(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 59627, 1224] NotebookOptionsPosition[ 57930, 1162] NotebookOutlinePosition[ 58309, 1179] CellTagsIndexPosition[ 58266, 1176] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{"Clear", "[", RowBox[{"t", ",", "u", ",", "pie", ",", "pc", ",", "ao"}], "]"}]}]], "Input", CellChangeTimes->{{3.509821909786766*^9, 3.509821931336855*^9}, 3.5098302382738523`*^9, {3.510071843297147*^9, 3.5100718808145514`*^9}, { 3.510071911337558*^9, 3.51007194183349*^9}, {3.510161872375063*^9, 3.5101619279811277`*^9}, {3.51016196659238*^9, 3.510161982885626*^9}, { 3.510162017040559*^9, 3.51016201983759*^9}, {3.510162198316169*^9, 3.510162202777001*^9}, {3.510162251891927*^9, 3.510162254880787*^9}, { 3.510174806080851*^9, 3.510174807885754*^9}, {3.510186051049007*^9, 3.510186057878063*^9}, 3.510228099682735*^9, {3.5102281660881844`*^9, 3.510228168008524*^9}, {3.510228206635131*^9, 3.510228228614349*^9}, 3.541595442087488*^9}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"a", " ", "=", " ", RowBox[{"3", "/", "4"}]}], "\[IndentingNewLine]", RowBox[{"b", "=", RowBox[{"4", "/", "10"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"gbar", "=", "3"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.509818055468753*^9, 3.5098181267545977`*^9}, { 3.51007003214288*^9, 3.510070094723939*^9}, {3.510164014428276*^9, 3.5101640352173653`*^9}, 3.5101746909507008`*^9, 3.510174777917485*^9, { 3.510175459490954*^9, 3.5101754688487377`*^9}, {3.5101859562721157`*^9, 3.5101859755239563`*^9}, 3.5101861768214493`*^9, {3.51018622112141*^9, 3.510186225263054*^9}, {3.5102281071887617`*^9, 3.510228115981682*^9}, { 3.510228365935164*^9, 3.510228379608801*^9}, {3.510228519690876*^9, 3.510228532360444*^9}, 3.510228650158763*^9, {3.5102287750158453`*^9, 3.510228784470004*^9}}], Cell[BoxData[ FractionBox["3", "4"]], "Output", CellChangeTimes->{3.5102287882347107`*^9, 3.510228858665237*^9, 3.510229929406129*^9, 3.510231393290923*^9, 3.510231526132915*^9, 3.5415954614369392`*^9, 3.541595599648748*^9, 3.54175987900098*^9}], Cell[BoxData[ FractionBox["2", "5"]], "Output", CellChangeTimes->{3.5102287882347107`*^9, 3.510228858665237*^9, 3.510229929406129*^9, 3.510231393290923*^9, 3.510231526132915*^9, 3.5415954614369392`*^9, 3.541595599648748*^9, 3.541759879006281*^9}], Cell[BoxData["3"], "Output", CellChangeTimes->{3.5102287882347107`*^9, 3.510228858665237*^9, 3.510229929406129*^9, 3.510231393290923*^9, 3.510231526132915*^9, 3.5415954614369392`*^9, 3.541595599648748*^9, 3.541759879008972*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{"Starting", " ", "Point"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"pie0", "=", "2"}], "\[IndentingNewLine]", " ", RowBox[{"u0", "=", "5.5"}], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.5102286305493317`*^9, 3.5102287258223753`*^9}, { 3.510228841071721*^9, 3.5102288446049833`*^9}, 3.510229353947258*^9, { 3.510229859390588*^9, 3.510229866227996*^9}, {3.541759848517436*^9, 3.5417598489436407`*^9}}], Cell[BoxData["2"], "Output", CellChangeTimes->{3.510228864743581*^9, 3.510229358986277*^9, 3.510229473999913*^9, 3.51022988082835*^9, 3.510229955269205*^9, 3.510231408618224*^9, 3.5102315299044027`*^9, 3.5415954700123463`*^9, 3.541595602796227*^9, 3.541759882367783*^9}], Cell[BoxData["5.5`"], "Output", CellChangeTimes->{3.510228864743581*^9, 3.510229358986277*^9, 3.510229473999913*^9, 3.51022988082835*^9, 3.510229955269205*^9, 3.510231408618224*^9, 3.5102315299044027`*^9, 3.5415954700123463`*^9, 3.541595602796227*^9, 3.5417598824012136`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{"(*", "Shocks", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"gnad", "=", "9"}], "\[IndentingNewLine]", RowBox[{"un", "=", "5.5"}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.510228730917191*^9, 3.5102287555019608`*^9}, { 3.5102288483981037`*^9, 3.510228852125597*^9}, 3.510229384168215*^9, 3.5102298763635063`*^9, 3.5415955434088583`*^9, {3.541759855360393*^9, 3.5417598566046124`*^9}}], Cell[BoxData["9"], "Output", CellChangeTimes->{3.510228881124653*^9, 3.5102293868640223`*^9, 3.5102294768353977`*^9, 3.510229885040481*^9, 3.5102299582368*^9, 3.510231413114975*^9, 3.510231533209483*^9, 3.541595473208047*^9, 3.5415955504557333`*^9, 3.541595606427754*^9, 3.541759885747985*^9}], Cell[BoxData["5.5`"], "Output", CellChangeTimes->{3.510228881124653*^9, 3.5102293868640223`*^9, 3.5102294768353977`*^9, 3.510229885040481*^9, 3.5102299582368*^9, 3.510231413114975*^9, 3.510231533209483*^9, 3.541595473208047*^9, 3.5415955504557333`*^9, 3.541595606427754*^9, 3.541759885751092*^9}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{3.510070838291013*^9, 3.510071247184554*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"pc", "=", RowBox[{ RowBox[{"pie", "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"pie", "[", RowBox[{"t", "-", "1"}], "]"}], "-", " ", RowBox[{"a", RowBox[{"(", RowBox[{ RowBox[{"u", "[", "t", "]"}], "-", "un"}], ")"}]}]}]}]}], "\[IndentingNewLine]", RowBox[{"ao", "=", RowBox[{ RowBox[{ RowBox[{"u", "[", RowBox[{"t", "-", "1"}], "]"}], "-", RowBox[{"u", "[", "t", "]"}]}], "==", " ", RowBox[{"b", RowBox[{"(", RowBox[{"gnad", "-", RowBox[{"pie", "[", "t", "]"}], "-", "gbar"}], ")"}]}]}]}]}]}]], "Input", CellChangeTimes->{{3.510070568954936*^9, 3.5100705730403643`*^9}, { 3.510173765593042*^9, 3.510173784448954*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"pie", "[", "t", "]"}], "\[Equal]", RowBox[{ RowBox[{"pie", "[", RowBox[{ RowBox[{"-", "1"}], "+", "t"}], "]"}], "-", RowBox[{ FractionBox["3", "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5.5`"}], "+", RowBox[{"u", "[", "t", "]"}]}], ")"}]}]}]}]], "Output", CellChangeTimes->{ 3.510173785848853*^9, 3.5101738926331577`*^9, 3.510174584068358*^9, 3.5101747087449713`*^9, {3.5101747907653008`*^9, 3.510174820755385*^9}, 3.5101749885834627`*^9, 3.510175479750815*^9, 3.510175570810807*^9, 3.510176544555553*^9, 3.510183671733245*^9, 3.510183742687089*^9, 3.51018485185334*^9, 3.510185988195294*^9, 3.510186072229574*^9, 3.510186234674334*^9, 3.510228293261818*^9, 3.510228393165326*^9, 3.5102288956484203`*^9, 3.5102293909563007`*^9, 3.510229480340816*^9, 3.510229889920538*^9, 3.51022996271954*^9, 3.510231416569605*^9, 3.510231536312559*^9, 3.5415954808353443`*^9, 3.541595557263915*^9, 3.541595616028775*^9, 3.5417598923839827`*^9}], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"u", "[", RowBox[{ RowBox[{"-", "1"}], "+", "t"}], "]"}], "-", RowBox[{"u", "[", "t", "]"}]}], "\[Equal]", RowBox[{ FractionBox["2", "5"], " ", RowBox[{"(", RowBox[{"6", "-", RowBox[{"pie", "[", "t", "]"}]}], ")"}]}]}]], "Output", CellChangeTimes->{ 3.510173785848853*^9, 3.5101738926331577`*^9, 3.510174584068358*^9, 3.5101747087449713`*^9, {3.5101747907653008`*^9, 3.510174820755385*^9}, 3.5101749885834627`*^9, 3.510175479750815*^9, 3.510175570810807*^9, 3.510176544555553*^9, 3.510183671733245*^9, 3.510183742687089*^9, 3.51018485185334*^9, 3.510185988195294*^9, 3.510186072229574*^9, 3.510186234674334*^9, 3.510228293261818*^9, 3.510228393165326*^9, 3.5102288956484203`*^9, 3.5102293909563007`*^9, 3.510229480340816*^9, 3.510229889920538*^9, 3.51022996271954*^9, 3.510231416569605*^9, 3.510231536312559*^9, 3.5415954808353443`*^9, 3.541595557263915*^9, 3.541595616028775*^9, 3.541759892387397*^9}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{3.510070681474873*^9, 3.510071998709836*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"RSolve", "[", RowBox[{ RowBox[{"{", RowBox[{"pc", ",", "ao", ",", RowBox[{ RowBox[{"pie", "[", "0", "]"}], "\[Equal]", "pie0"}], ",", RowBox[{ RowBox[{"u", "[", "0", "]"}], "\[Equal]", " ", "u0"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"pie", "[", "t", "]"}], ",", RowBox[{"u", "[", "t", "]"}]}], "}"}], ",", "t"}], "]"}]], "Input", CellChangeTimes->{{3.5098316098431873`*^9, 3.509831615630823*^9}, { 3.510071269989933*^9, 3.510071307981883*^9}, {3.510071376174268*^9, 3.510071474831099*^9}, {3.510071550847542*^9, 3.510071556172866*^9}, 3.510161266733636*^9, {3.510164255565363*^9, 3.510164271228009*^9}, { 3.510176524490808*^9, 3.510176530274589*^9}, {3.510176618127309*^9, 3.510176622977847*^9}, {3.510186086585052*^9, 3.510186093014061*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"pie", "[", "t", "]"}], "\[Rule]", RowBox[{ SuperscriptBox["13.`", RowBox[{ RowBox[{"-", "1.`"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2.`"}], "-", RowBox[{"6.080941944488118`*^-16", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "-", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2.`", "\[VeryThinSpace]", "-", RowBox[{"6.080941944488118`*^-16", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "+", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{"6.`", " ", SuperscriptBox["13.`", RowBox[{"1.`", " ", "t"}]]}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"u", "[", "t", "]"}], "\[Rule]", RowBox[{ SuperscriptBox["13.`", RowBox[{ RowBox[{"-", "1.`"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"4.440892098500626`*^-16", "-", RowBox[{"1.4605934866804429`", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "-", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4.440892098500626`*^-16", "+", RowBox[{"1.4605934866804429`", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "+", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{"5.499999999999999`", " ", SuperscriptBox["13.`", RowBox[{"1.`", " ", "t"}]]}]}], ")"}]}]}]}], "}"}], "}"}]], "Output",\ CellChangeTimes->{ 3.510160557637306*^9, 3.510160987533586*^9, 3.5101612721600647`*^9, 3.51016140112036*^9, 3.510161540487761*^9, 3.510161839109503*^9, 3.510162283472314*^9, 3.510164060811275*^9, {3.510164276603175*^9, 3.51016430062751*^9}, 3.510168270655168*^9, 3.510168915909914*^9, { 3.510173779633285*^9, 3.510173791367847*^9}, 3.510173898975876*^9, 3.510174589920555*^9, 3.5101747168986607`*^9, 3.5101748265172167`*^9, 3.51017499811552*^9, 3.5101754850510893`*^9, 3.5101755771855383`*^9, 3.510176547855361*^9, 3.510176625989429*^9, 3.51018368438417*^9, 3.5101837479377623`*^9, 3.510184858725232*^9, 3.510186098019059*^9, 3.5101862435773287`*^9, 3.510228298823436*^9, 3.510228397919004*^9, 3.510228899153555*^9, 3.5102293960862427`*^9, 3.51022948417871*^9, 3.510229895190754*^9, 3.510229968045547*^9, 3.5102314199029837`*^9, 3.5102315397122297`*^9, 3.541595487212515*^9, 3.541595562301599*^9, 3.541595620767582*^9, 3.5417598985235167`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"pie", "[", "t_", "]"}], "=", RowBox[{ RowBox[{"pie", "[", "t", "]"}], " ", "/.", "%"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.510161555045587*^9, 3.5101615946541023`*^9}, 3.510173734580267*^9, 3.5101738687268963`*^9, 3.510175433404504*^9, 3.510175541585862*^9, {3.51022945139013*^9, 3.510229467010653*^9}, { 3.510231467219795*^9, 3.51023147300321*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ SuperscriptBox["13.`", RowBox[{ RowBox[{"-", "1.`"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2.`"}], "-", RowBox[{"6.080941944488118`*^-16", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "-", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "-", RowBox[{ RowBox[{"(", RowBox[{"2.`", "\[VeryThinSpace]", "-", RowBox[{"6.080941944488118`*^-16", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "+", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{"6.`", " ", SuperscriptBox["13.`", RowBox[{"1.`", " ", "t"}]]}]}], ")"}]}], "}"}]], "Output", CellChangeTimes->{3.51023151052448*^9, 3.510231543241969*^9, 3.541595491742161*^9, 3.541595574681432*^9, 3.541595626131783*^9, 3.541759902241016*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"u", "[", "t_", "]"}], "=", RowBox[{ RowBox[{"u", "[", "t", "]"}], " ", "/.", "%%"}]}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.510231476511235*^9, 3.510231480273088*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ SuperscriptBox["13.`", RowBox[{ RowBox[{"-", "1.`"}], " ", "t"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"4.440892098500626`*^-16", "-", RowBox[{"1.4605934866804429`", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "-", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4.440892098500626`*^-16", "+", RowBox[{"1.4605934866804429`", " ", "\[ImaginaryI]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"10.`", "\[VeryThinSpace]", "+", RowBox[{"5.477225575051661`", " ", "\[ImaginaryI]"}]}], ")"}], "t"]}], "+", RowBox[{"5.499999999999999`", " ", SuperscriptBox["13.`", RowBox[{"1.`", " ", "t"}]]}]}], ")"}]}], "}"}]], "Output", CellChangeTimes->{3.510231548573415*^9, 3.5415954968757*^9, 3.541595582066298*^9, 3.541595631433227*^9, 3.54175990896067*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"u", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "35"}], "}"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"LabelStyle", " ", "\[Rule]", " ", "Medium"}], ",", RowBox[{"PlotStyle", "->", " ", RowBox[{"Thickness", "[", ".005", "]"}]}], ",", RowBox[{"PlotRange", " ", "\[Rule]", "All"}]}], "]"}], "\[IndentingNewLine]"}]}]], "Input", CellChangeTimes->{{3.510184878804173*^9, 3.510184914849489*^9}, { 3.510185017756109*^9, 3.510185061410075*^9}, {3.510228934602099*^9, 3.510229022144745*^9}, {3.510229104401505*^9, 3.510229156148243*^9}, { 3.510229234300003*^9, 3.5102292351219673`*^9}, {3.510230627052966*^9, 3.510230679450418*^9}, {3.510230767884018*^9, 3.510230816757622*^9}, { 3.510230867362446*^9, 3.510230873268586*^9}, {3.5102309940335073`*^9, 3.510230997496854*^9}, {3.510231264293337*^9, 3.510231310002326*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[0.005], LineBox[CompressedData[" 1:eJwV13k8lF0UB3DZZazNDIMwRNnGOsJgflOUNlEqJUWWslfWVCJCKtEiFa1C VEqIUkmUrYSKSkgUErK0IL33/cvn+xnPc+9z7znnnsvcFrTGi5+Pj2+/AB/f /3/rWGm9eb9yrIM83pT9+0fDyrKMbSunD3HD0Rc9NEyD6tCSYKXp09z+5R1/ +jppSBLN2Cs4fY27OWSJ+6wKGh6ffnbg91Qxl1Vdfb4ymoaN7R9iRqequSku x3rPCdKQfeDLweGpN9wm+2W+HDoVj0SFv77Mf8tNW1dZXS9CxZtUjRW3XFq5 OpXyB33/zIFgluecgAdtXMf5Ojta2ufAo6b76kDkB66+ktagU9YcpCQGdY/u 6+L+3kXfqGk6B6ua/ASGpnq5R6gbNcK8ZPG2d4vtYpcv3IvSeyW+bpDFlknH hPT7X7hxn5da+i2XxU51M/HFe75yeT9L7tzUl8WJUME56T/7uBnxz2uVpmTw lpGptujHN675xziXO6dlsIWV4nnGYZAr/75Gc8thGXxdFJs9WDDILSvg6ans l8FvPx/tM4HfuUaFX1Q7PGWg+IhtNPhtiGtX9VjMkS0DA8OvqivGRrj2xibO tPfSCHnQ9WRC7QfXcLFtmnijNEpt32+7tOYH9+KsXbX0KmnwNr3Imrjzg/vi 3zW2/y1prIm9u+DSzlHugb9vNKlx5Pk3Bwwmvo9xlfuDHmw1lkbZHnlc7PvJ 7XU+oq5lI4XkVys5TNovro3KJ8skEylsmx9jepX3iztspMeV0ZAC5U2/bs65 X9yw5WrSqcJScDN4wChY+Zt7oOn3Cud6SYh+dR17dPsPF95LvEQ2S+Kj1Ykh fPzDfRfF211jL4nCU8/6K8Umub3GoYcLeJLYvEi/69m2SW7j6pGW4fmSuJ3J 9+IldYq7J2Sm2OynBJydrmZ3RExzva+eTes/KwG9/NbLbtemuSJRdc6zj0uA n5+S2d00zbWxfv3LIU4CNwpCTn7R/suV9CwpWR0kAT7xJdFD7X+5Sz87HJdd KoE37pF7d4rNcOcIjKa6W0kgr/RW2Ch7hhvisNP6rbEEnLzlAn4mz3AD7elh BkwJ5Dzp2ziDf1zKoQfhOX8p2Cc/d110wD/uhqu/u9UmKHAIcnTgP/ePq5sw UPh0kIJJpftLhMf+cXevldkY2k7B/PJqRsIaPrQ1KaefeUjBia9b5Wp28OH8 kWuCViUUTMtOUsUO8MHSWf6ASAEFTT4s6SP5fBAr5AWIX6Zgr9wZ4eOCs5Bn 49TwIp6CihdnFrspzELstVMyZdEUCMelRxsazELFppKU55EUpIycnWxxmYVt 5nNE7IMoyKrNGJK/OwttR8wc/m2koP9Aps5AzSxIGbK7+ddRwDK9sONBxywM P/xiqeVAQemVi92us/lRIhgg1bGEgoa9V95eceeHqcbuXV/YFMgYXZ0TEs6P vcuVT84YUrC+76qD7TF+dFvn/zVjUdDldK3uayk/lKwX+1DnU6Ahni1S9pIf q2xvLy1Wp8D3SbZNUg8/eNcrtSJUKZjQy32kKy0AyUiLOx4KFFj05E791RDA yWA7o6NyFESfu27WyBHAuz2rAt9SKZgtkl+4a7sARvPNGxqlKFj9MH940X4B fNvCqImSoOBU8A1d6kkBrK7+ZLRanALlrpvZJY8EcPXOW2EnEQo80m59Tngt AH3rdXaJQhTkrixQ3TggABsN9+sfBSj4zn/bVZtPEPdrLtOc+CkwKrt9boom iEDOkYhvfBSEB91pbdARRFPylodX/4mjXKOQeoEniEeq2o37ZsTB317oGLRB EJv6a9PD/opj6Ym7yQgQxNrar4Kp0+I4aldULxMrCFrb1N/6KXE0zxSJfk4X xMbClYHzieWKi22LbgmivGaYe3VSHJv9Sg4eqhJE8q3azVziy8x7j9e/F8Sb Hcm3pv6I40vrven5I4LwevhEuY1YJ7nU/I+QENQO3kt7TbzTpiysTlEI4YMn /40QF0+W3T1vKITBrhWL9Mj7Jm/fH/FfKoTWRdeWHibmbn+gZ+0qBK7Nwt+C ZD5xc8t9pYKF0FXsa3mJuLalPKcrUQiOGyKnN5HvkUx62HPnghDs5werssn3 rsUjZmyREBhFJikssh7pPx9tcaoTgoz/LuOlZL0+3nh8XqNLCM5Dt35EkfVU 86ho+zkhhLMuSwrfzKJgO+MJrUZcGP+yPTevIPtxo/HJmrNMYZh8nd3aKUjB j0OVx30XCuNwjqTYSWEKTC2fNnBWCcPSXOGdpygFT3KrlnRECCPlg+J3DwrJ D+NHXxNThBHmcC39iSQFyx/eSzTOFcYtA7fGRTIUNDfl1SW2CmO8L865gE4B fXOWn/Ew+b0qYPs5BgUuXzIpHcIiOC+WEJmrREHPZIq9sakIZv/oUtcj8bzg UNLwx1UiOKryOeSqJgX+UnEpiV4iKHp2lmupTeJbPbz54ykRpI85Fb8m+SK8 ynV94pgIji2ps8xcRObTuv6Xkbgo8rfdDVdfSkGyu0P6RzVRzNLxlKhfQYFc 2OL3RmtEsUios3g/ydcFF7W2fLwtCq95bf3+vmQ8LfV/CTWiWOvyd+APyffb d5UuGXWJItMrXjEnlALzGqnuBCkxKH48tcs9hoz3Y8LLKFAMn5mx9xzPkfH2 Dgt/PCQG7XffJj9cIush1J+TkCkGrZRW00M55PsV2vvbG8RwrenUH+NiMt7i yoAEndmY3sxeMdNEnj+dHNreNxuaq8cuq8lIoFklkZ7AJ46VNb2xhxkSoOfF 3DOUF8eyQolmipoELj4K+RO/lMRV8cDsHaTe3v66ab9hNsmbZ5Kr/TdIoMV8 /qF4DwqsvR/fj8+SgJu2dUvGHgqy1ZdJjd2UwKDCOubd4xTcE/ncFHpPAsLT Bx92PqBgp2WG7KM6CZg96pgwo0pAoNfszLpRCWQsSvP+ViUBP6N8RoytJLxX CNk5aErhp8Mxat2kJEY5SmnellJ4tXii7iE5zw7oGvfsWyMF60g+l6eyUkiX cI++HiWF2kNzdwvoSKG+sbyUv1UKWu/WuK/dLAV57fun3i+WhqFMgKNMpRT2 39oldGxcGvN30VyjVkqjMmVPRxyfDC44Kh4UdpKGaHDMvX0UGXyyEN2U5iKN UwtTffznyUDYaOBJg680blTcfrHCSQZXFOxepB6WRnvz8OnZRTIQCTl3d3uN NCx+BWgmBsvi8srVXueWy+AX13dp7OgcvNCXHRlwkUW1rklYTDcdC7M+tH6I piJDJMo2/DsdapkxJ28lUhHS/Zwa8JuOk6u8s6JSqFBLd7nrLCmHY03PkumX qIgWiB3Rt5CDBHeRyLzHVHDeN/l2pMrhr7FP9fVpKu4kBG3l8OSh9vXoHaFQ GhK3lbEMV8ojPp+X5LOPBjcrgRnNDfIoH06cWxtLg+RYWoZsgDz6aa9s9p6g wX/Lo3f96fJYGzDbMa+AhvlsCaf0EXkcCVsapNVPQ2Z3nt3ERQYW7vr5eqsz HSHzf9S25jOgMPAu7t5WOpb7L1xx/x4Dexwdz4tup+P3xNNVBxoZ4FX51KeF 0uEk9nGN2D8GzO8963c/QQfFQMp17hYFJL8In8mto2Pf/uBdtkqKSMnbXH6L LYe1lWWj8xcoYgl94MxcSzloi/CFzDZRRNE3kfi4RXJoSzka1rhCEaX/dMMs VsvBJOva3o17FcEtXnHHdoccButaDwW8V8RMzWxec7ocXOQtz51OV0KY46KD yWNyWC8tM3rzqhKC1o5Nn/othzWiX5Y9u6UEBc2rFSf/ysHu9/E/P6uUcKZ0 tXSkiDxM2j47O/9QQmrk8jX9CvKQTD8ip7h8LqqVdubbQx5iKW5BxuvmIrd7 x81WG3kIJrKfr3Cbi9M/XEqcl8ljMrwzbF/YXDy4vKpx0Rp5fN1g/PbjlbmI qrSvKPGQR4Xch1OXpuZiV7/5uMIheTyQuj1YKqwM7cENg2qH5VEicsimSUYZ ftygcrVj8rjxizU+a4EyTuk7fxA7LY+zrQfXejgpoyuusjU0Sx67z2jLat5U RmBrybynT+QxTy7yeP4WFQhbvzyl9VMeR534RY76qKCxTtpX4Y88JlKTovxD VJDqp7tYYFoezyjnA/SSVLDo3B2+h7MY2MFfvqKgWAXvf5TnvaIw8PbnTOxG YVX0iZ2djmAykER7+rhWXBVf8msWDKgzYG2SMGUuo4p81fEtazUZyNklFayg pAqzHd2DEjoMRAyqbPtgqIr9Ij356iYMMLoBV1dV6JVff9Fsw8BLPqF9L7ap IknniUb1EgYOqtTes9qhCpkgtcwCOwYGNjvqKwerIlyP9sN/JQP3W92VOxNV cW2ZkufhtQwE/tTYtDpZFfG8qEHLdQyo0QZOPz6pilQTZPWtZ+DImt0Sly6Q 95X/yVuwiYHNLw5OuxWpwuhr54YVbgxIDy4xaypTRWTcvswKdwaqZouH8B6T 96eKabI8GNCzO/mNWaeKcovHs0e9GJipvPq+u1MV5/aK75rrx0Dhp+30tb2q 0LnNVVrnz4A3n+6apwOqePXRkXkogIFGq6LaqxOqkBWNtn0ZxMCl0qpST3Em 5qp9Xi0UwoATJWHVChkmpHwqlGihDIi6Les2lGNi5FeaiFIYAztFXor/U2Pi Lp0U4AgG5rmkXOpdwMQQ62/uFHHbrTXsBhYTP4MY5p17GMD61i1nLZj4GqL0 98heBsavnx07ACbWo8Bi3T4Gcv+6JHovYUJtTvsD2n7y/de67hivYeLgDdnM fVHk+39fWaLgzMTJHytF1A+Q/Vvp9YFvCxNNYgdrK4i7xvoFX/owcc1uxLc7 moFTS2+cLQpi4vCaD07eMQzYnQ9knQ9l4kDVvBufiKeHDJ7G7GVC13xVmNNB Bm4vGtuwI4YJ56me0kfEnmnFg/YJTPQPHtmjGsuA/EB4DPsYE7cCfjzcQ9xg ZUFXOsmE4aLXR+qIo1On8/jPMrEpkr9fNo4Bk95H3P4LTCg7b/ywhrjPLOZ1 YxYTsqbVO5KIM44u9inJY+J3AO9MGbFDl9BMxm0mVLht/l3EgiY1J2JLmOgu ujI8Q1yakDTft5ys39EaDdohBvw/rCx3qGQiZW40TZ1YVV/KcWENE4KWktUL iF8fbOqd+5Ksn9ozC03ixLcnIwVfM7Fzvdh+RWJL7fVS394xEZG89IQo8ch+ +aymTibi0meiv5Pxsprem5X2MlHGvb+6jthZI/PFhW9M+BhRhS4SU/Zs3Xbo BxM9X+/m+BFXNDB/+f0iv8fbWxsQh6j2HFnzl4nGmuzGQbI+C0KyVc0F1ODY c3TbZeL25zuKVcTUYBHY8XcVcYqiznJhKTVc4MXnjpL1twn63jFIVUO75z6f 48S/KwuCWxTUwBmuXjqP2M3XJPOSphqWrcyNMCX7SX300zBBVw3Fd4+8u0v2 v0am7FmAkRouhW0I0SI2KLMasbBWQ83v5yF/STz1UPgOMW3UoHlLsd+FON2t kiG6XA1vQouLCkn88YkuXfxmnRoE1l4MWkbis8hFrO2BC3m/z7+AwyR+dxTU +19xV0PM1upPTyIZeLXeIS0oQA2LI+fZKZF4v3xtY7/YIfL8fuX+cJI/fWs8 fI4kqWF5bcueYyS/WHwB/ZQUNZicTyrICCb1Y1N0v9R5NUylzqjn7mKgWSqn n3ZHDfN3NPUFk3yVf3jb50yJGmwXaW/cQPJ5i+/9fvlyNdC2OF81Ifk+UPWi X/G5GsKTjbradzDAHznez/yoBss/ofd7SL2wmz/jc7VbDSXT7+6d2cZA8muR gXl9aihf9qrahtQXBX3Fgfljasg3ctE/toUB4x7egJ6YOobCK/62OpN8sD8+ YM5Wx0sphyoXUu/yptJ9H1ioQ8L249y7y0n85F4ZsIQ6Bn+lTwouY2CfQMkA d4U6FOWVXNJtGThd2j5g666OtK8yiVHWDDxT0/7meEwdjmXZzNX6DMz/VfXN p1cdWcZf20wlSHy/a6hy/6aOtecYvQ9mk3r24HXmxh/quKc2eZEjSup7dM/q ZX/VUe9vt1xHgIH1YoJFC2jzcO7YzWMNv0nfobh431ebeeh4JVOp8lkePdwn FK+sedgvdF/fsUgelxIf6rl5aMCAf9cvrRXyyJC4SLf00cCJ79ol5UvJeXYi +p9ckAau0SXbVpLz9ETG4qbGSA2IOg/7e1nJI+52bQj3hAYKZtFGIvTl4dP2 5oHyEw2M0qamDefIw2jB0LKPypoY9nQpMngnh6fPlb03vddErlK7yR53Ofj7 rd8pZbYAKWnvXgcfpGMyan/mtNUCrC94UlcfRcfhE1l1/YsXwPiNQIDGXjqy y0bnVa1egMRlhS0fg+noEjn+LmL7Arz/sHnMw4uOtVnPF3WnLcC+Jx259XZ0 WHw0oxVPLIDCE8MlZjJ01IxsXXRlagEe5aRqtEjQsUEwIej4LC2ULWEk7JxN +imdN7U+Eloo9bjWVyhAx609u6KUNbSQWh1Xv/4nDUx63tcEJy08NGxRVG2n QXS14v1Nd7Uw/spXrPM6DQvKDzd3l2phwiXkiWgODcu0fg/4PtJChIiSNTuL hiSBN4p7a7WwtmXbqbQLNFBKk/ef7yTju1co7T1JgzSTn9curo0NKjEVL/fT ID/W99zVUxs2ZiuL7jnRYOa2oavXRxurp3/ewRoaNr6o/h0QpI21RX/aG1bT cC7nilZUpDaOSPdUDy2nQWnz5iMXUrRxL2ev3kYeDarVjfad5dpg+jkcrmPR oHWm5I0bTQcN8/s99Ck0LDdXX7pVUYf0/6f//hSjwffD8VJXpg6uykRdqxSh IU/F5/wmPR28Fwhd4C1Ag26uoruTrQ7MfOONOyapYJVFDy4N1UEb/9q/Jweo sHf57rpkrw7qu1e4ZfZREfh3Y6NNjA4WiSsM5X2hooBnXMg7poMu1ebjzd1U GNT1hnOu6WBj5iFppw9UGH9YLqD/RgebH68VY76gwmn/vRC9DzowOvMnL6Ce 9Osq877ofNKBdurnxEe1VBR5/K1Z8J3M94L7tP8zKkwHC5LVhHQxGFneMk36 dbO/VAU6Wxepl/Ju9d2lwvlizBEqRxfdM8FOewqpiOANTcvydHHxjKaV5B0q yg4975RapYv1PTGtNreosJCMvCbmpQuPEF/93lwqrFQ6Df6e0sW3xkDb0QtU UD01CjvP6SJmTkJIQyYVA7l+xpWXdCHHvvQgL4OKdKPf7IQbuujNvHE8+BwV 47YyHJkqXfBU5K1N06ioT9pQPlari73B7kqGp6m40php9bZRF+5hOyUMTlHh sFEb5z/ooi8wfZ7FCSpu+C+21Rgjvz8ykjyQTEXsncPPRP6Q51fO9j13jIpN PxuXDszoYo+saVPZUSpEozcvL5itBxdrvYeCR6jwPBm62lxND+g0+laXQO4z bQ9eKS7QA90sJkaYWHYu/5oZPT1INR5jLImnoiI72empuR4GPoUva4qjQul+ zsZVjnpoNOiMljtIxdjM9/f6G/TQtvL6390xVNQtNtks66oHkYeHdzaT+1bE i4otrTv00LJH1SjzABWrZUW6ygL1oOt9dL8oseaGVe4ZIXoQndxTGh5Fxeuu dx7u0Xqo5xuecN9PRb6Gau/ieD3E7/0+3r6PioO+3t6aR/Vw4YlLuwuxwfjo jm9n9GCkznT12kvFURFKYGiBHobj2kay91DhsXLN8IZiPSw4Q50BsUVq+k6L B3pIXaXf0xFBRZ+CRvC/Z3oI7sgz0iR+vNVv/FODHiYzXqY1hlORlnUntKpZ D+3t6+v3EduwrCMOd+jBy7M+ozuMCsXguD9+PXoYUeGxzxOP3quLtB/Qw9RG 1ukNxLXT0tMGI3o4xVpyX474Em/D/jk/9TD3icmVD6FUhMdnzkxM6UFh6cXl V4nt6z8faJvFwrTsvDuBxFNOOw9mSrDQfKblljSx59jfIYU5LNQ0zwz0h1Dx MvWIS7o8C4y1V9yeES80YNTQlFkwNyySyCa+9DLb5KQ6C+lRGiOJxGIBJpel tVgIWdUtFES8W7xSIpnFwvnSppXOxB+ur44UN2HB6tubShtiG7uPXxLNWXiy oMHLhPjmF9+1wlwWTr4+ajyfmH7o9+NYGxaEIr9pzSU+oB6vO2s5C7qvS5bQ ifuezDkbtZqFpjelCbLEjm6XhaadWLC+UzIgQ3x/hrV7zyYyXtfOACqxemZ5 x8+tLPzTuSqhQHyUs3xFiBcL9GLBWjXiiXet9374suA+tTSTRbwlwmte0E4W pL8oJFoRP6ePpQyGku+t10xYTWxQHP3XZy8Lj/dIp3sSn10r6fs1moU0q4jS fcT8o+ffesazcOjbn94zxH4pWou7j7Cw9auucgnxa9a9gq2pLLjqZm1pJbZ6 YaP0MY0F3rqhrCnibL/mxE0ZLLhlnR5SI/sjNdttovUyCw/FVc1XEUfkfndf l8PCPLbUwUjiT0v2vmy+wYJNUtezPOLlvaIch0IW3lpKCHUQK6nNo654yILw OTuPVSReDlXcia6pZMH3nUnUYeKhLdzvtjUsyN1emFhDXHF+0zO0sODhL7V1 NYlPLYs+o0dtZLyAy5pniE+0hV7kdLDQvaKq+ROxJy01wrSfhSB38ZcHSLy/ uKvce3eIBRG8kGshNl1zw9FwnIXTm104WiRfRI8/19b9x0JdynfBDuKbojPt TJo+Kp1SnXxIvtFzjiy7qKCPb77hKi3E0baMEiVVfbwUHrzJJfm55qDJcTkd fXxaOnc2k+TzzylfngRPHzOb5gUJkvy3Hm699ttfHyXbXm9eEUtFTqWH3+Bu fWhP5mYPEkunDRt0RehjbXXa7xRSf7otRcqfx+nDf0TvWvchsj5Jps1pGfrI FAm7ez2RigaN0zMmDfrQyetf8JTUR/Yf1aoFzfoQmLRinDxOxYWGG4eV2vRx uj+nySuFip3BVVTBHn3wrlkmzSH1dc6TMe2WKX2oFhhkHyf1WI91Pb+UZgDx ldofhUl975YLSi6UN8D9Ct7GWaT+p81i77qhaICBSKFNM8QzrytMLzENsMV/ bdu/S1S82tv2JEHPACHuz+1Vr5Hzq1akbb2tAR5XmTi23KTigae34ESIASrd /hV0V5Dzaqpxc3m4AS75W9RIVVJRkmpeHBtpgM2Fv9Ksn1Jx+xHFWzbaAP+S DZddribxJ3/3uf4RAzjk8J+NrCP73fAvyfeyAV5WtGbveU2Fr8lZma4XBmAd dNh+vJ8KhmCDcr2mIdieJlF2cjSsnPQyUX9jiJoLgeHHImjYk/LMZ8kJI2he EPWe7iL9xWOuv+hpI4wE8tYFdtNQPlQaWHfGCBqHd4Z2fqaBb1V+sH2mEerT lnMff6EhXixl//pcI5yQf38vZJCGUwc3pno/MsKfwlHr4l803A4ZLI0fMEJH T13gftKPNV/1emD33QgH6gr1myTpGG/ueDh7xAg9LYPt6tJ0LDRsqkyeMMIu pYLxalk6Hn0vbkjjM8am/IyeaTk6GrwPdGXTjbH2yR4dEzU6+pxlRZ8vMkaa 5RJuOZuOpCuzF1bZGuPtP7MNAgvp0Bnk935iZ4ytKz2+2ZnREXhg7OkDe2Ms NJ+IbrSgY+La6wO3Nxmjdmw5q45LB/9Y2q+zu40RHudGCVlGh9Ixxa/+V4xR stzgXrILmc/bOXTfa8a40hascmUzHVtVKbbbc42R6ebafNeVjit3p6+43zLG 3N82c5q30qH1/uOW9feNMe0e3PXHgw7T+ZfecpuNkWhsdWfCjw7HJ/OeyfKb YINqTuSZSDrs28X+zhIywedNUrxA0g8v/zVk/EPEBJqbL9ku3keHjV7Z5UYJ E8xumRTu20+H2dlV+48yTKD26LGLUgwdqrvCTIQNTeC5MaNXP4GOuUdd/CaM TbD9gJzTALFCDq70mJpgPLD0z5VEOqgfZ0s/tTSB/1+bfskkOkSXXfx2wM4E etX+a5qO0jGiWnPlz1YTZM8xVOM7Qcd3zs13fdtMUCjs159JPLD+hHSblwl+ NjJ7zU/S0XN0c1SJnwlqi4b3+J+io+33yMbgcBPMf7qRUZ5GR8Urhsz3ZBOk cZZxhc7T8fDbzNL2VBMIU6yc4onvC/dE1Z8ywdQug4tCGXQUWd4avH7OBL0F Am0zxLm5i2q8s03QY1Da/uECHcej/Q50PTTBaPzMHlyhY53duE5mhQn8GnZt vkCsKL2/beNTE7QsZxVPEudcTDZsqTHBvRti9beu0vH40Z3P1S0mGJk8fVLw Gh2H4i1SDr4l6zv/iPF64hX2Ty2570zwNFplVTZx68fXp0s7TLCaKTTMy6Zj ePrX0vx+E8y5Ez7lnUNHcVX0+PZBEzjmC4fdIN57VOzyvGET7Ks2DxwhFlFS nMwcN8HvmCfvgnPpUOFY30j5Z4KJT643d1yno5f/ufMqfjZGKPwaV4jz61YL zRZi44D3b+X3xAs3uW+Jnc3G11SPDNs8OlbviZMOo7FBT41onJ1PB40n8dBI no0kyic/M+IPomk+wwpsFL8YPO5JvD09p3KHKhtNZdW7Son13AyCNNTZeFkt aNhFPDa/TLFbgw2LlrpI4Rt0HLhXF+KiwwbFcOC2PbHtgbVMeRYbIadrLuwk Fl/a/uK1ARvvlcwUUonPvP2uaW/KhnX+UPkLYtcLYS2zzdl4mvqit59Y3fvf geccNurWBlwUvElHwYT0O/DY8Eo0q2EThz48e+jvYmIrSfOVxJxDakb3l7Ch tPKPlTvxrFX5HWHL2Fgc+bo1hPg51eSI8Uo2nGv3iSQQH2svXzhiz8b24KYX Z27+f1+07bnhyMaJr3d1cogZ/i9TfJzYaHwmolZM3Gm8wUpzAxv7uwrvPCG+ NtXZ372RDSn9zA8NxH5Pd6Rd3MzGrde3L70lNjzyY9HmrWS95N7P6iT+tSZy WH4bed9WEb4vxA8VBDLeeLJxwVAr4xtxbPcRuxPb2bDTNWodJl6WR52w92Xj iJBc4Six1O7My+IBbETGv9QbJ3ZyuhYpsJONecyXVv/7nOnNtVO7yX5oGN/9 //+75It1x0LZ8I3E8f/fpzlVLvQtgo0tLZyWAWL/j1Ud3XvZyMoNiO4hLnzc cO99FBvBxsz0duLfl1+nNMewEbEjS7GF2Dqu3acujo380aWUGuI4755FlQls SLK2+j0grrMbVLyfxMY+NVjcJJbWGR+/c4wNv6jFkZnE6yWmX1xPYeNOapXu UeKMYYGcyyfZgB1z7R7i7ibx6LNpbPTPuz/kSRyYpmh0OION4yz9IwuJiyLU xWMusqEw712yMvHkJp2eiCtsrHy2SeL/+IhX4aTtyGVjlmpGdB2Jn4ZZi4Pc 8tl4E2sVkU8s27PczvkWGw7de0aSiDNzN00uLWLj3r7LO2yJu5O2tXDvkXi/ EOOnSrwgwPfGwvts2Oz/Mv6HxHuRYeSW+RVs9PbyLucSN9w/WyncwIaRWWvS OMkv2czL52desrHkhufgU2LnA9dDfjaxcdiztCuVuGdxmeaXVhLPmn8TtIin GtqSqj+zUfV079+lJF9R0OXx8AsbYuP5TApxfGqfZXE/G2sLAnpfkvyXXf97 KGuYxMcfwzUOxNqdcmvjptjo+flvaBGpFzufqOjum2Ej9sSI1TSpNyVX5wuF zDLFnl/l5kXEi3YsvOchYgpe2h1rVeJNP9YrLp5jiiP3+272ZdFxWCDt8ywd U9w4oJhtSepf+gme0XM9U0hruud9vUxHNvN79FEDU1jwr7uYSlzFtVGWMzVF HUvVvfsSHXz7Rp11eaZIcwwKCL9IR8S4/cv1G0zx42TJxE5Sj3f0ipTlx5qi v36e643TdISH3BXZFU/Guye51Yw4XmDretPDphDYj4NPyXmQxSwZq0g2hahb lVErOS+6XD1Zb8+S/x8N2DGeSseGtxVX+W6bwqFS/7BIMh1Lnu9JXtduCuqJ pU3nD9Fxe75sL6XTFOyR0jYZYoXEPE7VJ1M8GnXgJMSRemz3oc/oqynOrJCV 3xlLvrfOcrH0qCkale9ssiDn48CLf7/qRBbCetU+l0Jynh5/fcgdxgvRqnRD mBNMzqtPqSY6SQsxnhR8VJCc3x4ZOyfrl5ghg6ak6GVA8v+whVbdTzO8mYrU DRGmw7M+xL76jxl2uBVr1gqR8SQKgiumzWD09V66MvFMqvqjEn5znLWa6KsT IPl0jrL2qqQ5XFOnXLRm0bHtRse+fZrmeLU098TMFOmfGg++Yq03h2hdrLDs KA3PZR5OaG00R52sIyviBw2Ta38paGw2Ry3/+5GOERrc2vy8FLeZQ+H44LJb wzTofXKaFAkkv0eYezt9p+HZqOa8T4fMERPtIfO4j4bftPrwk8XmGJt3WIJK +r1xweuym0vNMRgtPyu9k4aRsfib8x6YI/WA1wkl4r6mRZ+LK8whluiXMr+D hnfH7tu31Zsjz1lfzLadhvtCeRpzu81RNn+l24U2GvZPJLZkS1pgbdn27hdN NET2eAcGyVhA6lxBlDdxWIuNmBnVAqrWis//vaIh8A4ft5Zhgfhf911NiLcE ROR9m2eBBsrK/GsvaUDv9hgDjgUKjZvFr9fTwP9mif797RaYFBO6ZfKMhk2n ZZpDfC1wJmnvcE81DXfWtYfoB1jAv7Xv42lit7e77mfttoBXE6vyTxUNj1oz bI/vt0BZUE1+7VMyv/ejLp4nLRDOiWEkPaGh+dzDGeU0CyyWs15oS6zlknj5 XboF1Lu3C8wibvsw96v9BQswvFg5kRU0mH60221+3QInFgfODXtMw2jnhUTJ xxZYtj7w+bGHNCy/5KNT+8QCj4aWv1xLfNnN5GVslQW551yLVSB2+FQ750+t BVb+uf7nejkNt7rHL3x+bQEKM1ym6QENvr3Li0sHLFBuR+3i3qeh8hrNOfi7 BZpXiT+XJmZ4d03qjVigfprj0l1GQ82XUFydIOun15CUQKzZd6n+GB8HtbZD /O9Lafg08PPTNjoHh047sy/eo6G0GnecGRz8CQtpDidOuZQUba/EwXWWm5kj sfV6ZRULNQ5eSV12FSbOeGK7WYbFQdK5RcKRJTSEZBzXETHkQLFmW7cz8Yrw d5PTxhx881A6ZEY8qRtwts+cg4v6anMni2nYkH7q7WNbDhyGjyTHE7OCO64V 23HgcTotzY9Y2H5BaP4KDsYSL2xzJC4SKJ9zxpGD1cMWtirERzuEPh914uBp N81FhNijbHXhwQ0c0LX2Go8U0SAb9Nkh0JWDtbru2lXEA8v0VD3dOOjdpWRX QPxkXvjwRg8OHqq0ap4n3vl+drKtDwexGQUaocRLi51cOf4cdFlN23gQK6dc 0DUM4iB55Jr6GuIXtkb1SqEcmLpvmWtEnKW675xsBAdqUSkL1Yn3TVX7iO7l ICLQW4pGvPatlPnMfg6CtwRmiRBr39koOh7NQQid/XPyLonno1db+2M5UPlr KzhM/M77e3ZnPAcxDJ2Xn4kTlWJs649ycNT65MlGYrdfddQnxzkoSlJPfka8 sJnaU3KCg+4zVxY9Ipa8ueXujdNkfwtO3i4h/pKQe/BKOgfbaiJaC4gfbht1 TD/PwZvE5pLrxKesLJnJF8j+26naZxH7y8ePxF7moI3alXGRePFY4+M9WRxk 3kq+cp5Y4SXjeFAOB3UpOVvSiUdzPbZ45XGweyTr1Wni2tibei43OfB8/O/X SeJLW35NO9zmIPCW/usTxBHmvIYld8n36Od7/u/V1CPnLUs40I34mvu/NYdf +xqVkXiIdb70//MztcoWC8o50KLuWv7/+99m7RBTfszBuXtXss8Q3zxQ2Dan kuzHc9eic8Rxm6ZzxKo5kPOTCb5AvJm9JPzfcw4WZ+h0XyE2lk5ZMlFHvk+T MSuXePa3d7RvL8h8b9g23iTurlbv7XpF4jlbcWURcdmlgKK3LWR/tguGPyDe tMDlz9m3HCybPaeqkniywM7a9R0Hg3KVOXXE5xaaxqq2c5DnfYrZQmzxWL3m cwcHd8bFDduJ3y+Rkcj5xIFL//U3vcR7X844+vaQ/EobkhwhLv/47sNIPwdh Nj5WwiReNns9Vy0a5ODUi/OGssR/B4u8woeJ5wWWKhNbTx8f/jvOwfDu7r3m xBUKSwTE+Swh9C2w/v94drtibPeS3xKsntlL4olnaTOPpQpZordOdvUZ4kXm 03R5cUtYDFnNfkD8dEOhtgbdEqHqD2liJL88Oy8G9clbwslvz/hcYsHtx4ry FS2h9dTK1ZjYJmyHtRHTEkk6F+u2Ej87pbyGq2uJSxbdgo+JvZUoZ/j1LVG5 cta8NmKRrD8fqg0tMavrTM0PYru7r71WLrTE7uK3FzVJvahrStqzcZEl7jVp hKURv5D8dSnY2RIP8jZbJpP6E5jW02vqYons0Ad+BcSSys3ak66WGH/1i95E bK93syjawxLzs5I7aKTevVrhUXMs0BIH+R6qXiN+ndg4nBNH5jtV+PkdqY/j 2pbu2QmWiA/9NiJE6in1RW5zVpIl7kdcjDUiXidzsPhyiiW2XtI2PUb89qzJ 3vMZlri7LLrUjtTnd3lnhY8XWWKDxvfQVlK/Oxo85ob1WKIwvrN1FTkfZgJf JYd8tcToPdWRRGIVGSu+4AFL1JkH7q4idltH/xw0YomAzGt3LMn58uljTa7P tCVe/CybZVRJQ8+Qnokr1Qr2fxcx9cn51S/9e7mNjRXMHhYwAmrI/sQ5Vpks tcKcje8CC4m7fuVZaSy3woOsS5K/ids6XA2EHayQ9SFTO66W7M+Np7QaFyu0 XvYpv1hH6pfd8a4VwVbwyJdO/NxAzt9ozbC1V6xA+X6m9gw5r1uGnS5v47OG hcvn+tgPNPzjy3TrKLDGpoP2X64N0VDFYexrLbTG5vfRH38RJ4adPvOqmPxu ZfhwGelHZAePvax8YI3Eq/bG34nntUZZ5jy3hgQ94qsR6WfsbrrJ7+y0xrTV j3elYzSc2Djv1SwpLkKiiz3zftOgUZjP1QjkQt9c+QE/P7nPnK1/9W0nF5k5 zaa2xIj55l4YzMWtoqj9CcSbHXTiuHu4yAtg+4qTfuvEUF7Nxjgu4vcfKZEW JP2Ydp5j8jkubn+6UiNN+re2q7kev55xcbQ9wbtHjA7vIzXjD2u5aKt5kKIy m9yHd/cdimvgol1RcO8mYslFC3JlmrnwNMhObiS27coZ1PnIxZbLmnkl4mR+ SjmhbmNcfOQzCYmQoONZXfPTHilgkNp0pEaaDov5G6V5MoB436DpJHFBbOfm TFlgZfmPDB0Z0j9aDk6sI20PU2k8/Rix7y2hBc8VgNhld1bYy5LxT5gdva4B 0j99D6mcQ+5fGy84BXKAD4t2VYTQSX9ZPO9ynSWwe51ReCYxVzb/u6Y1EHdI qqeaeEH9vfhOkPGabnfS5Mh9y7Kp1GEJMB5W7FJIfEFVcK6xI9CxVX7NR3k6 er/69P7yBjY7OhdNKpD7aJN+za4dgNhbu3wlRTrsH0zkffMBvs5k21kTlyTH 7Oz0B1ZwEsOiiRPZZ6ee7Sa/x8pc4FOiQze2RiYtCmDbpMmPEHf5J49LRQNu 8T3BlLl0nF7v1Ho4BkhX2RW6gHhGqytjfxxwgrvebytx46tf872SgKITY2q1 xLuV51ubpJH18jKsPaJM7sOi31VvnQE474WPXiH+8KNQYMFZ4Krj/YlSYptq 61rFDCA0eOZhDzHdf72TwBWyvpbT6mYqZP3WKS3cfxWQnPtQZSXxAW4341cW IPtvonIrcZ9sYOdADnB7Wpsvnris7JBv801gOmqZ80viwKsrVq0sAAbe+J/o JFY7JmPw7DZQcaEpZIQ4yS1zouwucGa6yUhGlcSrSHH05TKgfOBnmj2x9I9I D8UHwJcaH7orcfV7LDldTt7nQeP6EbNuNYgffgzcvXfxaDwx37qetJ3VZH3C vZTKiBm0fSZNzwCWkrpaFbHRmznNhjWAcPvKjy+JPdctlhirAwpNvEI+E++n fchb2wBYOp52+E6c9ma3XdELwPR4UfdP4pp1V2JDXwFN/XZaYkw6PtEsmG+b gD37BTpkiCffND0ybSHxoWK2TIFYd/2syV9vALWWi4u1iY+vd9sZ+QGg3w1t WEKcS/8t8aEdmCM223wVccXb4/mcDmDG2dZ1LfHo+sdfpruALUsdXmwhFpfb EOfaDXSW72R4Es9rHWI++kz25927uT7E6zcoux74AlQW6zrsJg6SK5ns/Er2 c8g3Kow4sXVVOvrJ/j085xVJfPlML/vyAJAT+VUoivj+hv0tswYBxx/7tsYQ t8jRdm37Dti7JOyOIx5svSH5dAjYtM2Ym0AslG5zQ30EkFa5VX2YWNm5fVnc DxLP8hrCR4kXyod87RkFZi96xpdM7NAmfsh2HMj7+7j4OLFP+lW17AlgtTxP I5X4oDOnQvgXiee6iNUniM/Lt7hu/w24lqaZnCQuavOdev4H6B+qe/2/X6Tz n10wBQT22hqcIv7ifM708DRwf6/Z0v/9T97odf9fEh9/Whj/W/5d7a7l/4DL kstz/3/e8Ky7VD4fDwdeNYz+P97yjX9uiPPzYPcg+c//8/FgpC73F+Bh9e3K 8hTife8W9DUI8hA/cd7y//mfPltxSE+YhxYT+z3HiG9tdFZPFuHBea9E8BHi 54yRiiFRHmrMJLX/X5+udwlbVs/m4a71oQvxxH/OqkwXiPPQ9jjnVSyx7KZ7 Z6UleNi+Or8imlhHYfXCXZI8uHZVB+4ntnn/5XWTFA9VVXof9hCHbaJLn5Tl wSGnYnjX//GlcOvm2BweripvSg/4P77e265wopHn38/l+z8+3m8KjafJ85Au JCS5lXhMQWJeGIOHprqzRRuJKR+ynrxV4CEqiqPoRGzl8nr6zFweXhge1bIj 1pStzWCq8NCX+kCaRyxZ+9AyX5WHrX6e182JO0xz9j1S56FAwW9Ei/jZ9/NK dho8HI8JvMj8f32yUsqbNHnwjjGdxSCOko2c7tHiIXnSs0OY2Ls2MCNQh4ci kdBNf0m+2ZPm5bcuD8ItGUljxCpDK/eJG/Awyjwq2klcUasybWjKw5xDQXGF xLnR1IwHC3kw+Pc4L5s4ZaGYpa05j9Sx3oRzxG7XRvc6W/IQ9Iy2I4Z4Vkz1 VNQiHiKtf9euIF5k5jdVb8+DUHeYZwupT9rDW8+vc+ChRICi/pRYNtuJ0+nI g+X7RRcKibvnWO8ddeKBGkFvSCGOHZaeknfh4RhzWGo5cVV2yaTXdh74dB2T b5P6esM1/9zwDh4ORbyyySA+Rb1ksceXB3q74qMEYq+DhyOPBvDwyPPGpCux 8JbNk4XBPJwMe58tQjxEdTxnGUriz6cj6gep92/rbS2ehfFQfbBL6QNxtrl+ 5Ls9PAwo779xkzh5RF3BYy/ZT7OvF9KIw3Lk7w/u42HF1SHnA8RbtkhsCovi YVfF1PvtxEtp/JP/DvDwUjtcw4H4P2FYvTQ= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesLabel->{ FormBox["\"Time\"", TraditionalForm], FormBox["\"u\"", TraditionalForm]}, AxesOrigin->{0, 3.5}, LabelStyle->Medium, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.510229161198601*^9, 3.510229236921132*^9, 3.510229406930387*^9, 3.510229497198636*^9, 3.510229906729731*^9, 3.510229979162424*^9, 3.5102306318675756`*^9, 3.5102307063363857`*^9, 3.510230880980136*^9, 3.510231001108775*^9, {3.510231293860549*^9, 3.510231312217799*^9}, 3.510231359075285*^9, 3.5102314269744997`*^9, 3.5102315545873613`*^9, 3.541595506488677*^9, 3.5415955897961884`*^9, 3.54159563482546*^9, 3.541759912376295*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"pie", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "35"}], "}"}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"LabelStyle", " ", "\[Rule]", " ", "Medium"}], ",", RowBox[{"PlotStyle", "->", " ", RowBox[{"Thickness", "[", ".005", "]"}]}], ",", RowBox[{"PlotRange", " ", "\[Rule]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.5101849312395277`*^9, 3.510184985594206*^9}, { 3.51018507957367*^9, 3.51018510320325*^9}, {3.510229249006612*^9, 3.510229261156726*^9}, {3.510230579075283*^9, 3.510230604553824*^9}, { 3.510230690814344*^9, 3.510230695586495*^9}, {3.5102313297899*^9, 3.510231331357362*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], Thickness[0.005], LineBox[CompressedData[" 1:eJwd2Xc81d8fB3AhKpRxp1n2yLiXuNa9L0IiKklZlVlkFQ1FJJUoioiiFJWQ r4bKSotkNBSprKxIqZSI0u/0+8vj+eh+zuf9Oee83+9zHi3yDnXy4+fj4zMQ 4OP797dBJ2OgcOIy143nyCbEivJs7xW/D/L49WuPXhThw8JRm3DZ3+m8DtoV rQN0PiTOyd4r+Psi72aWt8GgLh9q0utiJqfLeAb3nzpZ+fDBtePd/rHpWl6D jeO06is+JIxK211zf8yT2ij/gtXHhzt8bpJhlfW8hCbUho3xgabSfuHznkbe gEvDzyMSszBs+NHrR9RznsLDOROLnGbhUsxg3JfpVt6luO6Yoo5ZuDtH6MPT ojaemmhO+evRWWg9oWJf4v6ad+e7zg39WfwQzPeVCq5s5/XsS3ocqcoPn/re vI973vHcR0pPGYbz43hCaO9YVA/PYe1KL32qABxebBUYnR7gPWa+sDeMFETb wAbrpe6DPCqtIrchVRAbplYfzqwY5HnpMZYcLRZEmBJHZGnkB56WaHdWeo8g UncISmX+HOI1rcmrumU3G23MHEXLbyO8nlhDl05VIeixPiy0//6VN6YiNTP/ tzDKIxk4N/STxy35cX2foCj20k8JpQjOArd7XzlPRRL3Cx7ZdO0WwsDQ0YOp +jQI6d/9kHBcCBOdzXbbrGiwq76doF8ghLg4IbFla2loeVHYkPBaCPOqzwi9 3klD/9RxR31DYTyJMVlxsJw87+DpkvBdGKOzA4r+mtFh923cjx0yFwY+kh+y TBlI3vtFqPPgXMTs0BmXtWegZfbw5cM5c9Elft0hzY0Bd+mO4Y6muXA4fCjC lcQetPRB8GGtedj5JO2B7S3yfHryjo6hedBwSl2Vo83ES2O1g4d8RLH0mb7p bglpbNLkvsyOFMXp450S9vLS+CS9dtGNFFGUUsMcxbWkIfQ7rrq7UhRuaTF3 tllJg3O3a5xDEUMFbVla8k5pZFtm+I88EkO8RPUfxXZp+NvPtl2lugCSke7n 1hyXwZipbIa/2QK0KXVWuZyRQcxi/f4opwVY4R9/0O6SDDLFvGKv7FuAI8yV IwJVMmh8VnWH//UC/JlsaKsalAFDs+Lk26Xi2GURLc81lkV0ybbZx36Iwzd4 nxC3RRYPjkd2xfNJoCYly1awQxZzwvffjhKVwMuLU8a3B2Rx0uhEQJCyBA74 LZvXNymL4nulzfbOEuhlnE1cLS+HjpYv6fNuSqDz4h3+eD85KJZNhPDfk4BT SGinRIgctpz6u2yqUQL0OoGZpJ1y+OG+YGq4TwLyqTF/rA7LQWRAZ8MTKUl8 7xDe8+SyHEwmglUTwiXxc00jizkgh9g3O/7GxEiCV7HqRMAnOdRVRrfvSpLE +Kokvkvf5eAUeyxxc54k3EYChPtmySNg7tVRm5eSeHn2aGqwnDwyZT7dmq0v hQ+LemQerZJH15/vKX+4UoCLkWSrizyUe6a3jNtJ4dh8f6kWD3mU5ovIDHhL 4Tkjy/T4FnnUa2vFPEqVwrmkMie5GHlM8AKXHRiTwsaN9iVRBfIo3KyCpTNS 6PX1n+JclceGlB6OwDwKZN7Es3uvyeNRl4vmgUUU8Hal75yukMfx6KViB1ZR YPcksnZ5kzyWXpyZvdSDAs+X/EPBz+Xxs6l8hn8LBQsuWknHvJKHp6ze17gY Csr2NTzY0iEPzUrZl3ElFOh2hdx1HZFHZ+/rRssKCnzXLpkcHCXjz0t7xF9H wblQ31CvMRKv69xbcZ0UNGnc0ZX/ReKZHM+ME6UCXddv3p6tgF0Lr52wZFAh Frg4/b85CtC0DUrkV6aiXcz740kRBZw41bs3zpSKqF0REuoSCthg+GxDXCAV i7v9dLfJKEBiQ+I6y51UmPZ+PNEqp4BHB61X8cdRkXSt/oraQgVotVZaxGVR YX4lUTZdWQFdv3eaWF6kotLD+kipqgJSldn6/NeomEyd/axcXQGT4QXKcfVU DFnWzstYrICiMz5ylq+oWNhwXSpAh7z/oTyNv4cKweT9Mpp6CqiVTBeOm6Ai jsNYuVNfAbtNVvFZCtCQldOdPGuJAhZ7i/yatYCGrjeHxvcYkvdd2/9xvyoN Gbf6N3GMFWD9xqzPgk3DsoWX9kSZkPfzTb6bxaWB77jHQImpAorVb7y6v5yG Xz7dRc/MFLBxVUjzflKXQgJV33SZK0Byt0adhRcNnv8t393BVUDduf67s4Jp 4Lfbf7Kep4DIx+du399Ng4eminEeSDxf3Er3x9PgNli8LchCAd002hWL4zTM HPpvubIliY/74vysbBqC1/Y1NRBb+x89ff8yDSQ3hDctJfEdW5a2/wYN3646 CfYTF5XxH7WooUGJm/7cxYrMT2d1/KxGGsLP03bfIZacHRl9v40Gs02qwnOt yXwtNti5v5cG3/nsRFvibOF91rs+0/Aw4NyOCOKI3seU4Eka3qfKnD9BbF8t 0e8tQIdJEj89l1gx0/3G+vl0MPbWvT9HPLX9Ypwjk47So19E/v3+hcOX1VbK dGg8lskNJy5QN15koktHyvBMwTLiWIEDX3VN6Ci09maJEa/vaqpRsaaj+7Sy 1SMSr245LUVmFR0fvhp/CiIWOrlpg4Q7HbHbiwyEibtCCrWF/ekQsj2lnka+ v2z5j9+/w+iQ3q73Upz4qDK3aWwvHQvy7/Jiyfz5/j18ZugQHQHyZyPfk/k2 ffsisOsEHawjvKMGxJJlMiavsukIfKp2IJKsz8cUv7kNl+ng/fgSUErWL9P6 1+Wyajoe5H9Y8oOsd9jCpbuK6unIiShmzyJeNn3U5vxLOop99jrykf3xs3Th wNFhOhpsOFKtZH89TQq8GfeDjjs7XV4VchRw0f/mgd1/6djwrat/u5ECnGVt FX2pDBS92KDy1kAB1w6HbjS1YGDx0h2xQroKSPAu12GtYKDXqYoRpq2ATeYC M6rrGDhScsW3SUsB879nZEsGMzAZPGznSfInaMPdN8OZDNzI7qt6T/LPynjO le48BiRiH3v2yitAhuK0u7WEjF8yJt0mq4CGJwO0+48YWHqjWOEUQwFqS8Sc M78y4N8n1Ry7QAEzC9YpJU8zUPpNsUFGTAFtH3PHDggx8VePvapwngLicw1O hMoyUTTnlc4FUk96RTye2tgykXZvsnpmSh45vYW24+eYeBiVcmJXnzwi1L49 eV3ExKBMmalYjzzsgozsK24zsUXnk306qW+T4w8dYp4xEba7fjiqVR7Oczud 5v5lQoaerF1cJw9RvQWechukUWn/NOfMJXn0Razt+hsgDYPVGtmbLsijovzM xt4d0jC+02HAPCuPLUvVvS8fk0bjleB4v3RS/1wsNrOqpbEklPIk6IA8oqLD t1nLykDF3zNymac81jwoH1NTl8HF71PRK9eTeivMFzHPQAaLWeyNK9bIo/34 0Z3P7GWgez5lrspyeRjkX9zrulcGh/UW8ZwN5PGp4fXB4Lcy+C+0xblqjjzc GWan0zNlMT7nKb9NoRxcxCXGrubJwpa9oWlvPulfcwaX15XI4i8lRqPwrBxs J1N+/Xwki4h1gv1fU+Vg0N63fv03WWQtOWOhvlcO8zOT6DJ2cnCdYL13IH/v 0d+dzJ2Ww9x3wr9G+2ShTN+TUrRBARqrtXzWz5FF7p1Hd3xFFkE55f3lB2bS OH/RdXjuQUUIbB4P6ib7aMjJJyApURGGxrqLjVczoMMXPCx6XBGWJeaSp+wY qHCLHV5wRhHJsiVRG83J+WnB5WHqNUXMhOh8UlJigH/Pj+FFnYqI0eETif9C h69jykfjJUoYyw892Z9E8nw6M7DSRAlXPAPM2w7S8bXgwkczKEGLmWvWHENH lMCtjzx7JWTFOW1sDKcj/U7HR2svJeRvH5ed60FHnaLmyOpjSkiTO7fnhDYd ahOPRgIGlEBz+LxsXisNQW+aHnmNKIGn4hC09BkN1ytf5bh+U8KJiqsjB57Q wI3tX7n8jxL0d7BlZO7S4DJX8KY6VRlLrD1oeaSuHpJZGvXBShk0zpEJhShy vuTdF/XLV8arzUdcfmvSoKn4ZMCjUBnUxc/36JC+ESb44q5zqTJerGpo2LKI ht/1PWFWVcqQ1ro76yedBiknvlalV8o4+aRhdfhsGix9eTm9AipoFly08c97 KnITqrU3+ahgWuhmesB5KrLFztHMAlQgJcXLqsihIis19i89VAVbFVJHpE5T kZq99MWzPSrYfzw5vjuVivjSJxG8VBUw1jlVvo2nIqC9tVL+vgqOcbxPepO+ 7O95O3+qTgUSlrXLjTdT4d2beaytSQX1Sy75Mnyp8PjkvjG5XQX6n5uav3hS 4cjXyz/zRQW39z6KFnCigq0+urxTXhW7+tNO3iV9X+fqM3a5sio62rOeyxhT ocW+JpOuqQop7cGI/YZUKJtFfF5hSKy46YcfiwraqqnjVQ6q+PmSWZ2mRoVk 67vIzDWqmOBjahqoULHArdo7wlUVk1YnfnUoUjHHN9ZgsR9xe17lMnkqpnYJ tZ+JUkXmSbvC/VQqfv7+cG9XnCrC+JPn+klR8X3/kytrEohb391bJUHFp6Sj e0VOqiKgTIhlIUZF1zlJhb1Fqtj39P7AwdlUPHws7+/2VhVWKUbt2RMUOF1a ZvKiWxWfA2REF/6koCc+bL7tgCq6vpj6Fv6gYMbiwa0lX1Ux+GjT7lffKOBU +QlLCKnhmtitL9GfKHh8OvndYRE1NLutnW0yQoFL5O3/ZsTV8KreevGfYQrC Deeu/ySjBq1ft/MyP1BQUlpc8JilBtuDhz8r9VFgltIaxTVSw2nnYktGLwWN wTOryszUEOGumCb1noIhzVW/LixTQ7WmvLRCNwW75kY2Mx3UsD7upJ1uFwVC Q+fPH3dSw8sV5oE25FyndPH78n2eahBoPhR45B0F1w/Iyo97qyG0u8Kq7C0F 8LYe27pFDUmmtrOG3lCwQeHUaddwNfw5QKd4t1OQmWUyYnBEDbMNi1HQSoHq bp+aomQ1pD2XfzqPuMzlaJriSTXs/EFXjHhFQYtUl6n4OTXsnXw/3/0lBV5j QuKH89Vws8o4t72Fgq/Pdfv/XFHDr68qwx7EYsn7j47cVIOX9prUyBcUZAcV bvKuUMM239qPEsSa9i8N3tSowSJBZ6T0OQXlGr/nrKpVw/3eoykuxLZzVDrr GtQQ5PzqJT9x26DDNfPnZD18Rm+UPaPAr3bnwZutariyokIrlPhH3jlXrXdq KBAXM9Iljour177Qo4Y3B6+9GH9KgbjXt1nMQTWIbt4y8YD4HE+6LWVEDS4+ Q3kZxDrySwuFvqlhQLurJYy46vfWfdE/yXoc+xSzmtj+3UmnH9NquBRcfIlD /La8WnXrLHUMjhRbqhJvyRycei+kjuWB4SuliSd2Lni2XlQdozl76ynEh9Zy 8p5JqMPtnNEVKjHFwGuXDV0dPlMLPssS50km2lfLqoN91ydFk5j97bqCgSL5 92MJSVzie8/efS9UU8evqw0d64lXlgjWL9JWRz4zeF8kcddR7exMtjquH7uy NZc4aKtL2AKOOrzOlJ5rJp7aF53z21wdaRczymeT+TmSmt8wvFQd1g8rNayJ GZcaJ9qWq6P8ZvtwEvGl8jHlRyvVET6Y9f0NsUEz0+naWnUkHTkHXbIeD3sQ c9ZdHcbF0Q1JxD3CKW92b1aHTPLrPW5kfUNkbgn5B6vDIZN3son4j06n/ppw Mj/D659bk/0h7aKVrB1DLDmR7kD2U0GAU6X0QXWs+TlPsoPYMDpySDhJHfcD R9O3kf23Jv+xZW+GOsm72qxrZH/23h4NfZatDr/JzyIebRSENVJzqi6oY7XA qkCx1xQcHfOZyCgh8ahffxZP9nsd+Irt69QhzWbvrCX54uys9obTpI6XIbcP XOqgoG+zo5BqizqqVGyskkl+8aVkb+LrUoeupPL9bSQfTTo51LJxdeyr1H97 mORz/deNlhem1XGW/2xpTj8F6wQPh6bM0oDHOveZ8gEKIrRanwSIaWD1d+77 2UOkHkRu2yevogG+/vJPw6SemB3LLBLR0kBl4PxL7FFSD3Jr2if1NOC6uyhz /xdSDx6L6b8008DZN1Lz2GMULKIVfjjsrAEbpiy3g9SzUo0XlB1uGvDLDu1d +4sCrvmkhfcmDawJ6o5pnaLAzdcm2yxIA2UP/Q8O/qHg5PXeVd8OaCDl5rVX joKk/q6UqXC7oYEmrWBjliQV6lVHWnrvaEAn/ovMB1Jvl2tMfgy8q4Ef0z53 z5N6nCjQKrP3CXnfPm01FSYVoneSo890a2DyeNJDn4VUiC/it+gQ0cRe7cPf y3WpYHwfeuzpqwmpdjw6tZoKzqZ1PQMBmqC4Bza9XkOFa3PtZHCoJnYrbrwq 40LF6csXNPbt0YRi+Zd3JW5UyHp4JJ09rglWkagMP+lfC2ufOXZXaeKUknT6 2l1UaJy61bqJqoX82yGVe3OpsDNWWrZRRgsq0nyFXnlUBL5LueO5SAthLj18 9peoKFQIOOOmrYWZny/vqRWTe2yBjJeztRbwYsOeOXdIvyuP/bRshxbuVDq7 bXhOhf47OwHdVi0EDbnQGeReaa7Qrffn5GJo5lk8LQyhYdo5LC5HTAfvd59x MbEj55/vf0alpXRgJ+Jh6ONAx9MTSe6ZDB0oiv/iJJF7Te7TSwZpSjqorG5O aXehw8q2czDBWAdTis79m33oOGpqZx/hp4O6EDM4R9Ehq6hMsa/WgVjHoUfm V+ngfnl9cTJIFwn/5bgZz2Pg8gOfrZ+26+L7tW3J5mIMiGd80evZrYsdq1/Y 8sTJvcFMuOpxvC7e6m41M6UxcDDRsCUjWxePsmtSKIoMNKmkzxg06cK+5uQx W2MGtHWuFN2h6qFL0F033Y88Tw9Nvs7QQ0yiTS+2MJAxa8m2Yhk9XJN+kjAc yMDMq3uGuYv0EGDWl8sKY+D53vb7h7X1YFTeeSJ7DwMRT4TbXaz1YOYQYfY2 mYFKX3/B8Qg9Utc38HXeZIAz/cyjapceBo+N//l1i4FbJ4zLDuzRwxYR/Qmp cnLvuCvqLxmrBxsHsVfcagYuMW481k3Swyvfsd+htQykNv1NDDyvhwzuDSdu K/l+n4A+Vr4ezkzkMTVfM3DsV4vpr0sk/j27qyXfMJCgeunT4WLyfcNa6W87 GNgXu8Lx4m09hDjOXm/Vz0CgQZZET7Me6Gt/de0bI+fjBv7Ay8/1YM1mVxv9 YMDPK+hByEs9fL5m5fV5nIFNybzwP+16eHSc+9PxFwMuQwOvpPv1sPmqksHI XwYss9mZa6f08LPFVO6wKBNMwSb5RlUW6FXCtGVKTIxtVYyJ12ChfVmz93Fl Jhpe7u42X8xCwfm3+9pUmIjKU8ktZbGwcl2zkqs6Ez2WMYsyzFhwTT0gw9Fm 4tJ+trKXEws1D4YLPQyZiBlOiJdey0K4ct677UZMrF/d3f9yHQt6EalvD3KY mLvo6EUbTxZE7hYvvWDCRNC9AdXFW1iIG/Gqv8llgv03U2MimoWZsdMdpMhA ZPOXI6WxLFyePLxAeRkT/U+tPwYcYCHHv4MqSO556WfHCjsSWIg99e5sxXIm Js1XLH6QxkISbeP1WQ5MvLh44ejeDBYqXI4cbyQuFPv1ySCLhQnrHzapjkx4 dF68evksC3uzNvNoq5ioifqrc+wKC5+9ZkdMOjGR2b82xaaYhbUPHTSurCH3 whXFX/6WkPhMFKtdnJlQlHUt3X6Thap0vviCtUwcqrzOWl/DwvuTDwpU1zOx UWluqsQDFobehAfdJeYkbRxreETG3+lDW+PKxLCb6A3zBhbWd3IXhbsxsWLK z0CplYXN+9+xkj2YuBhlep/ezgI/zn6kezIxMyPuKPqOhdzCKeGzxP8JVG0e 72FhFbNp57kNTMw5dOLHcB8LKYO7G6U3MrFpzub9XYMsbO/WSUollhSTPPP4 EwvvbCOcdm1iIjDlg1rVFxa4zhGe/cQPJapvlo6xoFKy4a2DFxMRtC1PsyZZ 8LdeyKJ5M/Fa4e6sIEE2zs6VPhTlw4TehbTkTcJsSJ2dWdNMnKAcILN2HhuF i99dkPZlwkSDsoQrzsaXv3GNhcSpRcP32VJsMNS8r3wmHtGucVSjsXH11yZx bT8mstmBW8Rl2TBX1o47Tzx+kzcuqMDGOlfLE23EjkbUuF+LyPM9Quw5/mT/ lX+cP6rMRlp6ib8h8V/Te2d61dhQzg9neRGvv5uu/lqTDa/IjJMJxKXYWtao zcacKs/UYuK5D2F5T4+NhxY07WZib2vas5v6bAjMltr8kbjy8Yj7FUM2+qSv WgpuZoJid38ox5iNtoKlD6SJg5oydqSasRH21nRIm7jWMYj/MI8Nvdd8t82J 5V9YpOy1ZEPujgDLjnjnGrpsmDUbCdGV69cQP2v9VOBry8YNwYt6rsTq6x8s cbVnI+CPZaU78f63px44OLJR1C037Ub81iN4peVqNqzePxxzIWZ3W3YYOrPh OlKfv5I4yYsRoLWOjfGUOilr4v6+z+MKbmS9/rpbGhGb+T+Mo3iy8WxGW1+V OH0oc8HcTWxsfzc4JEE8GhiS/cebjQhvQ/8p8v3LPi/VGPNjg9r64mo3cW4o 89bgFja2dYU/uE88+W3U8t1WNsYSOi7lEq+OePTsWQgbefovPKOIC39meTza xsa5w7IfnYn5I0OH70SwsTM42VGT+Ga0tMCFPWxoJPOKGsn6ivJ9TcmIJuPv 4lw5RewXVyubFEvWy6QxcRMx7XCYYcQhNlK9AgSHyf4JnWvzcMsRNoJrXS4U ENcnyazyPMrGp4/ndf2II4/XBdiksuHsZq/cSvbn6Rpe0Jx0NkqS1j0+Rlw1 eiek4RQbBhe3PllKzOdQFO6Yw8Y1/bwfl8l+PzT3eLRLARtPy95oryb5UMCZ G8soYiN3NH3BOMmXhs1xcW+vsrG8OM83g1isLuLwhhts1PExw1+QfDsZ53rC /y7ZT1ofAjVIft661pKmfp+NGcWTeuUkf9t77DM+PmRDwuHaPhtiGR73TMgT NqR3C9e4kvy/MK14cecrNrRj3GV9SH0ojfh059BHsh/tBcoEXJhoyfOrtP3M BufVBftgUn9+tHRVz/tKnvdnnXpF6pMR68WD5HE25uefWZ9N6tfdz2VNGXz6 mPhxvVV8NRNN/jE9l2j66DiwZflxe7L+6ZO9W5j6cPtDPdZmx4R47bYBTVl9 LDduuilNvEbJ92PJIn1oPt5SlU3q79tu2x+3Fusj2TtkVoI1E0PrJec8ttRH dl+sxAyp54kX5hk9stbHvAsRlyWItT7x+9+31ce2tKV/FM2ZCIn5/rDSUR+4 EDLJNSX5fvFVTKmbPsqDnHM8SP/g/54xkbVdHy7FA5psXSZkj8l8CLqgj9s1 ojPecuR72qRogRf1cWW21DZDWVJvF4paby7Qh0e0gdocGTJ/N35f8CrRR57x keBLDCY03nZucKnQh6DJ0OunUkwYquW28Vr0seaswouWuWT/3leuk+Q3gOx+ m/ZHpN86dsz9M2u2AeInFumHfmfAbmJU/5uwAb5VzPdhkP5spV1+/pmYAXic +U6bv5DzRJZD9FGmAQqrNTsmhhlYuG2ngRDLAPWqHJkPXQx8XVh/4ddGAyxP LPjCrGcgJXZrTE+1AXacObKnMJOBBdtzzosEL8HYge0VajwGuR9c3CMQtgR1 OwNUr5ozcNrw6prp7Utw3VtbTd+MAdXpqtkju5fgHNXkO8j5iRvfEdAQvwSW TL+5vvoMhGTIsI9kL0Fzn9/9BjVy3qrIeiDUtAQXjA9q60gwIJlz/szM0yWQ fB5R37iAgfUxVyJ+vlgCKU7x6sD5DPQvLVcdfL0EsVRJ40IRBqab2hNr+5Zg 0XDR+SVCDGh209fETy9B3vMH01HTdBwRyOibpWWIxWa5fzsH6chMtWA/1jbE 27ge4xsDdFxa9Dn2qJ4hdAulDxzpp+MRz0qebmgIp6YJW+NeOviixtYvtjDE 1t6fTy920rH7h+NTl3WGEM2Zlrv5io4tA8LlRQcM8U14w8B/D+nYFXFDeNsh Q8wxiu298oCOQwIbXQyPGOKs5h+Zi/fpyF906/u9ZEOUtj+1PVdDR4+nr05b liEmxA8VXqikY13bvTy+UkO8uHotYfAGHTaPI5PXdhiiZZPZ84CLdJSqSQ6I dhuiKLag6kQ+HdIJhaaP3hvipFPaREUeHV9s3w2xPxhi92Cju8QF8r0NZkvF xwyx5Wfgt+azdHxs/jvRIGwEbod9/6FMOpx1Mh3j5hlhNsV27qNTdNxN1rto LGYEgQ8Th/iJ01Z6ORVIGkFq4cnkA+l0mL14UHxQzgi8Wr7O9FQ6Ul4d9IK+ EfaUN3RNH6VjykD+zsQSIxyuKal3JPZNvzX/P44RppNDJPOS6OC4fKiU4xph 3pXeupWJdPS+tqVN2xrhSvPZqvLDdBi8E2ks22CEgSXPmM/j6Dhrmr8o2MsI tOO3lY2J52Sb7Vb2NcK5VUVpefvp6PQIVkkLMIKdifvZqFgy311PY8IijLB4 9HEgbx8d7e9PGGglGmG+Tte48B46HnhcuS13zAi9Rs1BUZF0FL++ZyJ+3AjC N2ITxnbTsb/5C8bTjWDLXVTSt4sOzXIHh5rzRhg9OVz6ZgcdFAO/59fyjaD2 7fYKd+KZkqg1+ZeNEPzk3tGuCDpa8otcj1w1ws/s8cnhcDr2Hp/rv6bcCE2G NtGU7XT4iywatq4yQvw8T8O8bXSsOsQJ4tQYQf3FklR9YuWozdvlao1w+aAW yzWMjqbNtfs+PDeCt7yT4J0QOuR5+0/tHTICw2dJ2cOtZD4qMqVDRowwvq4t Ioh4zKA0Z9OoEcnDjBc04jrN7jzrH0ZwXZy+KSyQjlCaeekCPg7oq7LqDAPo cDvhrM8vwEFvtY/Xpy3k/iUadOvHbGIbdnoeMYP/TNUbEQ4qWpJracT3Pk/W 59E5iEvbwRHfTEfhFvEVGdIc3C6/nNjiT8fJPrVnCXIcWDC+hmUQB7xxaQ1W 4sDl6YIJRWJn55D1m1Q5UAo/mD7iR+5vzw6+c9Lg4P2YQ20ZsWTtzfdGuhx8 HPjW6kj8m9fkq8nmwL/dqUyOeLCi74PsEg62FEsojfrSUVEqOTrLlIPV4amX 0oh9ssOmGm04SDzlZvSN3B9pj7S+Jy0n420o6nxK3DAyOGK/ggOKss6bq8R6 pp6djas5cKqbbgol7vNmtCU5c2Bt+vahE3FG4sun9us4eNEnIWZE/PvN8nuN Hhyc0c9OEyD+b9bs8qSN5Pv1tz0b8abDW+PeNXtvDpYq5Lu1EtNW7y0U8eNg w+swg3vET3Yb5jVu5uCIsoRHMXFU7rczSYEcVJZXPc8i1qsvPmkfzMFuoysn Eoj7vmw+JhLGwXedeWd3E2fQlQ41budASkViPIB4Oa9rX9IODi6nf073IP7t n7XLfjcHoT+bYlYRlyY7h4ns5cCx4u01a2KfWwsCGqM5cHeGltm/+LoavJJi OZAwVRnRJ26YfcjN/gAHISMlXxcTR2tbrBE5xIHsJz5TtX/xrf1t35jAwann Zk8U/8UXddsqKYkDD7O40wr/4svfbm6fzIHY4OhVOWK7Jm1DkRMcFJ4+y//P f74P6TSmcXALRaf+uVQmXy0pg4PAd4uD/j3vu3TjQvssDkaPGcf8G5++VZop ks1BzNmBZ6r/4kttlWg8y8HNyKWe/4+v4vi8pPMcFJX5qP6LX6/XXsA+nwMu da2mKXH/XOHf8y5zYJukvMWK+BTrwY+GKxy0mXd2Of6LzzX6c2IxB35HEo65 Ec/Ecgbt/uNARVAnfDPxtYLvXfOuc6Cz/2Xyjn/xPS953XCTg3qp6O74f/FN BjxPvM3BFUlt3/R/8SmoPLGr4MBApl/mMjEr9ExFQw0HH/S9Fj79F0+Gy43E Bxxc/aOwtY84865EsV0tByN2r/t//Xu/WEJOQwMH6Ufme2mS/XVtydKMxGYO 5n2O9LIi9vWcSbZ7zsHxuzePbiRuLI6IbWjlYMFjz41ZxPte6UYmtnNw/USh 4B1i9u+P2+zekfWZPPD8NXGmvZdPQw+ZzyMJr6VJvtiHy3ok9nEg+PKgOJd4 5vRrZ7tBDgz/3NjqTez70cGmYYSDb0mG8SW+//6f2ESj4ScHLYOJ8s4kH30b Ixxrf3HIfY4hFk+cKfZf+L3fZHyHGet/+TxzQunuLX5jHBP4dlyG5H/DadE1 efONMUX56TVB/KfDZvdZCWO4X2iOZJF6oqewPyeLYozwz/OfBxFn5I1/SJE2 xqxVZawPxN7FXVFRqsagTEef/UjqUfoo48IuDWNY3c3ep0PqWb3emsfbFxvj bVPt8XBinbLHEgFsYyyP+mA1i9S/6erSS2u5xlAPHKjRJPXx5LO45zouxojm XD91M5iOxxLV4xquxsjN/vN6Hqm3U2smpFU8jFGzdrOeN/Gm9q1+Mt7GuFkx rEgJpUP7vfOUcAj5/VhJdzyp13VjqsrvDxqjSmirWSap/5PUxl1pZca4ulxx 6x7Sf34IXpH0uGOMbwOnDg8Rf/1+6KpypTEm3ohsWbeXjqEXln1l94wx/yUz 1CiKjjfHKhzbG43Rb9wdxEf6WcXsQhW5XmPcbqF33ST9L3o84eWl+SZY/7bI NOcIHfytNroVm02QwqOtZJwh9T1doiUi0AR7tY62FxBfW9sRoRtsghL5vgfG 2eR72rZV5G83Ae3M6ZseOaT/v862Tok2wSYv0YFL5+jY83bM3TfNBF8t31rY k/PGWPfZhPk1JlgcI2zecJWO9x9/vvemmYKv5ojbWnK+Kc8Nvtn20hQ7o51m MkbI+9Xdf2W1mcL21fNWnU9kPv+z5Xq+MUX3tc+b64hNapTq+7pMST8fv/3j Mx1VnW/efR02RaqyyojDV9JvpG0ERPjMoNN87v63H2R+T8o78RabIecLPXXy D+mnsqKn+HXNwNJr7z44Q4dw/q93tSwzfNJ2aZD8S4ftjVd+K4zMwN2ltV2L j4GGF4mRrpZmEJo/Mr6On4Hm+RO54evNkOv/gZ5Dzo+vEp59uRxvBqWxBO8W ct78oWnmdemwGVLoY94e5DxKaS5oyU80Q3qNWcsA8VqJuLLzx82g/JI+9VOc gbYsg71nss3w/UDNOkkpBt4UZgml3DSDfdT6zMV0BrqafOR29puhbhVD6KM8 AzMhz5MjPpghLHrt5k0KDChImPOFfzTDvDzvhW3Em9bS+kK/mkGsKe1UzUIG 3nfWFwT8NsODG86JiYrkPDyqbeBJMUc8W3YOnyoDw+KTdlZW5ihKfTbbfzED vvGrHxksM8fnwg35j4h7JgrNVezMUWERnqqozUB7l6ee0CpznLw25N5BXFf8 kFrvbo52heQzy3QZyLdN6bEPN4eigOTx3yxyf6gacjXbaY5cTp3gKjYDZ3Qt Xy6ONIfy0oePLhCn0sZrxWLMIbiwXsWGnPf397sVPUs0R5DuDf94AwY2xKru XHPBHKGZ6TVdhgy8/R7zZelFc4w46r5SNSLzufnNFoMCc3gM5rJCiFc4HnWn lpjDqbO4borYVHYMr8vJ+Il660TI/YJxp1rE/YU5Ci/Xz55nysBJLfpB+1fm +Kq1MteGWPxc2Izpa3OIG07GxRELH1L6Jttpjm2+NQsniX+uOdLWNWQOHrvz 7ltyf3n5xfm8Nx8XF5ccOR7NJeOLOx1fKMBFwAHFrUXEHnorY7pmc3G2NPlS O/Fg2HJPNxEunBrNwSL3o8lv5kwnGheP1ZpmvSM2lzSdI87k4j/jJwMCYCCO zZloluHinliE1mJikXB26/JFXFw+5dKxh1j+h+oJi8VcrKxXbxe3YMCHohz7 V4cL541+zQbEBQaLQqtZXChdjVBZT8zaIeNgbMTFtcAbM9nEVj8XzGVZcvG+ +rCbgiUDCTSxyVErLti71LdyiZsN530oXsYF69acHg9il12CteoOXLjyr5k4 RRwwORm7cD0XCW1v3gstZaCE8TO0y42Lg7Im0ouIxzjfN2R7cpFuefSOCXFU 5Gczhg8XhdHf1YKIk6feTy4I4eKJxMH2x8Qvpbs/NIdxYe6qvKyTmGHa0ZYU zsVq/iK5MeLze9tuCkeS952PEpC2YuDm74awvwe4eGrSVO5N/Eu2fmP1IS7O ZZmEhhNzzWsd9x7hIjOxLvkA8ePomsUTyVyM9/qKXSAWPVslU3aCC/s08eBS 4lV3y+eFn+RC0k+Uc5f47cyNodEsLqKiWRLtxPIK114XZ3OxtmBaoZ/Yh1dS F3iOi5CKdWe+EH+KKcgfzOei/7zEG0FrMt+5F9PyL5P4mujZ84l33rsQ513I xdbDfM104r98OZu6/uOixutVpDrxI1Nm1OvrXDjUep/QI07YmX7qeRkXFMnm GSNih2sSN57c4aLH4NADLrHkp2NPH1Ry8dqJv9OKuE113sfKu1z4Pb7laEd8 xuvQ7LL7XBgrSjNWEm/K5l9U8ogLM5V84zXEyq/3mV1+zEXig+YbLsRDEtPr chu48JGWOOxKfHXFrvCsZi5kIodvuBNvP/w9OfU5iWftSxNPYsMHoYVJL8l+ XbFCdgPx1O+R2vg2sl+UX67/5xqjLe+j33Bx/+GHr/9+H7+9//fODjLfS0QG PIhtr25ihHVzEXyhZsm/8UWHOvQDerkIckroW0/8QtF1pfcAF9SC4dG1xBme rYHuQ1xcVQhY70Tslrn6kPMIFy9XHFvoSKzwsvm8wygX29o7ly0n7hezq7b5 xkXavr6nS4kLbOvaeT+42CKqfsucOPiA5Q/OBBdzNhjOGBKz795dwJ4i8Xic vqxL/HPSREvrDxeO0z3X1Ygr9W/bKPPxIGiUuVCBODZE31tOgIetkiu/UYmt rvwXTRPiofZkuooo8dx+rawFc3lIffy7ehZxqqvy81kLeNDx2Sk3QvaLy8nc kSkJHliv/xvoIpZ5Jiv8g8LDE7H1lBbifCsqd1Cah5okh8u3iANiTrh2y/Eg d+aJaAGxToXYjvaFPDRNSrzLJL6tK1TcoMpD+IHQm7uJowLjHj/U4OHc14p7 m4lxcaa3ajEPpuo8jgtxg/QE8z82D6+DtmxlEXfMHjqcxuVB7Hfx9x6Sb7nw zTtqwQOfhNrWRmK/vT13D1rx4JPa6VRGPPq1fXyXHQ8JrSd2HCbm63ji4+HC Q9agpbQKscr1Ip5KCA8hD8sjbEi9uJ7V+HwkjIdF3SFWmsTYP+J1PZwHlV7x XDFij1Va8bxIHj5auv1pIfUpdbSw3jWehz+fWzf+q18zmoWrk0/zcCjuPytH Uv+OSjb0OufwsO3XSboWMXNqOFwml4c6uzMxwsQGTzQyCi7ywLuyWaKG1Net m6+8fVDKQ7da3goN4va8Ap+JOh7CKqkFH80Z8E+q/1H9hKznvUbKfeLv24cO xjfx0JpivfAU8XxL9QKJFh52LJyiWhJb91z+pNXJg+qq0mNppB9cl728Y9N3 HiR8coxVSL+oa2h52L8AMM2R/iTMYcBEzVXcQgLQrasKe0X6038Huj1yJAET 2uqiXOJMs0/ja6nAAse7VhziwJLZ6o+lgXO+ZUxf0v/mp3KOXlEBWL31r0pI f3RxPescYgrkqOx/QyH9duBDwMCEPyDUfjXWWoOsx9r+jLBaILc7fs4zGukv 7q9+n5KzwLznf5sezGZAVfJJ9iIFC/TL67nsIZ7/pNqsaKEFWg51i7CJuwwv R91VssD8HuG/5wUZ2Ce553e/hgVYa70o8QIM3Hui8JtlaIHlN2x2rZ7FgCVn 63SjowVWN7KbKeS8pfll45m1qyzwwbPwW8tvcl+/5GzavdoCD96ZrDlB3CvF 3TvmbAFKSeSz+cQHvohPM9wt8Cn0zx3RaToeXbo15bfZAgXvXa9RftFR7Fl0 +ssWCzw0oXS0TZLzOCXXJDKQfE/1fbssYr+4I3uOBlvgolbiuDyx0AaPqevh FtDdmZ+kPUHHKGX1abMdFtBoaen59pOOtkZrk7qdFihcwR99i/iSse6eN5EW OHW+PQnEyV+VpH32WmDljOHf2cQ7LzMqPkVZYDh6dmXjOB0bNoi57dxH5sMr p+YE8TIq/9TfGAsUDbmIrSf+H4lWenY= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesLabel->{ FormBox["\"Time\"", TraditionalForm], FormBox["\"pie\"", TraditionalForm]}, AxesOrigin->{0, 2.}, LabelStyle->Medium, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.510185105512319*^9, 3.510186116018763*^9, 3.510186265466889*^9, 3.5102289171818953`*^9, 3.510229262590934*^9, 3.510229415595149*^9, 3.510229984387043*^9, {3.5102305848984213`*^9, 3.510230605992694*^9}, 3.510230701298526*^9, 3.510231362707843*^9, 3.5102315577446203`*^9, 3.5415955131637783`*^9, 3.541595640696187*^9, 3.541759922291531*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"u", "[", "t", "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{ RowBox[{"pie", "[", "t", "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "end"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "10"}], "}"}]}], "}"}]}], ",", RowBox[{"LabelStyle", " ", "\[Rule]", " ", "Medium"}], ",", RowBox[{"PlotStyle", "->", " ", RowBox[{"Thickness", "[", ".01", "]"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"end", ",", ".1", ",", "30"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.510162693166237*^9, 3.5101627582538424`*^9}, { 3.5101629570481997`*^9, 3.510162983404933*^9}, {3.5101635134827957`*^9, 3.5101635419935293`*^9}, 3.510163592937858*^9, {3.510163697482666*^9, 3.5101637501351957`*^9}, {3.510163818766508*^9, 3.510163887742481*^9}, { 3.510163952597418*^9, 3.5101639726813297`*^9}, {3.510164092716354*^9, 3.510164095734104*^9}, {3.5101645283455057`*^9, 3.510164530624107*^9}, { 3.510164561823023*^9, 3.5101645968547077`*^9}, {3.510168295514386*^9, 3.510168326278576*^9}, {3.510168727795198*^9, 3.510168747752206*^9}, { 3.510173619303196*^9, 3.5101736594846*^9}, {3.5101737088798323`*^9, 3.510173712893249*^9}, {3.510173925632318*^9, 3.51017392828552*^9}, { 3.5101743112706842`*^9, 3.51017431208759*^9}, 3.51017566743751*^9, { 3.5101759400718*^9, 3.510175992299211*^9}, {3.5101760872797747`*^9, 3.51017616139606*^9}, 3.510176220526825*^9, {3.510176290495116*^9, 3.510176290939418*^9}, {3.510183827208234*^9, 3.5101839308113194`*^9}, { 3.510185190895402*^9, 3.5101852238099413`*^9}, {3.510228434753005*^9, 3.510228435129744*^9}, {3.510229270664819*^9, 3.5102293280152473`*^9}, { 3.510230087527521*^9, 3.5102301300164623`*^9}, {3.5102302789407454`*^9, 3.510230444060814*^9}, {3.5102304901902*^9, 3.510230545404303*^9}, { 3.5102313412149277`*^9, 3.510231344174211*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`end$$ = 0.1, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`end$$], 0.1, 30}}, Typeset`size$$ = { 360., {180., 184.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`end$2445$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`end$$ = 0.1}, "ControllerVariables" :> { Hold[$CellContext`end$$, $CellContext`end$2445$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> ParametricPlot[{ Part[ $CellContext`u[$CellContext`t], 1], Part[ $CellContext`pie[$CellContext`t], 1]}, {$CellContext`t, 0, $CellContext`end$$}, PlotRange -> {{0, 10}, {0, 10}}, LabelStyle -> Medium, PlotStyle -> Thickness[0.01], AxesLabel -> {"u", "pie"}], "Specifications" :> {{$CellContext`end$$, 0.1, 30}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{403., {222., 228.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{3.5102305509455976`*^9, 3.5102313481557007`*^9, 3.510231432273745*^9, 3.510231560604817*^9, 3.541595520861046*^9, 3.5415956444684887`*^9, 3.5417599305375834`*^9}] }, Open ]] }, WindowSize->{1171, 737}, WindowMargins->{{132, Automatic}, {Automatic, 84}}, ShowSelection->True, FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (November 6, \ 2010)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[545, 20, 835, 14, 43, "Input"], Cell[CellGroupData[{ Cell[1405, 38, 912, 16, 103, "Input"], Cell[2320, 56, 253, 4, 46, "Output"], Cell[2576, 62, 254, 4, 47, "Output"], Cell[2833, 68, 234, 3, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3104, 76, 572, 11, 118, "Input"], Cell[3679, 89, 280, 4, 27, "Output"], Cell[3962, 95, 285, 4, 27, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4284, 104, 484, 9, 88, "Input"], Cell[4771, 115, 303, 4, 27, "Output"], Cell[5077, 121, 306, 4, 27, "Output"] }, Open ]], Cell[5398, 128, 90, 1, 27, "Input"], Cell[CellGroupData[{ Cell[5513, 133, 832, 26, 58, "Input"], Cell[6348, 161, 1055, 23, 46, "Output"], Cell[7406, 186, 1022, 22, 47, "Output"] }, Open ]], Cell[8443, 211, 90, 1, 27, "Input"], Cell[CellGroupData[{ Cell[8558, 216, 849, 18, 27, "Input"], Cell[9410, 236, 3297, 82, 53, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12744, 323, 465, 10, 58, "Input"], Cell[13212, 335, 1154, 34, 33, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[14403, 374, 286, 8, 58, "Input"], Cell[14692, 384, 1116, 30, 33, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[15845, 419, 1096, 22, 58, "Input"], Cell[16944, 443, 18587, 311, 237, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35568, 759, 805, 17, 27, "Input"], Cell[36376, 778, 17145, 287, 243, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[53558, 1070, 2412, 48, 43, "Input"], Cell[55973, 1120, 1941, 39, 467, "Output"] }, Open ]] } ] *) (* End of internal cache information *)