Density Matrices

A Max Franklin Production

Defining a Density Matrix

If we consider an observable A in the state $|\psi\rangle$...

- The density matrix is the sum over all of the "pure states"
- ullet This is mathematically defined as $ho = \sum p_j |\psi_j
 angle \langle \psi_j|$
- In this format, the coefficients p_i are non negative and sum to one

For any pure state, density operator has certain properties

- p²=p
- Tr(p)=1
- p>0

Justification for Density Matrices

- A density matrix is able to describe mixed states
 - It does this through linear combinations of pure states
- It is not known whether or not the universe is in a pure state, so to be fully general, a theory must include general descriptions of mixed states.

A simple example

An example of pure states and a density matrix that we learn early is that of polarized light.

- x-polarized light is in a pure state, with a density matrix of $p = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- y-polarized light is a different pure state, with a matrix of $p = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Some light is in a mixture of half x-polarization and half y-polarization, and has a mixed density matrix of $p = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$

Useful Properties of the Density Matrix

- dp/dt = -i(Hp-pH)
 - This is found by letting the wavefunction vary in time and plugging it into the equation
- For an observable A, when trying to measure A
 - \circ <A> = Tr(pA) for mixed states

Entropy can be found from density matrices!

- For a system with density matrix p:
- S = -Tr(p ln(p))

Density Matrices in Statistical Mechanics

Say we have a system with eigenvector $|\psi\rangle$ and corresponding eigenvalue E_{i} , with Hamiltonian H.

- The density matrix is the sum of $w_n | \psi_n > \langle \psi_n |$, where $w_n = 1/Q$ ($e^{-\beta E n}$)
- This can be written as $p=e^{-H/kT}/Tr(e^{-H\beta})$
- This means we can find the average energy, which is U=Tr(pH)

More Stat Mech

- From the equation F=U-TS, we can plug in to find
 - $F \le F_0 + Tr[(H-H_0)e^{-H0/kT}]/Tr[e^{-H0/kT}]$, where H_0 is any other Hamiltonian and F_0 is the corresponding free energy
- By considering the density matrix as a function of β, it can be shown that
 -dp/dβ=Hp
 - A use of this is in position representation
 - $\circ -dp(xx';\beta)/d\beta = H_{y}p(xx';\beta)$

Example: Free Particle

- Hamiltonian of a free particle: H=p²/2m
- Equation becomes $-dp(x,x',\beta)/d\beta = -\hbar^2/2m *d^2/dx^2 p(x,x',\beta)$
- This has the solution p=sqrt(m/ $2\pi\hbar^2\beta$) $e^{-(m/2\hbar^2\beta)(x-x')^2}$
- For a system of length L, the trace of this equation equals
 - \circ e^{- β F}=L sqrt(mkT/2 π ħ²)
 - Partition function

Example 2: Simple Harmonic Oscillator

- For a linear harmonic oscillator, $H=p^2/2m+mw^2x^2/2$
- $-dp/d\beta = -\hbar^2/2m * d^2/dx^2p + mw^2x^2p/2$
- We can define a = sqrt(mw/ħ)x and f=hw/2
 - $\circ So -dp/df = -dp^2/da^2 + a^2p$
 - This evaluates to approximately p(a, a', f) = sqrt (mw/ $4\pi\hbar f$)e^{-(a-a')^2/4f}
 - o To test this, we can try an exponential function, and solve a quadratic equation
- Eventually, we get the final form:
- $p(x,x',\beta)=sqrt(mw/(2\pi\hbar sinh(hw/kT))) *e^{-mw/(2h sinh(2f))[(x^2+x'^2) cosh (2f)-2xx']}$

References

Bertlmann, Reinhold A. Anomalies in Quantum Field Theory. Univ. Pr., 2005.

Feynman, R. P. Statistical Mechanics: a Set of Lectures. W.A. Benjamin, 1972.