# **Diffusion and Random Walks**

Emma Suen-Lewis

#### 1-D Random Walk

Generally characterized by: time step  $\Delta x$ , spacial step  $\Delta t$ , probability of going left or right

- Let p be chance of going right, q = 1- p be the chance of going left
- Let m =  $x/\Delta x$  be cumulative number of spacial steps
- Let N =  $t/\Delta t$  be variable for time steps passed
- Let w(m,N) be the probability of being at position m at time
   N



### Finding the probability w(m,N) for a 1-D walk

W(-4,4)

- For some N, only certain m are possible
  - o I.e. at N = 2, m is either -2, 0, or 2
- For some m and N, there is only 1 combination of right/left paths that lead to that point:
  - $\circ \qquad m = N_R N_L \text{ and } N = N_R + N_L$
  - $\circ$  N<sub>R</sub> = (N+m)/2 and N<sub>L</sub> = (N-m)/2
- Since we know the probability of each step, for some path there is a probability that exactly that path is taken: p<sup>NR</sup>(1-p)<sup>NL</sup>



# Finding the probability w(m,N) for a 1-D walk

• To get total probability for all paths leading to some m, N, multiply by the number of possible paths:

$$w(m,N) = p^{NR}(1-p)^{NL*} (N!/N_R!N_L!)$$



# Simulating a random walk



Plotted with p = 0.5

Note that the fluctuations have the same "structure" at any N - relative size of the variations in the path





#### Simulating a random walk



Note that the spread of the random walks increases as roughly the square root of N

This is a consequence of the Central Limit Theorem  $\rightarrow \sigma$  proportional to  $\sqrt{N}$ 





#### Simulating a random walk

Gaussian distribution of end points (5000 trials, N = 5000 timesteps)



Note that the spread of the random walks increases as roughly the square root of N

This is a consequence of the Central Limit Theorem  $\rightarrow \sigma$  proportional to  $\sqrt{N}$ 



#### Taking the continuous limit for a 1-D walk

- Use a non-drifting walk, i.e.  $p = \frac{1}{2}$
- Probability of arriving at some (m, N) is  $\frac{1}{2}$  the probability of arriving at  $(m-1,N-1) + \frac{1}{2}$  the probability of arriving at (m+1,N-1), at the previous timestep
  - o i.e.  $w(m,N) = \frac{1}{2} w(m-1,N-1) + \frac{1}{2} w(m+1,N-1)$
- Switching from m,N to x,t:  $m = x/\Delta x$  and  $N = t/\Delta t$ . Let u = continuous probability function.
  - $\circ \qquad 2u(x,t) = u(x-\Delta x, t-\Delta t) + u(x+\Delta x, t-\Delta t)$

### Taking the continuous limit for a 1-D walk

• Take the Taylor expansion around x and t with the variables  $\Delta x$  and  $\Delta t$ .

$$2u = u - \Delta t^* u_t - \Delta x^* u_x + \frac{1}{2} (\Delta x^2 u_{xx} + 2\Delta x \Delta t u_{xt} + \Delta t^2 u_{tt}) + ...$$

$$+ u - \Delta t^* u_t + \Delta x^* u_x + \frac{1}{2} (\Delta x^2 u_{xx} - 2\Delta x \Delta t u_{xt} + \Delta t^2 u_{tt}) + ...$$

$$\circ \qquad 0 = 2 \, \Delta t^* u_t^1 + \Delta x^2 \, u_{xx}^2 + \Delta t^2 \, u_{tt}^2 + \dots$$

• At small  $\Delta t$  and  $\Delta x$ , we get the following:

○ 
$$u_{t} = (\Delta x^{2}/2\Delta t) u_{yy}$$
, also stated  $\rightarrow$ 

- Constant is the diffusion coefficient D
- → Higher D → faster diffusion due to larger typical spacial step in a random walk
- Only linearly varying distributions are stable
- In 1-D, solutions look like linear connections between any boundary conditions



The diffusion equation describes changes in distributions where motion is governed by random walks

#### Other walks - drifting 1-D walk

- Unequal p and q
- Final positions still obey Gaussian distribution:







p = 0.3, and q = 0.7

- Different probabilities for (up, left), (up, right), (down, left), (down, right)
- For equal probabilities, is essentially two random walks in different directions superimposed
- Can make it drift diagonally, or create some correlation between different choices for up/down and right/left
- Creates the diffusion equation as follows:
- Rate of change depends on curvature - configurations that solve Laplace's equation are stable

$$rac{\partial \phi({f r},t)}{\partial t} = D 
abla^2 \phi({f r},t),$$





Solutions for various boundary conditions can be solved with Laplace's equation









