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Introduction

A phase transition occurs when there is a singularity in the free en-
ergy or one of its derivatives. What is often visible is a sharp change
in the properties of a substance. The transitions from liquid to gas,
from a normal conductor to a superconductor, or from paramagnet to
ferromagnet are common examples.

The phase diagram of a typical fluid is shown in Fig. 1.1. As the-
temperature and pressure are varied water can exist as a solid, a liquid,
or a gas. Well-defined phase boundaries separate the regions in which
each state is stable. Crossing the phase boundaries there is a jump in
the density and a latent heat, signatures of a first-order transition.

Consider moving along the line of liquid-gas coexistence. As the
temperature increases the difference in density between the liquid and
the gas decreases continuously to zero as shown in Fig. 1.2. Tt becomes
zero at the critical point beyond which it is possible to move continu-
ously from a liquid-like to a gas-like fluid. The difference in demnsities,
which hecomes non-zero below the critical temperature, is called the
order parameter of the liquid—gas transition.

Seen on the phase diagram of water the critical point looks insignifi-
cant. However, there are clues that this might not be the case. Fig. 1.3
shows the specific heat of argon measured along the critical isochore,
p = pe. There is a striking signature of criticality: the specific heat
diverges and is infinite at the critical temperature itself.

Analogous behaviour is seen in magnetic phase transitions. The
phase diagram of a simple ferromagnet is shown in Fig. 1.4. Just as in
the case of liquid—gas coexistence there is a line of first-order transitions
ending in a critical point. All transitions occur at zero magnetic field,
H = 0, because of the symmetry of a ferromagnet to reversals in the
field. The additional symmetry means that it is often easier to work in
magnetic language and we shall do so throughout most of this book.
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Fig. 1.1. Phase diagram of a fluid. All the phase transitions are
first-order except at the critical point C. Beyond C it is possible to
move continuously from a liquid to a gas. The boundary between the
solid and liquid phases is thought to be always first-order and not to
terminate in a critical point.
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Fig. 1.2. Values of the densities of the coexisting liquid and gas

along the vapour pressure curve. (priquid(T) — Pgas(T)) is the order
parameter for the liquid-gas transition.
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Fig. 1.3. Specific heat at constant volume of argon measured on the
critical isochore, p = p.. After Fisher, M.E. (1964). Physical Review,
136A, 1599.

Fig. 1.4. Phase diagram of a simple ferromagnet. A line of first-order
transitions at zero field ends in a critical point at a temperature 7.
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Order parameter

Fig. 1.5. Zero-field magnetization of a ferromagnet. Below the
critical temperature there is a spontaneous magnetization M (T).

Crossing the phase boundary at temperatures less than the critical
temperature, there is a jump in the magnetization. Above the critical
temperature it is possible to move continuously from a state of negative
magnetization to one of positive magnetization. The critical point itself
separates these two behaviours; the magnetization is continuous but its
derivatives are discontinuous. This manifests itself, just as in the fluid
case, by divergences in the response functions, the specific heat and
the susceptibility.

The order parameter for the ferromagnetic phase transition is the
magnetization. Its variation with temperature along the coexistence
curve, H = 0, is shown in Fig. 1.5. Compare this diagram with Fig. 1.2
for the fluid; the only difference is the extra symmetry in the magnetic
case.

Phase transitions in other systems

Phase transitions in fluids and ferromagnets provide two simple exam-
ples of an enormous diversity of changes of state. Table 1.1 lists other
examples, together with references for those wishing to pursue them
further. We describe two cases in more detail to illustrate the richness
and complexity of the phase diagrams found in nature.

1.1.1 A ferrimagnet: cerium antimonide

In cerium antimonide, strong uniaxial spin anisotropy constrains the
spins to lie along the [100] direction. Within the (100) planes the
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Table 1.1. Examples of the diversity of phase transitions found in

nature
Transition Example Order parameter
ferromagnetic® Fe magnetization

antiferromagnetic® MnO sublattice magnetization

ferrimagnetic® Fe3zOy4 sublattice magnetization
structural® SrTiO3 atomic displacements
ferroelectric? BaTiOg3 electric polarization
order-disorder® CuZn sublattice atomic concentration

phase separation® CCl,+C;F¢  concentration difference
superfluid® liquid *He condensate wavefunction
superconducting/ Al Nb3Sn ground state wavefunction

liquid crystalline?  rod molecules various

eKittel, C. (1976). Introduction to solid state physics (6th edn). (Wiley,
New York).

*Bruce, A. D. and Cowley, R. A. (1981). Structural phase transitions. (Tay-
lor and Francis, London).

cAls-Nielsen, J. (1976). Neutron scattering and spatial correlation near the
critical point. In Phase transitions and critical phenomena, Vol. 5a (eds C.
Domb and M. S. Green), p.87. (Academic Press, London).

4Rowlinson, J. S. and Swinton, F. L. (1982). Liguids and liquid miztures
(3rd edn). (Butterworth Scientific, London).

eWilks, J. and Betts, D. S. (1987). An iniroduction to liquid helium (2nd
edn). (Clarendon Press, Oxford).

fMe<Clintock, P. V. E., Meredith, D. J., and Wigmore, J. K. (1984). Matter
at low temperatures. (Blackie, Glasgow and London).

9de Gennes, P.-G. (1974). The physics of liquid crystals. (Oxford University
Press, Oxford).
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Fig. 1.6. The ferrimagnetic phases of cerium antimonide. The rel-
ative ordering of successive ferromagnetic planes in each phase is in-
dicated in the Figure. o denotes a plane with a net magnetization of
zero. After Rossat-Mignod, J., Burlet, P., Bartholin, H., Vogt, O.,
and Lagnier, R. (1980). Journal of Physics C: Solid State Physics, 13,
6381, Institute of Physics Publishing Limited.

ordering 1s ferromagnetic: most planes lie in a state with spins s = +1
or s = —1, although planes with a net magnetization of zero are also
observed. The relative ordering of the planes themselves is ferrimag-
netic. Fourteen different states, separated by first-order phase bound-
aries, have been identified in neutron scattering experiments. These
differ in the relative alignment of successive planes and are identified
in the phase diagram shown in Fig. 1.6. Note the patterns that link
the various sequences of phases: similar patterns are seen in series of
first-order transitions in binary alloys and minerals®.

Yeomans, J.M. (1988). The theory and application of axial Ising
models. In Solid state physics, Vol. 41 (eds H. Ehrenreich, F. Seitz,
and D. Turnbull), p.151. (Academic Press, New York).
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Fig. 1.7. Schematic drawings of the idealised structures of surfactant
molecules that can form in solution as the surfactant concentration is
increased. After Corkhill, J. M. and Goodman, J. F. (1969). Advances
wn Colloid and Interface Science, 2, 297.

1.1.2 Surfactants in solution

Solutions of surfactant molecules have exotic phase diagrams®. These
molecules have a polar head group which is very soluble in water and a
hydrocarbon tail which is only just soluble. Hence they like to position
themselves in such a way that the head is next to water molecules and
the tail is shielded from them. If there is a surface they will migrate
there and sit head-down. This lowers the surface tension—hence their
use as soaps.

The phase diagrams of solutions of surfactant molecules are deter-
mined mainly by the concentration of the solute. As this increases
micelles form. These are groups of molecules arranged in a sphere or
cylinder so that the polar heads shield the hydrocarbon tails from the
water. A further increase in concentration can lead to a phase transi-
tion to a state consisting of micelles ordered in a hexagonal or cubic
array with the intervening spaces filled with water. A second transition
is also observed in some systems. This is to a lamellar phase where the
molecules are arranged into sheets but move freely within the sheets

2The future of industrial fluid design. In Chemaistry in Britain, 26,
4, April (1990).
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like a two-dimensional liquid. Fig. 1.7 illustrates some of the possible
phases.

Fluids, magnets, superconductors, surfactants: all apparently very
different systems. Can the phase transitions associated with such di-
verse types of order be brought within the same theoretical frame-
work? Why is there an order parameter, such as the magnetization,
which becomes non-zero within the ordered phase? Why and how do
the response functions diverge at the critical temperature? The aim
of this book is to give an introduction to the theories that have been
developed to answer these questions. A first step is to describe what
is happening on a microscopic level at a phase transition with the aim
of understanding the physics underlying the properties of a system at
criticality.

1.2 A microscopic model

Consider a simple model of a two-dimensional interacting system, the
Ising model on a square lattice. On each lattice site i there is a variable,
called for convenience a spin, which can take two different values, s; =
+1 or s; = —1. Each spin interacts with its nearest neighbours on
the lattice through an exchange interaction, J, which favours parallel
alignment

fila= —stisj' (1.1)
(ig)

il HE
Fig. 1.8. A real-space renormalization group transformation for the 4 S et e o o
two-dimensional Ising model on the square lattice. The initial config- ! : S :':"'
uration, corresponding to a temperature T' = 1.22T,, was generated = 3 : :h 5
using a Monte Carlo simulation. A sequence of renormalized configu- “‘- ¢ m e § B0 =
rations is then obtained by replacing successive clusters of nine spins 5 o ; 3}
by a single spin which takes the same value as the majority of the x| i '..' B
spins in the original cluster. Hence the length scale of the lattice is B By y 3 ?*H'
changed by a scale factor b = 3, 3%, 3%, and 3* in (b),(c),(d), and (e) re- .ﬁi 5 selia 8l yen kel -
spectively. Note that the correlation length decreases under successive Tetd ,' ; @__ ol h E;; ; n
iterations of the renormalization group corresponding to an increase ) (¢} (d) (e)

in the temperature. After Wilson, K. G. (1979). Scientific American,
241, 140.
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where we use the notation (ij) to represent a sum over nearest neigh-
bour spins on sites i and j.

The two-dimensional Ising model has been solved exactly and is
known to have a phase diagram like that shown in Fig. 1.4 with a
continuous phase transition at zero field and a temperature T.. The
magnetization becomes non-zero at the critical temperature and in-
creases to its saturation value, which corresponds to all the spins being
aligned, at T' = 0, just as in Fig. 1.5.

To see what is happening to individual spins as the temperature is
changed it is not difficult to simulate the model on a computer with the
fluctuations characteristic of finite temperatures being mimicked by a
random number generator. This is the Monte Carlo method which will
be described in more detail in Chapter 7. The results are shown in
Figs 1.8-1.10. Black squares are used to represent spin s; = +1 and
white squares s; = —1.

At temperatures very much greater than the critical temperature
entropic contributions dominate the exchange energy and, although
nearest neighbours tend to lie parallel, this is a small perturbation on
a random configuration. Fig. 1.8(c) is an example of this. As the
temperature is lowered the effects of the exchange interaction become
more apparent. Nearest neighbours become more likely to point in the
same direction and clusters of aligned or correlated spins appear. The
size of the largest clusters is measured by a length called the correlation
length. In Fig. 1.8(a) where the temperature is 1.27, the correlation
length is of the order of a few lattice spacings. The system is said to
show short-range order.

As the temperature is lowered the correlation length increases.
Note, however, that fluctuations on a smaller scale remain important;
there are correlated regions of spins on all length scales up to that set
by the correlation length. Each fluctuation is not an area of uniform
spin alignment but includes smaller fluctuations which in turn include
yet smaller ones down to the length scale set by the lattice spacing . ..

Clusters contain lesser ones
Complicating quite ’em
And lesser ones have lesser still
Inside, ad infinitum.
(adapted from Jonathan Swift)

The critical temperature itself is marked by the correlation length
becoming infinite. A typical spin configuration at the critical tempera-
ture is shown in Fig. 1.9(a). There is now no upper length cut-off and
ordered structures exist on every length scale. This is the microscopic
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Fig. 1.9. As Fig. 1.8 but with a starting temperature T = T..
Because the correlation length is initially infinite there is no change
in the ordered state under iteration of the renormalization group and
the system remains at the criticel temperature. After Wilson, K. G.
(1979). Scientific American, 241. 140.
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Fig. 1.10. As Fig. 1.8 but with a starting temperature T' = 0.997.
Fluctuations relative to the ordered state are suppressed by the change
in length scale and the system flows towards zero temperature. After
Wilson, K. G. (1979). Scientific American, 241, 140.

1.2
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physics which underlies a critical phase transition. Fluctuations on all
scales of length are important.

Below the critical temperature there is a non-zero magnetization.
More spins lie in one of the two spin states: in Fig. 1.10 this is spin-
up or black. The model is said to exhibit long-range order. At zero
temperature all the spins are aligned because of the exchange interac-
tion. As the temperature increases entropic terms in the free energy
lead to fluctuations away from this state and the magnetization drops
from its saturated value. Fig. 1.10(c) shows a spin configuration for
a temperature T < T.. The correlation length measures the size of
the largest fluctuations away from the ordered background. As the
temperature increases towards the critical temperature the correlation
length becomes larger. Just as for T > T, there are clusters embedded
within clusters on all length scales. The fluctuations cause the magne-
tization to fall, and it drops to zero exactly at the critical temperature
where the correlation length becomes infinite and the underlying order
is completely destroyed.

The long-range fluctuations in the magnetization of magnetic sys-
tems near the critical point are mirrcred by long-range fluctuations in
the density of fluid systems. These can be observed directly. If light is
shone on to a fluid near its critical temperature it is reflected strongly,
causing the fluid to appear milky-white. The strong scattering appears
when the density fluctuations become of a size comparable to the wave-
length of light, about a thousand times the®interatomic spacing. This
critical opalescence persists throughout the critical region emphazising
that fluctuations at this length scale remain important even though
the maximum length scale increases to infinity (mm or cm in a real
sample).

1.2.1 A renormalization group

We have stressed that, at a critical point, all length scales are im-
portant. This is an unusual situation: usually physical theories can
concentrate on a small range of scales of length. A continuum theory
of water waves, ignoring atomic motions, or a theory of the arrange-
ment of nucleons which ignores the atomic environment are essentially
exact. So how can we cope with, or even exploit, scale invariance at
criticality?

The answer lies in a set of theories known as renormalization groups.
These will be described in much more detail in Chapters 8 and 9 but the
ideas behind them can be illustrated using the Monte Carlo simulations
in Figs 1.8-1.10. The aim is to change the scale of the system and see
how it behaves. This is done by taking each group of nine spins in turn
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and replacing it by a single spin which takes the same value as the
majority of spins in the original cluster. This procedure reduces the
scale of the system by a factor b = 3. We then keep going to produce
the series of snapshots of the spin configuration, essentially seen under
different magnifications, shown in the figures.

For a starting temperature above the critical temperature (Fig. 1.8),
the scale change soon obliterates any short-range order and the spins
on the renormalized lattices become uncorrelated. This corresponds
to an infinite temperature: the system has been renormalized by the
simple transformation we have defined to T' = oco. This will be the case
for all temperatures above T,; the nearer to the critical temperature is
the starting point the more steps of the transformation it will take to
lose the short-range order.

For temperatures below the critical temperature there is an analo-
gous flow as the renormalization group is iterated. However, now any
fluctuations are relative to the ground state and, as these are lost un-
der renormalization, the system flows to a completely ordered state
characteristic of zero temperature. This is the case in Fig. 1.10.

Only at the critical temperature itself, Fig. 1.9, where there are
fluctuations on all length scales does the system remain invariant un-
der the renormalization group transformation. This can be exploited
to identify the critical point and describe the behaviour of the thermo-
dynamic functions in its vicinity.

2

Statistical mechanics and thermodynamics

This chapter moves through the large number of reminders and def-
initions necessary to arrive at the point where we can introduce the
idea of universality, one of the most striking features of the theory of
critical phenomena and a major justification for the interest in model
systems. The first step is to sumimarize the statistical mechanics used
throughout the book. Assuming that this is familiar material the main
aim will be to gather together the relevant formulae in a form suitable
for reference.

We then describe in more detail the behaviour of the thermody-
namic functions at a phase transition, distinguishing between first-
order and continuous transitions. It is very important to find a way
of describing the asymptotic behaviour of these functions near a con-
tinuous transition and, to this end, we introduce the critical point
exponents. A discussion of why they play a central role in the theory
leads to the concept of universality.

2.1 Statistical mechanics

We assume that the reader is sufficiently familiar with elementary sta-
tistical mechanics to regard it as reascnable to start from the canonical
partition function

Z(T,H) =) e PE (2.1)

where the sum is over all states r with energy E, and 8 = 1/kT with k
Boltzmann’s constant and T the temperature. Most of the subsequent
chapters of this book will be concerned with models which, even if not
applied to magnetic systems, are written in magnetic language, and
therefore it is convenient to consider an ensemble in which Z depends

15




Statistical mechanics and thermodynamics 2.2

on the temperature and the field H. Maxwell-Boltzmann statistics are
appropriate because the magnetic systems we consider will consist of
localized, and hence distinguishable, spins and the fluid systems will
be in the classical regime.

The free energy is proportional to the logarithm of the partition
function

F(T,H) = —kT'n 2(T, H). (2.2)

All macroscopic thermodynamic properties follow from differentiating
the free energy. The relevant formulae are listed in Tables 2.1 and 2.2
for magnetic and fluid systems respectively. Readers unfamiliar with
these should consult a text on statistical mechanics such as Callen!.
Those who are rusty might find it helpful to try problems 2.1 and 2.2.

Often our aim will be to calculate the free energy. However, some-
times, particularly in numerical work, it is easier to extract properties
such as the magnetization or the energy directly.

Thermodynamics

For a magnetic system the first law of thermodynamics can either be
written?

dU = TdS — MdH (2.3)

or

dU = TdS + HAM (2.4)

where dU, dS, dH, and dM are the changes in the energy, entropy,
magnetic field, and magnetization respectively. We have assumed the
volume V is fixed and hence omitted the term —PdV. Both forms of
the first law are equally valid but they correspond to different defini-
tions of the energy. The energy stored in the applied magnetic field is
not included in U, whereas it is included in U.

We shall use eqn (2.3) throughout because the free energy will then
depend on the most convenient variables (T, H) and will be identical

ICallen, H. B. (1985). Thermodynamics and an introduction to
thermostatistics (2nd edn). (Wiley, New York).

2The ‘field’, H, is taken to have the units of energy and the ‘mag-
netization’, M, to be dimensionless as is customary whan writing spin
Hamiltonians. If the field is the result of a magnetic field, B, they are
related by H ~ upB where ppg is the Bohr magneton.
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Table 2.1. The relation of the thermodynamic variables pertinent to
a magnetic system to the partition function

Thermodynamic variables for a magnet

First law: dU =TdS — MdH

Partition function

Z(T,H) =Y, PEr

|

Free energy

F=—-kTlhZ
Internal energy Entropy Magnetization
n a _ 8F
v=-E  s=-(%), M= (&)
=U-F)/T
Specific heat Specific heat Isothermal susceptibility
(constant H)  (constant X = H. M)
2
Cu=(F)y  Cx=T(&)x xr = (5%)r
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Table 2.2. The relation of the thermodynamic variables pertinent to
a fluid system to the partition function

Thermodynamic variables for a flurd

First law: dU = TdS — PdV

Partition function

Z(T,V) =%, e PEr

|

Free energy
F=-kTlnZ
Internal energy Entropy Pressure
n — 8F _ 8F
Uz_atlaﬁz S——(ﬁ)v P—_(B_)T
=U-F)/T
Specific heat Specific heat Isothermal compressibility

(constant V)  (constant X =V, P)

Cv=(57)y  Ox=T(5)x wr == (5p)r

<

2.3
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to the function F defined in Section 2.1. To see this we recall that the
thermodynamic definition of F is

F=U-TS. (2.5)

Differentiating and using eqn (2.3)
dF =dU - TdS - SdT = —MdH — §dT. (2.6)
Hence F = F(H,T). (It may avoid some confusion to note that if the
alternative form of the first law (eqn 2.4) is used the free energy defined

by eqn (2.5) becomes a function of M and T. This convention is used
in some texts.)

2.3 Convexity properties of the free energy

A function f(x) is a convex function of its argument z if

(z1 +1!z) < flz1) + fz2)

Ry < Al (2.7

for all z; and 2. If the inequality sign is reversed the function is said
to be concave. A more useful definition for our purposes is that if the
second derivative exists it must be > 0 for a convex function and < 0
for a concave function.

To determine the convexity properties of the free energy consider
its second derivatives

8 F —Cy 8°F
) = A, ) = 2.8
(aTz)H T ' (8H2>T XT (2:8)

where Cj is the specific heat at constant field and xr is the isother-
mal susceptibility. It follows from the third law of thermodynamics
that specific heats must be non-negative. Susceptibilities are usually
positive, but there are exceptions, such as diamagnetic materials. How-
ever, it can be proved that if the Hamiltonian can be written

H=H,— HM (2.9)

they must be positive®. This formula will apply to all the cases which
will be considered here. Because the second derivatives of the free

3Griffiths, R. B. (1965). Journal of Chemical Physics, 43, 1958.



itistical mechanics and thermodynamics 2.4

energy with respect to T and H are negative it is a concave function
of both its variables.

.orrelation functions

Thermodynamic variables like the magnetization or the entropy are
macroscopic properties. In Section 1.2 it became apparent that a much
fuller understanding of phase transitions could be obtained by consid-
ering what was happening on a microscopic level. To be able to do
this in a more quantitative way we introduce correlation functions.
For example the spin—spin correlation function, defined to measure the
correlation between the spins on sites ¢ and j, is

L%, 75) = ((si — (s3))(s5 = (s5))) (2.10)

where 7; is the position vector of site 7 and (...) denotes a thermal
average. If the system is translationally invariant (s;) = (s;) and T’
depends only on (7; — ;)

F(ﬁ — T_';) = F,’j = (SiSj> — (S)z. (2.11)

Away from the critical point the spins become uncorrelated as r —
oo and hence the correlation function decays to zero. Note that this is
true not only above but also below the critical temperature, although
here the mean value of the spin (s} # 0, because, as is evident from
eqn (2.10), the correlations are measured between the fluctuations of
the spins away from their mean values. The correlations decay to zero
exponentially with the distance between the spins

I(7) ~ " exp™™/¢ (2.12)

where 7 is some number. Equation (2.12) provides a definition of the
correlation length, £, which was used in Section 1.2 as an estimate of
the size of the largest ordered clusters in the Monte Carlo generated
snapshots of an Ising model. We have assumed that £ is independent
of the direction of 7. This is usually the case for large r near criticality.

At the critical point itself long-range order develops in the system.
The correlation length becomes infinite and eqn (2.12) breaks down.
Evidence from experiments and exactly soluble models shows that here
the correlation function decays as a power law

1
I ~ —5r (2.13)
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where ), our first example of a critical exponent, is a system-dependent
constant?.

It is possible to relate the spin—spin correlation function to the
fluctuations in the magnetization and hence to the susceptibility. Using
the formula relating the magnetization to the partition function given
in Table 2.1 one can check that the fluctuations in the magnetization
are given by

82

(M = (M))?) = (M2) = (M)? = BT

InZ=kTxr. (2.14)
But, writing the magnetization as a sum over spins,
(M —(M))*) = Z(Si —{s) D (85— (s) = Zl“ir (2.15)
13
For a translationally invariant system

Y ry=N> Ti~N f (r)ritdr (2.16)
17 7

where the sum has been replaced by an integral, a step justified near
criticality where the lattice structure is unimportant. Combining
eqns (2.14), (2.15), and (2.16) we obtain 8

XT ~ N/F(r)rd_ldr. (2.17)

At the critical temperature the susceptibility diverges and hence I'(r)
must become sufficiently long range that the integral on the right-
hand side of eqn (2.17) also diverges. This sets an upper limit on 7 of
2. Note, from eqn (2.14), that a divergent susceptibility also implies a
divergence in the fluctuations of the magnetization.

2.5 First-order and continuous phase transitions

A phase transition is signalled by a singularity in a thermodynamic
potential such as the free energy. If there is a finite discontinuity in
one or more of the first derivatives of the appropriate thermodynamic
potential the transition is termed first-order. For a magnetic system
the free energy F, defined by eqn (2.5), is the appropriate potential

“Fisher, M. E. (1964). Journal of Mathematical Physics, 5, 944.
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with a discontinuity in the magnetization showing that the transition
is first-order. For a fluid the Gibb’s free energy, G = F + PV, is
relevant and there are discontinuities in the volume and the entropy
across the vapour pressure curve. A jump in the entropy implies that
the transition is associated with a latent heat.

If the first derivatives are continuous but second derivatives are dis-
continuous or infinite the transition will be described as higher order,
continuous, or critical®. This type of transition corresponds to a di-
vergent susceptibility, an infinite correlation length, and a power law
decay of correlations (eqn 2.13).

It will be helpful to look more carefully at how the thermodynamic
variables behave near a phase transition for a particular case. The aim
is to compare the behaviour at first- and higher order transitions and
to look in some detail at the signatures of the latter with a view to
defining the critical exponents in Section 2.6.

The example is the simple ferromagnet in a magnetic field. Its
phase diagram was introduced in Chapter 1 and is reproduced for con-
venience in Fig. 2.1(a). There is a line of first-order transitions at zero
field stretching from zero temperature to end at a critical point at a
temperature T = T,. The symmetry of the phase diagram, which is
a consequence of the symmetry of a ferromagnet under reversals of
the magnetic field, does not obscure any salient features. An example
of a case where this symmetry is missing is the liquid-gas transition
depicted in Fig. 1.1.

We first describe the field dependence of the free energy and its field
derivatives, the magnetization and the susceptibility, along the three
paths 1,2, and 3 in Fig. 2.1(a). The aim is to compare the behaviour
of these functions at temperatures below, equal to, and above T..

The free energy itself is shown in Fig. 2.1(b). Note that it is convex
and symmetric about H = 0 as expected. A cusp develops at H=0
for T < T.. This signals a first-order phase transition as is seen more
clearly in the behaviour of the magnetization, M.

The variation of M with H is shown in Fig. 2.1(c). For T > T it
varies continuously. For T < T, however, there is a jump at zero field
indicative of the first-order phase transition. At the temperature di-

5The term ‘second-order’ phase transition, used synonymously with
continuous phase transition, is a relic of the original classification of
phase transitions into first-, second-, third- ... order due to Ehren-
fest. This essentially recognized only discontinuities in thermodynamic
derivatives, rather than divergences, which has been proved inappropri-
ate. Therefore we follow M. E. Fisher in terming transitions first-order
or continuous.
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Fig. 2.1. (a) Phase diagram of a simple ferromagnet. There is a line
of first-order transitions along H = 0 which ends at a critical point
at T = T.. (b) Field dependence of the free energy. (c) Field depen-
dence of the magnetization. (d) Field dependence of the susceptibility.
(¢) Temperature dependence of the magnetization. (f) Temperature
dependence of the susceptibility.
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viding these behaviours, the critical temperature 7., the magnetization
is continuous at H = 0 but has infinite slope.

Differentiating again one obtains the isothermal susceptibility xr,
which behaves in a definitive way at the critical temperature. The sus-
ceptibility is plotted as a function of field in Fig. 2.1(d). For T > T, it
is a smooth function of the field as expected. Below T, the susceptibil-
ity has a cusp at the first-order phase transition, H = 0. At the critical
point itself the susceptibility diverges, a behaviour characteristic of a
continuous phase transition.

We shall also be interested in how the magnetization and the sus-
ceptibility vary with temperature at constant field. This can be inferred
from Figs 2.1(c) and 2.1(d) for the three paths 4, 5, and 6 in Fig. 2.1(a).
Note that because of the symmetry of the magnetic phase diagram it is
not possible to cross a line of first-order transitions by varying the tem-
perature as would be the case generically. Following path 5 at H = 0
one passes through T, and then follows a line of two-phase coexistence
to zero temperature. Along paths 4 and 6, which have been chosen
to lie equidistant from H = 0 to display the symmetry of the model
better, there is no phase transition.

The temperature dependence of the magnetization is shown in
Fig. 2.1(e). For non-zero field the magnetization increases smoothly
with decreasing temperature to attain its saturation value, correspond-
ing to all the spins being aligned, at zero temperature. The spins align
along the direction of the field; if H > 0 the magnetization is positive
and vice versa.

For H = 0 no preferred direction is singled out by the field and,
for T' > T, correlated regions of spins are finite and equally likely to
point up or down. Hence the net magnetization is zero. At the critical
temperature the correlation length becomes infinite, allowing a single
cluster to dominate and a non-zero magnetization. The magnetization
increases from zero at T' = T, to its saturation value at T' = 0. States
with positive or negative magnetization have identical free energies.
The two branches of the zero-field magnetization curve in Fig. 2.1(e)
reflect this. The upper curve would be attained the presence of an
infinitesimally small positive field; the curve corresponding to negative
magnetization in an infinitely small negative field. Alternatively, cool-
ing in a field and then taking the limit # — 0% or H — 0~ would give
positive or negative M respectively.

Finally we plot in Fig. 2.1(f) the susceptibility as a function of
temperature. It must follow from symmetry that the susceptibility
depends only on the magnitude of H, not on its sign. For finite field
there is a peak in the susceptibility at T.. For H = 0 this becomes a
divergence signalling the critical point.

B e ———
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We have considered the dependence of the free energy on H and
of its derivatives with respect to the field, the magnetization, and the
susceptibility, on H and T. What about the temperature dependence
of the free energy? For non-zero field there is no phase transition and
hence the free energy is an analytic function of the temperature. For
H = 0 one passes through a critical point as the temperature is lowered.
'This shows up in the second derivatives of the free energy.

Finally, for completeness, we mention the behaviour of the temper-
ature derivatives of the free energy, the entropy, and the specific heat.
At a first-order transition there is a usually a jump in the entropy
and hence a latent heatS. The existence of a critical point is often
marked by a specific heat which diverges at the critical temperature.
An example of this is shown in Fig. 1.3.

2.6 Critical point exponents

We have argued that the critical point is marked by divergences in the
specific heat and the susceptibility. It turns out to be very important
to the theory of critical phenomena to understand more carefully the
form of these divergences and the singular behaviour of the other ther-
modynamic functions near the critical point. To do this we define a
set of critical exponents. We shall then start to justify why they play
such a central role in the theory of cgitical phase transitions.
Let
t=(T-1,)/T. (2.18)

be a measure of the deviation in temperature from the critical temper-
ature T.. Then the critical exponent associated with a function F(t)
- 7
is

In| F(t
A= Jim BTG (2.19)
t—0 In|t|
or, as it is more usually written,
F@) ~t]. (2.20)

The ~ sign is well advised as it is important to remember that eqn (2.20)
only represents the asymptotic behaviour of the function F(¢) ast — 0.
More generally one might expect

SFor the ferromagnet the transition is between states of magnetiza-
tion opposite in sign but equal in magnitude. Hence this is a transition
with no associated latent heat.

"Assuming that the limit exists. See problem 2.3 for an example
where this is not the case.
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Table 2.3. Definitions of the most commonly used critical exponents
for a magnetic system

Zero-field specific heat Cu~|t|™®
Zero-field magnetization M~ (=t)8
Zero-field isothermal susceptibility xp ~f¢|™"

H ~| M |® sgn(M)
Correlation length E~|t|™Y

G(7) ~ 1/rd=2+n

Critical isotherm (t = 0)

Pair correlation function at 7

F@)=A|tP (1+btM +.), A >0 (2.21)

To check that this is a reasonable way of describing the leading
behaviour of the singularities in the thermodynamic functions consider
the zero-field magnetization of a ferromagnet shown in Fig. 2.1(e).
Near T, a sensible guess would be to describe the curve by a formula
M ~ (—t)8 with 8 ~ 1/2 because of the resemblance to a parabola.

The zero-field susceptibility diverges at T. as shown in Fig. 2.1(f)
and the zero-field specific heat shows qualitatively similar behaviour.
Hence we may write

xr~|t|™ Cg~[t]™ (2.22)

where « and v are positive.
A fourth exponent, 6, is introduced to describe the behaviour of the
critical isotherm near the critical point at H = 0,

H~| M Psgn(M) (T=T.). (2.23)

Check that this corresponds to a curve of the form shown in Fig. 2.1(c¢).
One might guess 6 ~ 2.

The critical exponent definitions are collected together in Table 2.3
for a magnetic system and Table 2.4 for a fluid. 5 and v are associated
with the pair correlation function and correlation length which were
defined in Section 2.4. In particular, v describes how the correlation
length diverges as the critical temperature is approached.
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Table 2.4. Definitions of the most commonly used critical exponents
for a fluid system

Specific heat at constant volume V, Cy ~|t|™®

Liquid-gas density difference (o1 — pg) ~ (—t)P
Isothermal compressibility K ~|t|77
Critical isotherm (¢ = 0) P-P. ~

| o1 = pg |° sgn(pt — pg)
Correlation length E~|t]™Y

Pair correlation function at 7, G(7) ~ 1/rd=2+n

In compiling Tables 2.3 and 2.4 we have made the as yet totally
unjustified assumption that the critical exponent associated with a
given thermodynamic variable is the same as T — T, from above or
below. Early series and numerical work suggested that this was the
case, but it was only with the advent of the renormalization group
that it was indeed proved to be so. A common notation was to use
a prime to distinguish the value of an exponent as T — T, from the
value as T — T.F.

2.6.1 Universality

Having defined the critical exponents we need to justify why they are
interesting. And indeed, why they are more interesting than the critical
temperature T, itself. It turns out that, whereas T, depends sensitively
on the details of the interatomic interactions, the critical exponents
are to a large degree universal depending only on a few fundamental
parameters. For models with short-range interactions these are the
dimensionality of space, d, and the symmetry of the order parameter.

Striking evidence for this comes from a plot by Guggenheim pre-
sented as long ago as 1945. This is shown in Fig. 2.2 where the coexis-
tence curves of eight different fluids are plotted in reduced units, T'/T.
and p/p.. Close to the critical point (and indeed surprisingly far away
from it!) all the data lie on the same curve and hence can be described
by the same exponent 3. The fit assumes § = 1/3.
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Fig. 2.2. The coexistence curve of eight different fluids plotted in re-
duced variables. The fit assumes an exponent 8 = 1/3. After Guggen-
heim, E. A. (1945). Journal of Chemical Physics, 13, 253.
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A further test of universality is to compare this value to that ob-
tained for a phase transition in a completely different system with
a scalar order parameter. Magnets wish uniaxial anisotropy in spin
space are one possibility—for MnFs a classic experiment by Heller
and Benedek® gave 8 = 0.335(5) where the number in brackets de-
notes the uncertainty in the final decimal place. For phase separation
in the binary fluid mixture CCl4+C-Fi¢ the experimental result® is
8 = 0.33(2).

The Ising model, which we introduced as a simple example of an
interacting system in Section 1.2 also has a scalar order parameter. It
cannot be solved exactly in three dimensions but numerical estimates
of the values of the critical exponents are very precise and provide
a stringent test of universality. For the simple cubic, body-centred
cubic, and face-centred cubic lattices K, = kT./J = 0.2216, 0.1574,
and 0.1021 respectively. However, in all three cases § is the same,
0.327, with some argument about the value of the last decimal place!®.

This immediately illustrates the power of using simple models to
describe critical behaviour. By making sure that one is working in
the right dimension and that the symmetry of the order parameter
is correctly represented by a model, it can be used to obtain critical
exponents for all the systems within its universality class. It is much
easier to study the Ising model than a complicated fluid Hamiltonian.

Universality classes are often labelled by the simplest model system
belonging to them. Therefore a discussion of other universality classes
will be postponed to the next chapter when we will have defined the
relevant models.

2.6.2 Exponent inequalities

Tt is possible to obtain several rigorous inequalities between the critical
exponents. The easiest to prove is due to Rushbrooke. It follows from
the well known thermodynamic relation between the specific heats at
constant field and constant magnetization

2
xr(Cy—Cu)=T (%)H (2.24)

Because Cjs must be greater than or equal to zero,

8Heller, P. and Benedek, G. B. (1962). Physical Review Letters, 8,
428.

9Thompson, D. R. and Rice, O. K. (1964). Journal of the American
Chemical Society, 86, 3547.

10Lju, A. J. and Fisher, M. E. (1989). Physica, A156, 35.
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oM\ 2
Cyg>T|Z= . )
v27(2) 229

As t — 07 in zero field, using the definitions of the critical exponents
in Table 2.3,

Cu ~(—t)7% xr~(-t)7", (%g—) ~(=t)*71. (2.26)
H

Therefore the inequality (2.25) can only be obeyed if

a+20+7>2 (2.27)

Other inequalities, for example
a+ B(1+6) > 2, (2.28)

can be obtained from the convexity properties of the free energy. Yet
others, for example

Y<@2-ny; dv>2-0; v28(5-1), (2.29)

follow from making reasonable assumptions about the behaviour of the
thermodynamic variables or correlation functions!®.

For the two-dimensional Ising model @ = 0, 8 = 1/8, v = 7/4,
6 =15,v =1, and n = 1/4 and one can check that all the inequalities
listed above actually hold as equalities. Exponents for some other
universality classes are given in Table 3.1 and the reader might like to

check whether the scaling laws are obeyed as equalities for these.

We have introduced two very new ideas, universality and inequali-
ties between the critical exponents which appear to hold as equalities.
The reader might well be demanding to know why the exponents have
these striking properties. Such an explanation, based on the physics
of scale invariance, will be forthcoming in Chapter 8 when the renor-
malization group is described. In the intervening chapters we look in
more detail at models of systems which undergo phase transitions and
how to calculate their critical exponents and other properties.

1The derivation of these inequalities is discussed in Stanley, H. E.
(1971). Introduction to phase transitions and critical phenomena, Ch.
4. (Oxford University Press, Oxford).
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2.7 Problems

2.1 (i) Verify eqn (2.14).
(i) Show in a similar way that the fluctuations in the energy are
related to the specific heat at constant volume by

(AE)? = ((E - (E))?) = kT?Cy..

Use this equation to argue that AE ~ N/2 where N is the
number of particles in the system.

2.2 A paramagnetic solid contains a large number N of non-interacting,
spin-1/2 particles, each of magnetic moment u on fixed lattice
sites. This substance is placed in a uniform magnetic field H.

(i) Write down an expression for the partition function of the
solid, neglecting lattice vibratioxns, in terms of z = pH/kT.

(ii) Find the magnetization M, the susceptibility x, and the en-
tropy S, of the paramagnet in the field H.

(iii) Check that your expressions have sensible limiting forms for
z > 1 and = < 1. Descibe the microscopic spin configuration in
each of these limits.

(iv) Sketch M, x, and S as a function of .

[Answers: (i)Z = (2coshz)?; (ii)M = Nutanhz,

x = Np?/(kT cosh® z), S = Nk{In2 + In(cosh z) — z tanh z} ]

2.3 Determine the critical exponents ) for the following functions as
t— 0O

()  f(t) =AY+ Bt/ Ct
i)  f(t) = At=2/3(¢t + B)?/3
(i) f(t) = At%e?
(iv)  f(t) = At%el/t
(v)  f() = Alnfexp(1/t)) - 1}
[Answers: (i)1/4, (ii)—2/3, (iii)2, (iv)undefined, (v)~4.]
2.4 Show that the following functions have a critical exponent A =0
in the limit ¢ — 0:
(i) ft)=Aln|t|+B
(i)  f(t) = A— Bt'/?
(iii) fty=1,t<0; fHy=2,t>0
() f(t) =A@ + B (| t])?
(v) f(t)=Atln|t|+B




