Chemical Demon
Algorithm
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Bath

o
Al g O rlthm e 1-dimensional bath with discrete
array of positions x and momenta p
(two-dimensional phase space)

S etup e Particles randomly assigned to

lattice spots, max 1 particle/spot

Demon interacting with
bath of fixed T, p - will
obey Gibbs distribution

Demon

e Demon with a “bag
of energy” E  and
particles N,

e Interacts with one
particle at a time, if
it has enough
energy

. e AT .
(depiction very inaccurate) Probability distribution: P_d = e”(-beta( E,-mu Nd))/Z_G



Initial particle distribution

O O O Create an initial setup with randomly

distributed particles N and total energy E.
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Momentum space ———
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Position space ——»

Initially, demon energy E is zero and
number of particle N, is zero.




Momentum space

Interaction with bath
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Position space ——»

Demon moves to a random phase-space lattice point.

Case 1. If there is a particle, calculate change in
energy AE to remove it.



Interaction with bath
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O O Demon moves to a random phase-space lattice point.

Momentum space

O O O O Case 1. If there is a particle, calculate change in
energy AE to remove it.

Position space ——»

If AE < E  (demon has enough energy) then:
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1. E,->E,-AE =

2. Nd->Nd+1 O O

3. Remove particle from lattice —_—
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Momentum space

Interaction with bath
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Position space ——»

If the demon does not have enough energy:
No changesto E, or N,

Demon moves to a random phase-space lattice point.

Case 1. If there is a particle, calculate change in
energy AE to remove it.

In either case: Record the new configuration of E and N, and the probability

P_d =e”(-beta( E,-mu* N ))/Z_G



Momentum space

Interaction with bath
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Position space ——»

Case 2. If there is no particle in the space:

Calculate the energy needed to add a particle to the
space.



Interaction with bath

O O O Case 2. If there is no particle in the space:

Calculate the energy needed to add a particle to the
space.
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Momentum space
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Position space ——»

If AE < E, (demon has enough energy) then:
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3. Add particle to lattice
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Momentum space

Interaction with bath

0|0 O

@ |olo P

O
O o0l o |

Position space ——»

If the demon doesn’t have enough energy

No change to energy, particles, etc. of demon or
lattice, no change to configuration

In either case: Record the new configuration of E |
and N, and the probability P_d = e”(-beta( E, -mu*
NJ)/Z_G

Case 2. If there is no particle in the space:

Calculate the energy needed to add a particle to the
space.



Trying some
simulations!

=

(depiction also inaccurate)

Initial settings:

1. N=100,E=200,and L=100
p = V(2mE), i.e. non-interactive moving
particles

3. Maximum p = \VE
(implies m = % as p = V(2mE))

4. E,and N both initially zero

51 - _— Initial phase space
L distribution is
s Of——— = chosen to agree
: ' with N =100 and
= 1 E =200.
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Simulations:
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Initial state Some spread into higher p Equilibrium distribution

1.  Particle distribution is even in x, as for an ideal gas no distinction in energy between particles at a certain position
2.  Some particles share position but no overlap in phase space is allowed (similar to semiclassical gas model)
3.  Spread in p around p = 0 with fewer particles at larger p values



Simulations:
nw=—kTIn(Z(T,V,1)/N)

To find the partition function Z — E e Ben
for a single particle:
n

From quantum model
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Simulations:
nw=—kTIn(Z(T,V,1)/N)
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Evaluate Gaussian integral: DQmrm 1/2 2mTm £
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Simulations:

Probability of some state:

Partial derivatives: <
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Simulations:

e Look at phase space distribution averages after
equilibrium is achieved using n ~ 1000 MC steps

Energy distribution averages
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Slope =-1/kT =-1/T

Valuem=-0.6 - T=5/3



Simulations:

e Look at phase space distribution averages after
equilibrium is achieved using n ~ 1000 MC steps
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Number distribution averages
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COIlClllSiOIlS e A model of ideal gas particles in the

semi-classical limit agrees with the demon
algorithm

e Demon algorithm provides negative
chemical potential in agreement with the
following equation, where the partition
function is taken from semi-classical ideal
gas:

p = —kTWn(Z(T,V,1)/N)




