Monte Carlo Simulations

A Max Franklin Production

Metropolis MC Simulation

e Generates N configurations of a system, C1,C2...CN so that
o lim(N-> infinity) NC/N = P(C), a probability distribution. NC is the number of configurations
e Thisis useful because it allows us to obtain many random samples from a distribution that is
difficult to sample directly.
e This allows us to approximate the distribution or find an expected value.

e The Metropolis algorithm is most useful because it generates microstates with highest
probabilities more.

Steps to the Simulation

1) Start with the simulation in some state. In our example, the energy of each particle is O.

2) Make achange in the microstate by choosing a particle at random and changing its energy by +1in
an Einstein solid.

3) Compute the change in energy of the system, AE.

4) If AE<O, the change goes through. If AE>0, accept change with probability w=e”(-BAE)

a) Generate arandom number r in the unit interval. If r<w, accept the change. Otherwise, reject the change.
5) Repeat many times, compute averages once the system has reached equilibrium

References

“Jason Blevins.” The Metropolis-Hastings Algorithm, jblevins.org/notes/metropolis-hastings.

Metropolis Monte Carlo Method, xbeams.chem.yale.edu/~batista/vaa/node42.html.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import random as ran
def MonteCarlo(N, Steps, B):
Eie=atlo)
energies = np.zeros(N)
for i in range(0,Steps):
r = ran.randint(0,N-1)
w = ran.uniform(0,1)

creates a blank list of total energy

#creates array of N particles, each with zero initial energy
#repeats process over given step number

#this random number is to pick a random entry in the particle array
#random number between 0 and 1

this is e”(-beta*AE), which we compare against the random number w
#this random number determines if +1 or -1 is done to the energy

#if x>.5 and e>w, the change is accepted and we add one to the energy

energies[r]+1

#1f e<w, the change is rejected

e = np.exp(-B)
X = ran.uniform(0,1)
if x>0.5:
if w < e:
energies[r] =
else:
energies[r] = energies|[r]
if x<0.5:

if energies[r]>0:

#1f x<.5, we subtract one from the energy
#this change is accepted if the energy would not become negative (energy>0)

energies[r]=energies[r]-1

else:

#if the particle energy is 0, the change is rejected

energies[r]=energies(r]

T.append(np.sum(energies))

plt.hist(T[:5000])
plt.show()

#we add the sum of particle energyes to the total energy list
#eventually, we can plot the total energy at high steps. It should be exponential

1600 -
1400
1200
1000
800
600 A
400 -

200

10

