50 Shades of Cooling

PHYS 114 Li Tian Prof. Amy Graves

What do we know about cooling already?

Joule-Kelvin Expansion

**Gas slightly cools
when it expands into a
2nd evacuated vessel

Joule-Kelvin Expansion Applied

Gas Liquefier

But we are not satisfied...

Way to 0.1 K: Evaporative Cooling

** Liquid turning gas demands energy

** Pressure \|, boiling point \|

Ex. Liquid Helium

Pump away the vapor to reduce pressure » cool liquid helium through evaporation

He₄ ~1K

He3 ~0.3K

But we are not satisfied...

WHY? Fascinatinating phenomenon @ mK, wK

March to mK: Helium Dilution Refrigerator

** "Evaporate" pure liquid He3 into He3+4 mixture

Note that in the dilute phase,

the solubility of $_{3}$ He = 6.6% even $T\sim$ 0 K.

=> Property that allows us to COOL

Concentrated phase (nearly pure ³He)

Dilute phase (mostly ⁴He, up to 6.6% ³He)

March to mK: Helium Dilution Refrigerator

Crawl to wK: Magnetic Cooling

** Utilize properties of paramagnetic salts to cool F R In 2

Concept simplified:

1D Ising Chain

$$S = Nk \left[\ln(e^{2\beta J} + 1) - \frac{2\beta J}{1 + e^{-2\beta J}} \right]$$

 $M = N \psi \tanh (\psi B / kT)$

Crawl to WK: Magnetic Cooling

Cooling steps:

- 1. Recooling (A)
- 2. Turn on B-field (A-B)
- 3. Adiabatic demagnetization (B-C)

Crawl to WK: Magnetic Cooling (Physical view)

Crawl to WK: Magnetic Cooling Improvement

 $M = N \psi \tanh (\psi B / kT)$

Why don't we turn off B to obtain absolute zero?

Weak dipole interactions stil self-produce a B Improvement: Nuclear paramagnet

Electronic paramagnet ~1mK

Nuclear paramagnet ~2.8 *10^-7 K (pico)

The Cooling Hierarchy

- 1. Joule-Kelvin Expansion
- 2. Evaporation Cooling
- 3. Dilution Cooling (Helium Refrigerator) ~ mK

~K

~ 0.1K

~ nK

~ wK ~pK

- 4. Magnetic Cooling
- 5. Laser Cooling