Monte Carlo Simulations

A Max Franklin Production

Metropolis MC Simulation

- Generates N configurations of a system, C1,C2...CN so that
 - o lim(N-> infinity) NC/N = P(C), a probability distribution. NC is the number of configurations
- This is useful because it allows us to obtain many random samples from a distribution that is difficult to sample directly.
- This allows us to approximate the distribution or find an expected value.

• The Metropolis algorithm is most useful because it generates microstates with highest probabilities more.

Steps to the Simulation

- 1) Start with the simulation in some state. In our example, the energy of each particle is 0.
- 2) Make a change in the microstate by choosing a particle at random and changing its energy by ± 1 in an Einstein solid.
- 3) Compute the change in energy of the system, ΔE .
- 4) If $\Delta E < 0$, the change goes through. If $\Delta E > 0$, accept change with probability $w=e^{-(-B\Delta E)}$
 - a) Generate a random number r in the unit interval. If $r \le w$, accept the change. Otherwise, reject the change.
- 5) Repeat many times, compute averages once the system has reached equilibrium

References

"Jason Blevins." *The Metropolis-Hastings Algorithm*, jblevins.org/notes/metropolis-hastings.

Metropolis Monte Carlo Method, xbeams.chem.yale.edu/~batista/vaa/node42.html.

```
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import random as ran
def MonteCarlo(N, Steps, B):
                                    # creates a blank list of total energy
   T = []
   energies = np.zeros(N)
                                    #creates array of N particles, each with zero initial energy
                                    #repeats process over given step number
   for i in range(0, Steps):
       r = ran.randint(0, N-1)
                                   #this random number is to pick a random entry in the particle array
       w = ran.uniform(0,1)
                                   #random number between 0 and 1
       e = np.exp(-B)
                                   # this is e^(-beta*AE), which we compare against the random number w
                                    #this random number determines if +1 or -1 is done to the energy
       x = ran.uniform(0,1)
       if x>0.5:
           if w < e:
                                    #if x>.5 and e>w, the change is accepted and we add one to the energy
               energies[r] = energies[r]+1
                                    #if e<W, the change is rejected
           else:
               energies[r] = energies[r]
                                   #if x<.5, we subtract one from the energy
       if x<0.5:
           if energies[r]>0:
                                   #this change is accepted if the energy would not become negative (energy>0)
               energies[r]=energies[r]-1
           else:
                                    #if the particle energy is 0, the change is rejected
               energies[r]=energies[r]
       T.append(np.sum(energies)) #we add the sum of particle energyes to the total energy list
   plt.hist(T[:5000])
                                  #eventually, we can plot the total energy at high steps. It should be exponential
   plt.show()
```

import numpy as np

