Chemical Demon Algorithm

Emma Suen-Lewis, Week 9 PHYS 114

Algorithm Setup

Demon interacting with bath of fixed T, μ - will obey Gibbs distribution

(depiction very inaccurate)

Bath

- 1-dimensional bath with discrete array of positions x and momenta p (two-dimensional phase space)
- Particles randomly assigned to lattice spots, max 1 particle/spot

Demon

- Demon with a "bag of energy" E_d and particles N_d
- Interacts with one particle at a time, if it has enough energy

Probability distribution: $P_d = e^{-(-beta(E_d - mu*N_d))/Z_G}$

Initial particle distribution

Position space ----

Initially, demon energy E_d is zero and number of particle N_d is zero.

Create an initial setup with randomly distributed particles N and total energy E.

Position space ----

Demon moves to a random **phase-space** lattice point.

Case 1. If there is a particle, calculate change in energy ΔE to remove it.

Position space

Demon moves to a random **phase-space** lattice point.

Case 1. If there is a particle, calculate change in energy ΔE to remove it.

If $\Delta E < E_d$ (demon has enough energy) then:

- 1. $E_d \rightarrow E_d \Delta E$ 2. $N_d \rightarrow N_d + 1$
- Remove particle from lattice

Position space ----

Demon moves to a random **phase-space** lattice point.

Case 1. If there is a particle, calculate change in energy ΔE to remove it.

If the demon does not have enough energy: No changes to E_d or N_d

In either case: Record the new configuration of E_d and N_{d_d} and the probability $P_d = e^{-(-beta(E_d - mu^* N_d))/Z_G}$

Position space ———

Case 2. If there is **no particle** in the space:

Calculate the energy needed to add a particle to the space.

Case 2. If there is **no particle** in the space:

Calculate the energy needed to add a particle to the space.

Position space

If $\Delta E < E_d$ (demon has enough energy) then:

- 1. $E_d \rightarrow E_d \Delta E$ 2. $N_d \rightarrow N_d 1$ 3. Add particle to lattice

Position space —

If the demon doesn't have enough energy

No change to energy, particles, etc. of demon or lattice, no change to configuration

In either case: Record the new configuration of E_d and N_d , and the probability $P_d = e^{-t}$ (-beta(E_d -mu* N_d))/ Z_G

Case 2. If there is **no particle** in the space:

Calculate the energy needed to add a particle to the space.

Trying some simulations!

(depiction also inaccurate)

Initial settings:

- 1. N = 100, E = 200, and L = 100
- 2. $p = \sqrt{(2mE)}$, i.e. non-interactive moving particles
- 3. Maximum $p = \sqrt{E}$ (implies $m = \frac{1}{2}$ as $p = \sqrt{2mE}$)
- 4. E_d and N_d both initially zero

Initial phase space distribution is chosen to agree with N = 100 and E = 200.

Simulations: Qualitative Observations in Phase Space

- 1. Particle distribution is even in x, as for an ideal gas no distinction in energy between particles at a certain position
- 2. Some particles share position but no overlap in phase space is allowed (similar to semiclassical gas model)
- 3. Spread in p around p = 0 with fewer particles at larger p values

Simulations: Predicting the value of the chemical potential

$$\mu = -kT \ln(Z(T, V, 1)/N)$$

To find the partition function $Z=\sum e^{-eta\epsilon_n}$ for a single particle:

$$Z = \sum_{n} e^{-\beta \epsilon_n}$$

From quantum model of particle in a box:

$$\epsilon_n = \frac{n^2 h^2}{8mL^2} \equiv \frac{\alpha^2}{\beta}$$

$$\alpha^2 = \frac{\beta h^2}{8mL^2}$$

Re-express Z:
$$Z = \sum_{n=1}^{\infty} e^{-\alpha^2 n^2} = \sum_{n=0}^{\infty} e^{-\alpha^2 n^2} - 1$$

Convert to Gaussian integral:

$$Z = \frac{1}{\alpha} \int_0^\infty (e^{-u^2} du) - 1$$

Simulations: Predicting the value of the chemical potential

$$\mu = -kT \ln(Z(T, V, 1)/N)$$

$$Z = \frac{1}{\alpha} \int_0^\infty (e^{-u^2} du) - 1$$

Evaluate Gaussian integral:

$$Z = L \left(\frac{2\pi m}{\beta h^2}\right)^{1/2} - 1 \approx L \left(\frac{2\pi m}{\beta h^2}\right)^{1/2}$$

Evaluate chemical potential with h = 1, k = 1, $m = \frac{1}{2}$

$$\mu = -T \ln \left(\frac{L}{N} \sqrt{\pi T} \right)$$

Simulations: Relating the chemical potential to distributions

$$\mu = -kT \ln(Z(T, V, 1)/N)$$

Probability of some state:

$$P_s = \frac{1}{Z_G} e^{-\beta (E_s - \mu N_s)}$$

Partial derivatives:

$$\left. \left(\frac{\partial \ln P_s}{\partial E_d} \right) \right|_{N=1} = -\frac{1}{kT}$$

$$\left. \left(\frac{\partial \ln P_s}{\partial N_d} \right) \right|_{E=1} = \frac{\mu}{kT}$$

Linear slopes

Simulations: Quantitative analysis

• Look at phase space distribution averages after equilibrium is achieved using n ~ 1000 MC steps

Energy distribution averages

$$\left(\frac{\partial \ln P_s}{\partial E_d}\right)\bigg|_{N=1} = -\frac{1}{kT}$$

Slope =
$$-1/kT = -1/T$$

Value m =
$$-0.6 \rightarrow T = 5/3$$

Simulations: Quantitative analysis

• Look at phase space distribution averages after equilibrium is achieved using $n \sim 1000$ MC steps

Number distribution averages

$$\left. \left(\frac{\partial \ln P_s}{\partial N_d} \right) \right|_{E=1} = \frac{\mu}{kT}$$

Slope = $-2 = \mu/T$ where T = 5/3 (approximate)

$$\mu = -6/5 = -1.2$$
 (approximately)

Pretty similar?

Compare: $\mu = -T \ln \left(\frac{L}{N} \sqrt{\pi T} \right)$

$$\mu = -\frac{5}{3} \ln \left(\frac{100}{100} \sqrt{5\pi/3} \right) = -1.379$$

Conclusions

- A model of ideal gas particles in the semi-classical limit agrees with the demon algorithm
- Demon algorithm provides negative chemical potential in agreement with the following equation, where the partition function is taken from semi-classical ideal gas:

$$\mu = -kT \ln(Z(T, V, 1)/N)$$