
Physics 114 Statistical Mechanics Spring 2018

Presentation: Metropolis Monte Carlo

Intro:
We want to simulate a system which visits microstates that match up

with a desired equilibrium macrostate. As the simulation proceeds, it should
visit states 1, 2, 3..., i, ... such that the frequency of seeing microstate i is
the same as the probability P (i) drawn from the equilibrium probability
distribution function (PDF). As we’ll mention below, we might have to wait
until some transient time has passed, so that eventually the system settles
into visiting states with a frequency which reflects the PDF in a desired
statistical ensemble. Here, we will talk about about the Boltzmann PDF :

P (i) ∝ e−βEi

The set of states that are visited would thus be members of the Canonical
ensemble. (We could alternatively do microcanonical, grand canonical, other
... ensembles. Monte Carlo is very flexible :-)

In the technique we describe below, we will generate a series of states,
known as a Markov Chain. A necessary condition for convergence to the
desired PDF is that when the system is in particular state, call it j, the next
state k will be chosen so that

Probability j → k

Probability k → j
=
pk
pj

= e−β(Ek−Ej) (1)

This is called the principle of detailed balance. It has been shown (Kalos
and Whitlock, 1986) that the method developed by Arianna W. Rosenbluth,
Marshall Rosenbluth, Augusta H. Teller, and Edward Teller (Metropolis et
al, 1953) enforces both detailed balance + ergodicity (being able to visit ev-
ery possible microstate, given enough computational time) . This will allow
a system to eventually visit states with the desired, Boltzmann PDF.

Not to get off track, but generating states drawn from the correct PDF
related to the idea of Importance Sampling . Suppose that we want the expec-
tation value of an observable < A >, like energy < E >, or the fluctuations
in energy (E− < E >)2 ≡ ∆E2. (The latter will tell us the specific heat,
since: ∆E2 = kT 2Cv.) We could do

< A >=
1

N

N∑
i=1

AiP (i) (2)

where in Eq. (2) states i are chosen completely at random. On the other
hand, we could do

< A >=
1

N

N∑
i=1

′Ai (3)



where the restriction on the sum (the symbol ′) in Eq. (3) means that the
states i are chosen from the distribution P (i). Using importance sampling
via Eq. (3) to find averages is a little bit easier from a math point of view,
and much more efficient than uniform sampling as in Eq. (2).

Method:
A Metropolis Monte Carlo (MMC) algorithm, as listed on G&T p. 227
accomplishes this. It is an accept/reject algorithm. The choice to go from
j → k is accomplished in two stages.

• Trial step: Starting in j, state k is chosen at random.

• Accept/reject step: Decide if state k is accepted (k becomes the new
state) or not (the old state j is the new state)

It is not necessary that in the trial step that the new state is completely
randomly chosen. It can be for example within some “neighborhood” of the
old state, and as long as all states are ultimately accessible, ergodicity will
be satisfied. It is also not necessary that we use the specific accept/reject
criterion mentioned below ... we’ll generalize later. For now, here is the
traditional MMC method:

1. Decide on a temperature. That is, let 1/kT = β and pick a value of β.

2. Initialize: Create an array of N numbers representing the energies of a
set of N particles. Let them each start with the same energy, a random
value for energy, ... this will affect how quickly the system converges
to the equilibrium PDF, but otherwise, is unimportant.

3. Pick a random particle (That is, choose a random integer between 1
and N to determine your particle of interest.)

4. Trial move: Toss a “coin” (That is, choose another random integer,
now either 0 or 1.) If heads, consider adding ∆E to the energy of the
particle. If you are simulating an Einstein solid, you might always chose
∆E = 1, but you can also choose a real number within some range.
If tails, think about adding −∆E to its energy (that is, subtracting
energy).

5. Accept or reject the move:

(a) Definitely accept the move if it would lower the particle’s energy
(but not below zero if the physical system, like an Einstein solid,
cannot have negative energies.)

(b) Accept the move with probability p = e−β∆E if it would raise the
energy. To do this, you need to generate a real random number
between 0 and 1, which G&T call r. If r < p, the move is accepted.
Otherwise, it is rejected.



6. Go back to step 3 and iterate a lot of times ... you want each of the N
particles to experience many moves.

Exercise: Show that this algorithm gives us detailed balance, Eq. (1).

Implementation:
Here is a snippet of Matlab code in the spirit of the Method above.

% Probability Distribution information

beta = 2.0; % A target PDF parameter

pBoltz = @(t) exp(-beta .* t); % A target PDF ... Boltzmann distribution

theta(1) = 0.3; %initial value for the state of the particle

for i = 1:N

theta_ast = proposal_PDF([]); % Sampling from the proposal PDF

alpha = p(theta_ast)/p(theta(i)); % Ratio of probs at trial & orig. point

if rand <= min(alpha,1)

% Accept the sample with prob = min(alpha,1)

theta(i+1) = theta_ast;

else

% Reject the sample with prob = 1 - min(alpha,1)

theta(i+1) = theta(i);

end

end

This implementation (which I hacked from the Web ... credit to Felipe Uribe-
Castillo, 2011) is a little funky. We don’t choose a random particle per se,
but rather do a certain operation N times, treating each result as the new
state of a random particle in the system. Those states migrate towards the
desired Boltzmann distribution. Here, the state of the particle i, theta(i),
is considered to be its energy. The variable theta_ast is drawn from a
“proposal PDF” ... for me, just a random number in the range 0, 10. So
this variable is the proposed new energy of the particle as in Step 4. The
variable alpha gives the ratio of probabilities that we subject to acceptance
test as in Step 5. If the move is accepted, the i + 1st particle takes on the
new energy. If the move is rejected, the i + 1st particle takes on the energy
of the ith particle. Here are some figures from runs where N = 5000 and
N = 50000.

theta(i)
theta_ast
 alpha


Figure 1: N = 5000 and 50, 000 steps of the MMC algorithm. We can
see both the values of the energies (top part of each figure, in blue) and
a histogram(bottom part of figure, green boxes) with the ideal probability
distribution shown as a red curve.

Extensions:
We don’t have to do the Boltzmann probability distribution. For example,
my code does a uniform distribution (kind of silly, since we are using uniform
random numbers to begin with) or a Gaussian:

pUniform = @(t) t.^0 ; % A target "PDF" ... uniform

nu = 5; % A target PDF parameter

pGauss = @(t) exp(- .5 * (t - nu).^2) ; % A target "PDF" ... Gaussian.

See the images below.



Figure 2: N = 5000 steps of the MMC accept/reject algorithm where we
generate uniform random numbers between 0 and 10 or Gaussian random
numbers with mean 5 and width 1. We can see both the values of the
random variables (top part of each figure, in blue) and a histogram(bottom
part of figure, green boxes) with the ideal probability distribution shown as
a red curve.

It is also possible, as mentioned in the Intro, to use other criteria for
choosing a new trial state, and for accepting the choice. Here is a different
choice in lieu of Step. 5 in the methods section, that obeys detailed balance,
Eq. (1):
Probability of acceptance: α

1+α

Probability of rejection: 1
1+α

where α = p(new state)/p(old state). In our code, the decision would be
implemented as ...



alpha = p(theta_ast)/p(theta(i));

if rand <= alpha / (1 + alpha)

% Accept the sample with prob = alpha/(1+alpha)

theta(i+1) = theta_ast;

else

% Reject the sample with prob = 1/(1+alpha)

theta(i+1) = theta(i);


