Monte Carlo Integration

PHYS114 Li Tian

MC Integration is probabilistic

1. A numerical integration using random numbers

 Rather choosing points on a grid, MC integration randomly pick points in a defined volume

Probabilistic in nature

- Compare to other deterministic methods we are familiar with:
- trapezoidal rule + Simpson's rule

Basic mechanics of MC Integration:

$$\overline{\mathbf{x}}_1, \cdots, \overline{\mathbf{x}}_N \in \Omega,$$

$$Ipprox Q_N\equiv Vrac{1}{N}\sum_{i=1}^N f(\overline{\mathbf{x}}_i)$$

By law of large #:

$$\lim_{N o\infty}Q_N=I.$$

- By Central limit Theorem :

$$\sigma_N = \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N - 1}}$$

Some important properties to notice

- 1. Powerful integration method for higher dimension
 - The error is significantly smaller compared to other deterministic integration method

```
\propto 1/n (Midpoint rule) \propto 1/n^2 (Trapezoidal rule) \propto 1/n^4 (Simpson)
```

- 2. MC Integration becomes more powerful when we fine-tune the way we "randomly" pick points
 - stratified sampling
 - Importance Sampling, etc.

Example: G&T 3.60

x_i, y_i		x_i, y_i	
1	0.984, 0.246	6	0.637, 0.581
2	0.860, 0.132	7	0.779, 0.218
3	0.316, 0.028	8	0.276, 0.238
4	0.523, 0.542	9	0.081, 0.484
5	0.349, 0.623	10	0.289, 0.032

Estimate the integral using Monte Carlo Integration

$$F = \int_0^1 dx \, \sqrt{(1 - x^2)}.$$

Bigger N improves the MC estimation

^{**}Compare the result from MC integration to the exact result $\pi/4 \sim 0.785$

Importance sampling- A better way to sample

Core Idea

- place higher density of points in region where integrand is large
- 2. Define a weight function w(x) that tells us which regions are significant

 \leftrightarrow Reduce σ , reduce error

Let us actualize importance sampling in math formulas...

$$I = \int dV p(x) \frac{f(x)}{p(x)}.$$

$$I = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \frac{f(x_i)}{p(x_i)}$$

- 1. f/p flatter than f, σ of f/p smaller than σ of f
 - \rightarrow smaller error (for a given N).
- 2. Ideal choice: $p(x) \propto |f(x)|$.

Example:

Integrate

$$I = \int_0^1 dx \left(x^{-1/3} + x/10\right) = 31/20 = 1.55$$

$$\sigma_N = \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N-1}} \approx \frac{0.85}{\sqrt{N-1}}$$
 $\sigma_N = \sqrt{\frac{\langle g^2 \rangle - \langle g \rangle^2}{N-1}} \approx \frac{0.045}{\sqrt{N-1}}$

N	naive	importance
100	1.4878 ± 0.0751	1.5492 ± 0.0043
10000	1.5484 ± 0.0080	1.5503 ± 0.0004