orexin neu-

rons within the lateral hypothalamus [50]. These neurons are

intimately involved with feeding regulation and energy

homeostasis. They receive input from peripheral cues that

are known to be involved with torpor regulation, including

ghrelin and leptin [51,52]. Targeted deletion of orexin neurons

in mice results in abnormal ambulatory response to fasting,

although it is unknown, whether these mice entered torpor

upon fasting [52]. These same neurons play an important role

in wakefulness, and inhibition of these neurons by adenosine

promotes sleep [50]. Sleep may be related to torpor bouts,
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particularly in animals that undergo facultative torpor bouts

[53].

The singly phosphorylated form of adenosine, adenosine

monophosphate (AMP), is also a molecule that signals cellular

energy depletion. The enzyme adenylate kinase catalyzes the

reaction

ADP þ ADP ! ATP þ AMP

Thus, the AMP:ATP ratio varies roughly as the square of

ADP:ATP ratio [54], and as such, AMP is poised to play an

important sensor for energy stores. AMP influences the

activity of numerous enzymes, and of great importance to

energy balance is the enzyme AMP-activated protein kinase.

This enzyme is expressed in numerous tissues, including the

hypothalamus [55]; its activity is impacted by ghrelin and

leptin; it is a major player in the regulation of both sides of the

energy balance equation, feeding and metabolism [56,57].

While it appears that this enzyme plays little role in torpor in

the ground squirrel [58], an obligate hibernator, it may play

some role in fasting-induced torpor. Administration of AMP

induces a reversible and dose-dependent hypothermia in

mice [45,59], which one group defined as torpor [59]. However,

two lines of evidence suggest that the intraperitoneal

injection of AMP may be too blunt of a tool to assess whether

AMP plays an active role in induction of true torpor. First,

AMP-induced hypothermia is prevented using aminophylline

[45], an adenosine receptor antagonist, which suggests that

AMP must first be dephosphorylated to impact body tem-

perature. Second, other phosphorylated forms of adenosine,
Fig. 4 – Potential pathways that an exogenous compound migh

the compound may activate/mimic the natural torpor-inducing p

case, one would expect a fall in metabolic rate and therefore hea

In the ‘‘cardiovascular-driven pathway’’, the compound has its

impairs the ability of the cardiovascular system to deliver oxyg

hypothermia. Unless the fasting-induced torpor pathway is act

homeostatic mechanisms to defend against the fall in body tem
namely ATP, induce the same depth of hypothermia [45].

Perhaps, the hypothermia induced by AMP will be therapeu-

tically useful. However, the roles of AMP and AMP-activated

kinase in fasting-induced torpor have yet to be conclusively

tested.

3.2. 3-Iodothyronamine and H2S

A derivative of thyroid hormone has recently been discovered

and shown to induce hypothermia in the mouse and

Djungarian hamster [60,61]. 3-Iodothyronamine is generated

through decarboxylation and deiodination of thyroxine [62]

and has been found in the brains of mice, guinea-pigs, and

hamsters [60,61]. Its effects are likely non-genomic, and

function through the trace amine associated receptor 1 [63].

Administration of 3-iodothyronamine substantially lowers

metabolic rate and body temperature that recover after 6–9 h.

The fall in respiratory quotient to nearly 0.7 with this

compound which mimics the increase in lipid oxidation in

naturally occurring torpor bouts, has a recovery period

substantially longer than 9 h [60].

It should be pointed out that both adenosine and 3-

iodothyronamine have in common tremendous cardiovas-

cular depression. Both compounds induce a significant fall in

heart rate and cardiac output [61,64,65]. Breathing hydrogen

sulfide gas should also be included in this group. It was first

reported that mice breathing H2S fall into a hypothermic

state, which was given the ‘‘sci-fi’’ type name of ‘‘suspended

animation’’ [66]. However, it was very recently shown that
t lead to hypothermia. In the ‘‘metabolic-driven pathway’’,

athway or may act simply as a metabolic poison. In either

t production, resulting in hypothermia in a small mammal.

primary effect on the heart and/or circulatory system. This

en, resulting in a fall in metabolic rate, followed by

ivated or mimicked, the animal will likely engage

perature.
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breathing H2S results in a fall in both heart rate and cardiac

output of >70% of normal, without impacting stroke volume

[67]. It may be that the hypometabolism and hypothermia

associated with these compounds (adenosine, 3-iodothyr-

onamine, H2S) is secondary to the cardiovascular effects (see

Fig. 4). That is, the drop in metabolic rate with a subsequent

drop in body temperature results from a lack of O2 delivery to

peripheral tissues in these hypothermia-tolerant species.

Indeed, it has been shown that mice do experience

hypothermia when experiencing hypoxia [68]. Most research

suggests that hypoxia is not the signal for torpor entry [5],

although hypoxia does have a substantial hypometabolic

effect [69]. Alternatively, it may be that these compounds

somehow act as a major metabolic inhibitor (see Fig. 4). For

example, H2S is a known inhibitor of cytochrome c oxidase

[70]. The necessary fall in metabolic rate following inhibition

of fuel oxidation will have a great impact on the small

mammal, lowering its body temperature, which in turn

lowers heart rate and cardiac output simply due to the

temperature-dependence of the cardiovascular system.

Volpato et al. [67] tested these possibilities by administering

H2S to mice at an ambient temperature warm enough (35 8C)

to prevent a fall in body temperature. They found that both

metabolic rate and heart rate still fell even though body

temperature did not, demonstrating direct cardiovascular

effects of H2S. It remains to be determined whether the

metabolic effects of H2S are independent of the cardiovas-

cular effects.
4. Conclusion

To sum, hypometabolism and hypothermia are readily-used

tools by small mammals to cope with acute food shortages.

These animals clearly have adaptations within multiple organ

systems to cope with bouts of hypothermia on a daily basis.

Those hormonal and metabolic signals that induce a hypo-

metabolic state in response to food deprivation are likely

many of the same signals that govern both sides of the energy

balance equation (caloric intake and caloric expenditure) in all

mammals, including humans. A valid question to ask is

whether fasting-induced torpor or compound-induced

hypothermia can be extrapolated from mice to humans. To

state the obvious, mice are small with a large surface area to

volume ratio. A portion of the metabolic suppression during

torpor in a small animal is a result of their small size . . . as

metabolism falls, body temperature falls when heat loss

outpaces heat generation from metabolism. Then, as body

temperature falls, metabolic rate falls due to the thermal

dependence of biochemical reactions. So, even if ‘‘torpor-

inducing’’ genes or ‘‘hypothermia-tolerant’’ genes exist within

the human genome, one has to consider the thermal inertia

and low surface area to volume ratio in a 75,000 g human

relative to a 25 g mouse. As model organisms like mice are

small, great care should be taken to determine whether

metabolic inhibition either through inhibition of fuel oxida-

tion or cardiovascular depressant effects results in a natural

bout of torpor or achieves hypothermia simply because the

animal cannot maintain a high enough metabolic rate to offset

heat loss.
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