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Metropolis Monte Carlo Algorithm Instructions:  
 

The Metropolis Monte Carlo algorithm is a method by which to numerically 
simulate the canonical ensemble. To understand how it works, consider a general 
expression for the average energy of an Einstein solid 𝐸(𝑇) = !!!!!!!!
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 where 𝐸! and 

𝑒!!!! are, respectively, the energy and relative probability of a microstate 𝑠. A computer 
is unable to generate the infinite microstates required to exactly determine the above sum, 
so a possible recourse is to sample the space of possible microstates by randomly 
generating 𝑀 possible microstates and evaluating the above expression for these 𝑀 
microstates. In this case, the equilibrium energy is given by 𝐸(𝑇) = !!!!!!!!

!!!
!!!!!!

!!!
, an 

increasingly good approximation as 𝑀 increases. However, since higher energy 
microstates are exponentially less probable than those with relatively lower energy, this 
approach is wasteful in that it effectively over-considers microstates that barely 
contribute to the sum. To improve the efficiency of this process, it is possible to 
implement a form of importance sampling in which only the most probable microstates 
are considered. This is accomplished by generating microstates that are proportional to 
their relative probability 𝑒!!!!. 

The Metropolis algorithm itself works by comparing a microstate 𝑖 with energy 𝐸! 
to another microstate 𝑗 with energy 𝐸!; for simplicity, we can restrict the choice of 𝑗 such 
that it must be adjacent to 𝑖, although this is not required and the resulting distribution 
will converge to the same result as if the choice of 𝑗 is arbitrary. Since the probabilities of 
the system being in state 𝑖 or 𝑗 are 𝑝! = 𝑒!!!! and 𝑝! = 𝑒!!!! respectively, the 
probability that the system transitions from state 𝑖 to state 𝑗 is 

𝑝!
𝑝! = 𝑒!! !!!!! =

𝑒!!∆!. If ∆𝐸 < 0, the probability of a transition is greater than 1 and the transition will 
decidedly occur. This is to say that the system will always transition to a state with lower 
energy. Otherwise, if ∆𝐸 > 0, there is a probability of 𝑝 = 𝑒!!∆! that the microstate 
transition will occur. By generating a random number on the unit interval and comparing 
it to this probability, we can decide whether to accept or reject the microstate transition.  

The procedure to implement this algorithm for an Einstein solid is outlined on 
page 227 of G&T, but is also reproduced below. Each step can be mapped to an 
appropriately labeled section of the accompanying codes that execute and visualize the 
simulation.  

 
1. Initial Conditions:  

Choose an initial microstate for a system by assigning random initial energies (or 
zero energy) to each particle of an Einstein solid. Also specify the temperature of 
the bath. 
 

2. Trial Move: 
Choose a particle at random and change its energy by ±1. Compute the change in 
energy of the entire system ∆𝐸, and determine the probability that the system will 
transition to this new microstate. If ∆𝐸 < 0, automatically accept the change. 
Otherwise, accept the change with probability 𝑝 = 𝑒!!∆! by generating a random 
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number on the unit interval and comparing it to 𝑝. If the change is rejected, do not 
modify the microstate. 

3. Repeat Trial Move:  
Repeat the trial move for a sufficiently large number of trial moves such that the 
system reaches equilibrium and the distribution of particle energies resembles the 
probability distribution.  

  
4. Determine relevant quantities: 

Compute the averages of quantities of interest (i.e. 𝐸, etc.)  
 


