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Definition

Riemann Zeta
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Ty m The Riemann zeta function is defined as the analytic
Zechen Zhang continuation of the following sum

A Brief History <(S) = Z ls (1)

and Riemann n
Hypothesis n=1

Notice that for real values of s, the sum only converges for
s > 1. However, we can define the function for complex
values of s by analytic continuation.

m Euler first studied this function without the knowledge of
complex analysis and successfully calculated ((2).
Riemann then extended it to complex numbers.

m It turns out that the zeta function is fundamentally related
to the distribution of prime numbers.
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m(2)=1+ 2% + 3% + .= %2 (Basel problem: What is the
probability that two numbers selected at random are

A Brief History
and Riemann

Hypothesis
relatively prime?)
4

m(4)=1+%+%H+..=5
m(0)=1+1+1+..=—3
1

B((-1)=14+243+...=—5
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A Brief History m Proposition: For all the nontrivial zeros of the zeta
function, the real part of them is %

Hypothesis

m Consequences include resolution of distribution of prime
numbers distribution, growth of arithmetic functions, large
prime gap conjecture, etc.



QOutline

Riemann Zeta
Function and
Polylogarithm

n Zh:

Riemann Zeta Function

R — m Applications in Physics

Physics



Bose Integral

Riemann Zeta

R — m We can utilize the Riemann zeta function to evaluate the
Polviogarithm Bose integral /g(n), which appears in the derivation for
Stefan-Boltzmann law.

oo Xn [o.¢] Xnefx
/ = d = dx—— 2
5(n) /0 XeX—l /0 Xl—e—x (2)
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m Using change of variables y = (k 4+ 1)x, we have

1

k=0

o0

/B(n) =
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m Using change of variables y = (k 4+ 1)x, we have
o0 1 00
=S —— [ dy"e” 4
s(n) art (k+1)n+1/0 yy e (4)
m Thus, we have

Ig(n) = ¢(n+ 1) (n+1) (5)



Stefan-Boltzamnn Constant Derivation

LRSS For a Planck spectrum (the spectrum for wavelengths w), we

Function and

SN are interested in the total energy calculated from the integral of
Zechen Zhang that' |e

Vh [ widw
U= / eﬁﬁw —1 w23 /0 ebhw — 1 (6)

Phosic " Using substitution x = hfw, we have

Vh * x3dx  Vh ac
(5)/ = Ly @)

~ 723 ex—1 w23 \hp

Eventually, we have
_ (vw2kg 4
15¢3m3

Thus, u = AT*=U/V = (15c3h3)T4 and
o= Ac/4 = 72k} /60c2Rh3.
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The polylogarithm function Lin(z) is defined as

N
x

Lin(2) = > = (9)

k=1

Definition

for the unit disk of z. Notice that we can analytically continue
the function for other values of z. Also, Lin(1) is just the zeta
function ((n).
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Evaluate integrals of Bose-Einstein distribution

functions
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o)

1 e X Z —Xx m+1 (10)

7 lex —1 1 — ze™X
m=0

[ee) XnildX xm—|—1
[t [ )

Then

Application in

Statistical

Mechanics Proceed in similar fashion as in evaluating the Bose integral,
we have (see BB C.6 for details)

/ T =)L) (12)
0



Grand Potential of Bose-Einstein Distribution
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With the polylogarithm function, we can calculate the grand
potential ®¢ for non-interacting bosons as

Zechen Zhang
b =

;2(25+1)V(2£)3/2 > E32dE (13)
3 (2m)2 ‘' h? ebf(E-n) 41

Writing z = e®#, we can evaluate the grand potential as

25+ 1)V |
(DG = —kB T()\?’)I_I5/2(—Z) (14)

th

From the grand potential, we can calculate variables of our
interest.
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m Riemann zeta function and polylogarithm function are
profound mathematically. Physicists use them to solve
integrals.

Summary
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