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Problem 5.22. Show that equation 5.40 is in agreement with the explicit formula
for the chemical potential of a monatomic ideal gas derived in Section 3.5. Show
how to calculate x° for a monatomic ideal gas.

Problem 5.23. By subtracting uN from U, H, F, or GG, one can obtain four new
thermodynamic potentials. Of the four, the most useful is the grand free energy
(or grand potential),

®=U—-T8 — uN.

(a) Derive the thermodynamic identity for @, and the related formulas for the
partial derivatives of ® with respect to 7', V, and pu.

(b) Prove that, for a system in thermal and diffusive equilibrium (with a reser-
voir that can supply both energy and particles), ® tends to decrease.

(c¢) Prove that ® = —-PV.

(d) As a simple application, let the system be a single proton, which can be
“occupied” either by a single electron (making a hydrogen atom, with en-
ergy —13.6 eV) or by none (with energy zero). Neglect the excited states
of the atom and the two spin states of the electron, so that both the oc-
cupied and unoccupied states of the proton have zero entropy. Suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-
perature of 5800 K and an electron concentration of about 2 x 10! per
cubic meter. Calculate @ for both the occupied and unoccupied states, to
determine which is more stable under these conditions. To compute the
chemical potential of the electrons, treat them as an ideal gas. At about
what temperature would the oceupied and unoccupied states be equally
stable, for this value of the electron concentration? (As in Problem 5.20,
the prediction for such a small system is only a probabilistic one.)

5.3 Phase Transformations of Pure Substances

A phase transformation is a discontinuous change in the properties of a sub-
stance, as its environment is changed only infinitesimally. Familiar examples in-
clude melting ice and boiling water, either of which can be accomplished with only
a very small change in temperature. The different forms of the substance-in this
case ice, water, and steam—are called phases.

Often there is more than one variable that can affect the phase of a substance.
For instance, you can condense steam either by lowering the temperature or by
raising the pressure. A graph showing the equilibrium phases as a function of
temperature and pressure is called a phase diagram.

Figure 5.11 shows a qualitative phase diagram for HyO, along with some quanti-
tative data on its phase transformations. The diagram is divided into three regions,
indicating the conditions under which ice, water, or steam is the most stable phase.
It’s important to realize, though, that “metastable” phases can still exist; for in-
stance, liquid water can be “supercaoled” below the freezing point yet remain a
liquid for some time. At high pressures there are actually several different phases
of ice, with differing crystal structures and other physical properties.

The lines on a phase diagram represent conditions under which two different
phases can coexist in equilibrium; for instance, ice and water can coexist stably at
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5.3  Phase Transformations of Pure Substances

A T(°C) Py (bar) L (kJ/mol)
|| Critical poing —40 QL Ren
221 | —20 0.00103 51.13
= { 0 0.00611 51.07
s | Water 0.01 000612 4505
o [ Ice 25 0.0317 43.99
z | 50 0.1234 42.92
4 | Steam 100 1.013 40.66
A J 150 4.757 38.09
0-006r Triple point 200 15.54 34.96
L// SRS 250 39.74 30.90
e 300 85.84 25.30
—273 0.01 374 350 165.2 16.09
Temperature (°C) 374 220.6 0.00

Figure 5.11. Phage diagram for H20 (not to scale). The table gives the vapor
pressure and molar latent heat for the solid-gas transformation (first three entries)

and the liquid-gas transformation (remaining entries). Data from Keenan et al.
(1978) and Lide (1994),

0°C and 1 atm (~ 1 bar). The pressure at which a gas can coexist with its solid
or liquid phase is called the vapor pressure; thus the vapor bressure of water at
room temperature is approximately 0.03 bar. At T — 0.01°C and P = 0.006 bar, all
three phases can coexist; this point is called the triple point. At lower pressures,
liquid water cannot exist (in equilibrium): ice “sublimates” directly into vapor.,
You have probably observed sublimation of “dry ice,” frozen carbon dioxide.
Evidently, the triple point of carbon dioxide lies above atmospheric pressure; in
fact it is at 5.2 bars, A qualitative phase diagram for carbon dioxide is shown
in Figure 5.12. Another difference between CO, and H,0 is the slope of the
solid-liquid phase boundary. Most substances are like carbon dioxide: Applying
more pressure raises the melting temperature. Ice, however, is unusual: Applying

? T (°C) P, (bar)
73_8 | Critical pOiIlt _120 00124
o ~100 0.135
g —80 0.889
= —78.6 1.000
5 —60 4.11
2 —56.6 5.18
& —40 10.07
~20 19.72
0 34.85
20 57.2
31 73.8

Temperature (°C)

Figure 5.12. Phage diagram for carbon dioxide (not to scale). The table gives the

vapor pressure along the solid-gas and liquid-gas equilibrium curves. Data from
Lide (1994) and Reynolds (1979).
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Chapter 5 Free Energy and Chemical Thermodynamics

pressure lowers its melting temperature. We will soon see that this is a result of
the fact that ice is less dense than water.

The liquid-gas phase boundary always has a positive slope: If you have lig-
uid and gas in equilibrium and you raise the temperature, you must apply more
pressure to keep the liquid from vaporizing. As the pressure increases, however,
the gas becomes more dense, so the difference between liquid and gas grows less.
Eventually a point is reached where there is no longer any discontinuous change
from liquid to gas. This point is called the critical point, and occurs at 374°C
and 221 bars for HoO. The critical point of carbon dioxide is more accessible, at
31°C and 74 bars, while that of nitrogen is at only 126 K and 34 bars. Close to the
critical point, it’s best to hedge and simply call the substance a “fluid.” There’s
no critical point on the solid-liquid phase boundary, since the distinction between
solids and liquids is a qualitative issue (solids having crystal structure and liquids
having randomly arranged molecules), not just a matter of degree. Some materials
made of long molecules can, however, form a liquid crystal phase, in which the
molecules move around randomly as in a liquid but still tend to be oriented parallel
to each other.

Helium has the most exotic phase behavior of any element. Figure 5.13 shows
the phase diagrams of the two isotopes of helium, the common isotope “He and
the rare isotope *He. The boiling point of *He at atmospheric pressure is only
4.2 K, and the critical point is only slightly higher, at 5.2 K and 2.3 bars; for
3He these parameters are somewhat lower still. Helium is the only element that
remains a liquid at absolute zero temperature: It will form a solid phase, but
only at rather high pressures, about 25 bars for *He and 30 bars for 3He. The
solid-liquid phase boundary for *He is almost horizontal below 1 K, while for *He
this boundary has a negative slope below 0.3 K. Even more interesting, *He has
two distinct liquid phases: a “normal” phase called helium I, and a superfluid

g1 [frte] 2 [Pre]
Q & Solid
34+
25.3
Helium I |
1 liqui |
Helim 17 | (“ormel liquid) | Liquid
(superfluid) |
1+ Gas 14 J/;Gas
: — : -
2.2 4252 T (K) 32 33 T (K)

Figure 5.13. Phase diagrams of *He (left) and *He (right). Neither diagram is
to scale, but qualitative relations between the diagrams are shown correctly. Not
shown are the three different solid phases (crystal structures) of each isotope, or
the superfluid phases of 3He below 3 mK.
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phase, below about 2 K, called helium II. The superfluid phase has a number of
remarkable propertieg including zero viscosity and very high thermal conductivity.

Helium-3 actually has two distinct superfluid phases, but only at temperatures
below 3 mK.

and magnetic field strength can also cause phase transformations. Figure 5.14 shows
phase diagrams for two different magnetic Systems. At left is the diagram for a typ-
ical type-I superconductor, such as tin or mercury or lead. The superconducting
phase, with zero electrical resistance, exists only when both the temperature and

tions can coexist. As the temperature is raised, however, the magnetization of both
phases becomes weaker. Eventually, at the Curie temperature (1043 K for iron),

the magnetization disappears completely, so the phase boundary ends at a critical
point.*

Type-I Superconductor
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Figure 5.14. Left: Phase diagram for a typical type-I superconductor. For lead,
Te=T72K and B, = 0.08 T. Right: Phase diagram for a ferromagnet, assuming
that the applied field and magnetization are always along a given axis.

*For several decades people have tried to classify phase transformations according to
the abruptness of the change. Solid-liquid and liquid-gas transformations are classified as
“first-order,” because S and V, the first derivatives of G, are discontinuous at the phase
boundary. Less abrupt transitions (such as critical points and the helium T to heliym 11
transition) used to be classified as “second-order” and so on, depending on how many
successive derivatives you had to take before getting a discontinuous quantity. Because of
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Chapter 5  Free Energy and Chemical Thermodynamics

Diamonds and Graphite

Elemental carbon has two familiar phases, diamond and graphite (both solids, but
with different crystal structures). At ordinary pressures the more stable phase is
graphite, so diamonds will spontaneously convert to graphite, although this process
is extremely slow at room temperature. (At high temperatures the conversion
proceeds more rapidly, so if you own any diamonds, be sure not to throw them into
the fireplace.*)

The fact that graphite is more stable than diamond under standard conditions
is reflected in their Gibbs free energies: The Gibbs free energy of a mole of diamond
is greater, by 2900 J, than the Gibbs free energy of a mole of graphite. At a given
temperature and pressure, the stable phase is always the one with the lower Gibbs
free energy, according to the analysis of Section 5.2.

But the difference of 2900 J is for standard conditions, 298 K and atmospheric
pressure (1 bar). What happens at higher pressures? The pressure dependence of
the Gibbs free energy is determined by the volume of the substance,

oG
i} = 541
<8P>T,N v (541

and since a mole of graphite has a greater volume than a mole of diamond, its Gibbs
free energy will grow more rapidly as the pressure is raised. Figure 5.15 shows a
graph of G vs. P for both substances. If we treat the volumes as constant (neglecting
the compressibility of both substances), then each curve is a straight line. The
slopes are V' = 5.31 x 107¢ m® for graphite and V' = 3.42 x 10~% m?® for diamond.
As you can see, the two lines intersect at a pressure of about 15 kilobars. Above
this very high pressure, diamond should be more stable than graphite. Apparently,

G

J Diamond

Graphite

= + » P (kbar)
5 10 15 20

Figure 5.15. Molar Gibbs free energies of diamond and graphite as functions of
pressure, at room temperature. These straight-line graphs are extrapolated from
low pressures, neglecting the changes in volume as pressure increases.

*The temperature required to convert diamond to graphite quickly is actually quite
high, about 1500°C. But in the presence of oxygen, éither diamond or graphite will easily

burn to form carbon dioxide.




but
e is
cess
jiion
nto

ons
nd

ven
bbs

ric
» of

41)

>bs
S a
ng

ad.

e
ily,

tte

5.3 Phase Transformations of Pure Substances

natural diamonds must form at very great depths. Taking rock to be about three
times as dense as water, it’s casy to estimate that underground pressures normally
increase by 3 bars for every 10 meters of depth. So a pressure of 15 kbar requires
a depth of about 50 kilometers.

The temperature dependence of the Gibbs free energies can be determined in a

similar way, using the relation
8—G = -5 (5.42)
oT PN

As the temperature is raised the Gibbs free energy of either substance decreases,
but this decrease is more rapid for graphite since it has more entropy. Thus, raising
the temperature tends to make graphite more stable relative to diamond; the higher
the temperature, the more pressure is required before diamond becomes the stable
phase.

Analyses of this type are extremely useful to geochemists, whose job is to look
at rocks and determine the conditions under which they formed. More generally,

the Gibbs free energy is the key to attaining a quantitative understanding of phase
transformations.

Problem 5.24. Go through the arithmetic to verify that diamond becomes more
stable than graphite at approximately 15 kbar.

Problem 5.25. In working high-pressure geochemistry problems it is usually more
convenient to express volumes in units of kJ /kbar. Work out the conversion factor
between this unit and m°.

Problem 5.26. How can diamond ever be more stable than graphite, when it has
less entropy? Explain how at high pressures the conversion of graphite to diamond
can increase the total entropy of the carbon plus its environment,

Problem 5.27. Graphite is more compressible than diamond.

(a) Taking compressibilities into account, would you expect the transition from
graphite to diamond to occur at higher or lower pressure than that pre-
dicted in the text?

(b) The isothermal compressibility of graphite is about 3 x 10~ bar ™!, while
that of diamond is more than ten times less and hence negligible in compar-
ison. (Isothermal compressibility is the fractional reduction in volume per
unit increase in pressure, as defined in Problem 1.46.) Use this information
to make a revised estimate of the pressure at which diamond becomes more
stable than graphite (at room temperature).

Problem 5.28. Calcium carbonate, CaCO3, has two common crystalline forms,

calcite and aragonite. Thermodynamic data for these phases can be found at the
back of this book.

(a) Which is stable at earth’s surface, calcite or aragonite?

(b) Calculate the pressure (still at room temperature) at which the other phase
should become stable.

171



172

Chapter 5  Free Energy and Cheimical Thermodynamntics

Problem 5.29. Aluminum silicate, AlpSiOs5. has three different crystalline forms:
kyanite, andalusite. and sillimanite. Because each is stable under a different set
of temperature-pressure conditions, and all are commonly found in metamorphic
rocks, these minerals are important indicators of the geologic history of rock bodies.
(a) Referring to the thermodynamic data at the back of this book, argue that
at 298 K the stable phase should be kyanite, regardless of pressure.
(b) Now consider what happens at fixed pressure as we vary the temperature.
Let AG be the difference in Gibbs free energies between any two phases,
and similarly for AS. Show that the T dependence of AG is given by

Ts
AG(Tz) = AG(Ty) — AS(T)dT.

1
Although the entropy of any given phase will increase significantly as the
temperature increases, above room temperature it is often a good approx-
imation to take AS, the difference in entropies between two phases, to be
independent of T. This is because the temperature dependence of S is a
function of the heat capacity (as we saw in Chapter 3), and the heat ca-
pacity of a solid at high temperature depends, to a good approximation,
only on the number of atoms it contains.

(¢) Taking AS to be independent of T, find the range of temperatures over

which kyanite, andalusite, and sillimanite should be stable (at 1 bar).

(d) Referring to the room-temperature heat capacities of the three forms of
Al2SiOs, discuss the accuracy the approximation AS = constant.

Problem 5.30. Sketch qualitatively accurate graphs of G vs. T' for the three
phases of HyO (ice, water, and steam) at atmospheric pressure. Put all three
graphs on the same set of axes, and label the temperatures 0°C and 100°C. How
would the graphs differ at a pressure of 0.001 bar?

Problem 5.31. Sketch qualitatively accurate graphs of G vs. P for the three
phases of HyO (ice, water, and steam) at 0°C. Put all three graphs on the same
set of axes, and label the point corresponding to atmospheric pressure. How would
the graphs differ at slightly higher temperatures?

The Clausius-Clapeyron Relation

Since entropy determines the temperature dependence of the Gibbs free energy,
while volume determines its pressure dependence. the shape of any phase boundary
line on a PT diagram is related in a very simple way to the entropies and volumes
of the two phases. Let me now derive this relation.

For definiteness, I'll discuss the phase boundary between a liquid and a gas,
although it could just as well be any other phase boundary. Let's consider some
fixed amount of the stuff, say one mole. At the phase boundary, this material is
equally stable as a liquid or a gas, so its Gibbs free energy must be the same,
whether it is in either phase:

G =Gy at phase boundary. (5.43)

(You can also think of this condition in terms of the chemical potentials: If some
liquid and some gas are in diffusive equilibrium with each other, then their chemical
potentials, i.e., Gibbs free energies per molecule, must be equal.)

’
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i

Figure 5.16. Infinitesimal changes in ‘
dPF

pressure and temperature, related in such
a way as to remain on the phase bound-
ary.

——t——— = T’
dT

Now imagine increasing the temperature by dT" and the pressure by dP, in such
a way that the two phases remain equally stable (see Figure 5.16). Under this
change, the Gibbs free energies must remain equal to each other, so

dG = dG, to remain on phase boundary. (5.44)
Therefore, by the thermodynamic identity for G (equation 5.23),
=S dT +V,dP = —S,dT + V, dP. (5.45)

(I've omitted the 1 dN terms because I've already assumed that the total amount
of stuff is fixed.) Now it’s easy to solve for the slope of the phase boundary line,
ar/dr:
aP S, -8
T ~ VvV, -V

(5.46)

As expected, the slope is determined by the entropies and volumes of the two phases.
A large difference in entropy means that a small change in temperature can be very
significant in shifting the equilibrium from one phase to the other. This results
in a steep phase boundary curve, since a large pressure change is th. a required to
compensate the small temperature change. On the other hand, a large difference in
volume means that a small change in pressure can be significant after all, making
the phase boundary curve shallower.

It’s often more convenient to write the difference in entropies, Sy — S5, a8 L/T,
where L is the (total) latent heat for converting the material (in whatever quantity
we’re considering) from liquid to gas. Then equation 5.46 takes the form

. P [

—_— 4
arr TAV’ (5.47)

where AV =V, — V. (Notice that, since both L and AV are extensive, their ratio
is intensive-—independent of the amount of material.) This result is known as the
Clausius-Clapeyron relation. It applies to the slope of any phase boundary line
on a PT diagram, not just to the line separating liquid from gas.

As an example, consider again the diamond-graphite system. When a mole of
diamond converts to graphite its entropy increases by 3.4 J/K, while its volume
increases by 1.9 x 10~% m3. (Both of these numbers are for room temperature; at
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higher temperatures the difference in entropy is somewhat greater.) Therefore the
slope of the diamond-graphite phase boundary is

% = %‘5; = % = 1.8 x 10° Pa/K = 18 bar/K. (5.48)
In the previous subsection 1 showed that at room temperature, diamond is stable
at pressures above approximately 15 kbar. Now we see that if the temperature is
100 K higher, we need an additional 1.8 kbar of pressure to make diamond stable.
Rapid conversion of graphite to diamond requires still higher temperatures, and
correspondingly higher pressures, as shown in the phase diagram in Figure 5.17.
The first synthesis of diamond from graphite was accomplished at approximately
1800 K and 60 kbar. Natural diamonds are thought to form at similar pressures
but somewhat lower temperatures, at depths of 100-200 km below earth’s surface.*

100 ————+
Figure 5.17. The experimen-
tal phase diagram of carbon.
The stability region of the gas
phase is not visible on this scale;

Diamond

/5 60 ' the graphite-liquid-gas triple
@/ Graphite point is at the bottom of the
Q, 40F graphite-liquid phase boundary,
at 110 bars pressure. From

20l David A. Young, Phase Dia-

grams of the Elements (Univer-
sity of California Press, Berke-
ley, 1991).

el AR |
0 1000 2000 3000 4000 5000 6000
T (K)

Problem 5.32. The density of ice is 917 kg/m?.

(a) Use the Clausius-Clapeyron relation to explain why the slope of the phase
boundary between water and ice is negative.

(b) How much pressure would you have to put on an ice cube to make it melt
at —1°C?

(c) Approximately how deep under a glacier would you have to be before the
weight of the ice above gives the pressure you found in part (b)? (Note
that the pressure can be greater at some locations, as where the glacier
flows over a protruding rock.)

(d) Make a rough estimate of the pressure under the blade of an ice skate, and
calculate the melting temperature of ice at this pressure. Some authors
have claimed that skaters glide with very little friction because the increased
pressure under the blade melts the ice to create a thin layer of water. What
do you think of this explanation?

*For more on the formation of natural diamonds and the processes that bring them near
earth’s surface, see Keith G. Cox, “Kimberlite Pipes,” Scientific American 238, 120-132
(April, 1978).
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Problem 5.33. An inventor proposes to make a heat engine using water/ice as the
working substance, taking advantage of the fact that water expands as it freezges.
A weight to be lifted is placed on top of a piston over a cylinder of water at 1°C.
The system is then placed in thermal contact with a low-temperature reservoir
at —1°C until the water freezes into ice, lifting the weight. The weight is then
removed and the ice is melted by putting it in contact with a high-temperature
reservoir at 1°C. The inventor is pleased with this device because it can seemingly
perform an unlimited amount of work while absorbing only a finite amount of
heat. Explain the flaw in the inventor’s reasoning, and use the Clausius-Clapeyron
relation to prove that the maximum efficiency of this engine is still given by the
Carnot formula, 1 — 7¢/T},.

Problem 5.34. Below 0.3 K the slope of the He solid-liquid phase boundary is
negative (see Figure 5.13).

(a) Which phase, solid or liquid, is more dense? Which phase has more entropy
per mole)? Explain your reasonin, carefully.
Y g

(b) Use the third law of thermodynamics to argue that the slope of the phase
boundary must go to zero at T = 0. (Note that the *He solid-liquid phase
boundary is essentially horizontal below 1 K.)

(¢) Suppose that you compress liquid 3He adiabatically until it becomes a solid.
If the temperature just before the phase change is 0.1 K, will the temper-
ature after the phase change be higher or lower? Explain your reasoning
carefully.

Problem 5.35. The Clausius-Clapeyron relation 5.47 is a differential equation
that can, in principle, be solved to find the shape of the entire phase-boundary
curve. To solve it, however, you have to know how both I, and AV depend on
temperature and pressure. Often, over a, reasonably small section of the curve, you
can take L to be constant. Moreover, if one of the phases is a gas, you can usually
neglect the volume of the condensed phase and just take AV to be the volume of
the gas, expressed in terms of temperature and pressure using the ideal gas law.
Making all these assumptions, solve the differential equation explicitly to obtain
the following formula for the phase boundary curve:
P = (constant) x e L/RT

This result is called the vapor pressure equation. Caution: Be sure to use this
formula only when all the assumptions just listed are valid.

Problem 5.36. Effect of altitude on boiling water.

(a) Use the result of the previous problem and the data in Figure 5.11 to plot
a graph of the vapor pressure of water between 50°C and 100°C. How well
can you match the data at the two endpoints?

(b) Reading the graph backwards, estimate the boiling temperature of water at
each of the locations for which you determined the pressure in Problem 1.16.
Explain why it takes longer to cook noodles when you're camping in the
mountains.

(c) Show that the dependence of boiling temperature on altitude is very nearly
(though not exactly) a linear function, and calculate the slope in degrees
Celsius per thousand feet (or in degrees Celsius per kilometer).
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Problem 5.37. Use the data at the back of this book to calculate the slope of the
calcite-aragonite phase boundary (at 298 K). You located one point on this phase
boundary in Problem 5.28; use this information to sketch the phase diagram of
calcium carbonate.

Problem 5.38. In Problems 3.30 and 3.31 you calculated the entropies of diamond
and graphite at 500 K. Use these values to predict the slope of the graphite-
diamond phase boundary at 500 K, and compare to Figure 5.17. Why is the slope
almost constant at still higher temperatures? Why is the slope zero at 1" = 07

Problem 5.39. Consider again the aluminosilicate system treated in Problem
5.29. Calculate the slopes of all three phase boundaries for this system: kyanite-
andalusite, kyanite-sillimanite, and andalusite-sillimanite. Sketch the phase dia-
gram, and calculate the temperature and pressure of the triple point.

Problem 5.40. The methods of this section can also be applied to reactions in
which one set of solids converts to another. A geologically important example is
the transformation of albite into jadeite + quartz:

NaAlSizOg +— NaAlSioOg + Si0s.

Use the data at the back of this book to determine the temperatures and pressures
under which a combination of jadeite and quartz is more stable than albite. Sketch
the phase diagram of this system. For simplicity, neglect the temperature and
pressure dependence of both AS and AV.

Problem 5.41. Suppose you have a liquid (say, water) in equilibrium with its
gas phase, inside some closed container. You then pump in an inert gas (say, air),
thus raising the pressure exerted on the liquid. What happens?

(a) For the liquid to remain in diffusive equilibrium with its gas phase, the
chemical potentials of each must change by the same amount: duy = dug.
Use this fact and equation 5.40 to derive a differential equation for the
equilibrium vapor pressure, Py, as a function of the total pressure P. (Treat
the gases as ideal, and assume that none of the inert gas dissolves in the
liquid.)

(b) Solve the differential equation to obtain
Pu(P) = Py(Py) - eP=PoIV/NKT

where the ratio V/IV in the exponent is that of the liguid. (The quantity
Py(Py) is just the vapor pressure in the absence of the inert gas.) Thus,
the presence of the inert gas leads to a slight increase in the vapor pressure:
It causes more of the liquid to evaporate.

(c) Calculate the percent increase in vapor pressure when air at atmospheric
pressure is added to a system of water and water vapor in equilibrium
at 25°C. Argue more generally that the increase in vapor pressure due
to the presence of an inert gas will be negligible except under extreme
conditions.
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5.3 Phase Transformations of Pure Substances

Problem 5.42. Ordinarily, the partial pressure of water vapor in the air is less
than the equilibrium vapor pressure at the ambient temperature; this is why a cup
of water will spontaneously evaporate. The ratio of the partial pressure of water
vapor to the equilibrium vapor pressure is called the relative humidity. When
the relative humidity is 100%, so that water vapor in the atmosphere would be in
diffusive equilibrium with a cup of liquid water, we say that the air is saturated.”
The dew point is the temperature at which the relative humidity would be 100%,
for a given partial pressure of water vapor.

(a) Use the vapor pressure equation (Problem 5.35) and the data in Figure 5.11
to plot a graph of the vapor pressure of water from 0°C to 40°C. Notice
that the vapor pressure approximately doubles for every 10° increase in
temperature.

(b) The temperature on a certain summer day is 30°C. What is the dew point
if the relative humidity is 90%? What if the relative humidity is 40%?

Problem 5.43. Assume that the air you exhale is at 35°C, with a relative hu-
midity of 90%. This air immediately mixes with environmental air at 10°C and
unknown relative humidity; during the mixing, a variety of intermediate tempera-
tures and water vapor percentages temporarily occur. If you are able to “see your
breath” due to the formation of cloud droplets during this mixing, what can you
conclude about the relative humidity of your environment? (Refer to the vapor
pressure graph drawn in Problem 5.42.)

Problem 5.44. Suppose that an unsaturated air mass is rising and cooling at the
dry adiabatic lapse rate found in Problem 1.40. If the temperature at ground level
is 25°C and the relative humidity there is 50%, at what altitude will this air mass
become saturated so that condensation begins and a cloud forms (see Figure 5.18)7
(Refer to the vapor pressure graph drawn in Problem 5.42.)

Problem 5.45. Tn Problem 1.40 you calculated the atmospheric temperature
gradient required for unsaturated air to spontaneously undergo convection. When
a rising air mass becomes saturated, however, the condensing water droplets will
give up energy, thus slowing the adiabatic cooling process.

(a) Use the first law of thermodynamics to show that, as condensation forms
during adiabatic expansion, the temperature of an air mass changes by

2T 2 L
dT’ = ?de~?FRdle,

where ny, is the number of moles of water vapor present, L is the latent
heat of vaporization per mole, and I’ve set v = 7/5 for air. You may assume
that the HoO makes up only a small fraction of the air mass.

(b) Assuming that the air is always saturated during this process, the ratio
nw /1 is a known function of temperature and pressure. Carefully express
dny /dz in terms of dT'/dz, dP/dz, and the vapor pressure P, (T). Use the
Clausius-Clapeyron relation to eliminate df, /dT.

(c) Combine the results of parts (a) and (b) to obtain a formula relating the
temperature gradient, dT'/dz, to the pressure gradient, dP/dz. Eliminate

*This term is widely used, but is unfortunate and misleading. Air is not a sponge that
can hold only a certain amount of liquid; even “saturated” air is mostly empty space. As
shown in the previous problem, the density of water vapor that can exist in equilibrium
has almost nothing to do with the presence of air.
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The van der Waals Model

To understand phase transformations more deeply, a good approach is to introduce
a specific mathematical model. For liquid-gas systems, the most famous model is
the van der Waals equation,
alN?
(P+ W) (V — Nb) = N&T, (5.49)
proposed by Johannes van der Waals in 1873. This is a modification of the ideal gas
law that takes molecular interactions into account in an approximate way. (Any
proposed relation among P, V, and T, like the ideal gas law or the van der Waals
equation, is called an equation of state.)

The van der Waals equation makes two modifications to the ideal gas law:
adding aN?/V? to P and subtracting Nb from V. The second modification is
easier to understand: A fluid can’t be compressed all the way down to zero volume,
so we've limited the volume to a minimum value of Nb, at which the pressure goes
to infinity. The constant b then represents the minimum volume occupied by a
molecule, when it’s “touching” all its neighbors. The first modification, adding
aN?/V? to P, accounts for the short-range attractive forces between molecules
when they're not touching (see Figure 5.19). Imagine freezing all the molecules in
place, so that the only type of energy present is the negative potential energy due to
molecular attraction. If we were to double the density of the system, each molecule
would then have twice as many neighbors as before, so the potential energy due to all
its interactions with neighbors would double. In other words, the potential energy
associated with a single molecule’s interactions with all its neighbors is proportional
to the density of particles, or to N/V. The total potential energy associated with
all molecules’ interactions must then be proportional to N?/V, since there are N

molecules:
alN?

v
where a is some positive constant of proportionality that depends on the type
of molecules. To calculate the pressure, imagine varying the volume slightly while
holding the entropy fixed (which isn’t a problem if we’ve frozen all thermal motion);
then by the thermodynamic identity, dU = —PdV or P = —(0U/0V)g. The
contribution to the pressure from just the potential energy is therefore

d aN? alN?
Pdue to p.e. — <_‘__> = =55 - (551)

total potential energy = — (5.50)

v\ vV V2

If we add this negative pressure to the pressure that the fluid would have in the

(’ e * */,ﬁ
\

- pa

Figure 5.19. When two molecules come very close together they repel each other
strongly. When they are a short distance apart they attract each other.
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5.3 Phase Transformations of Pure Substances

sbsence of attractive forces (namely, NkT'/(V — Nb)), we obtain the van der Waals
equation,
_ NikT alN?
TV-Nb V%'
While the van der Waals equation has the right properties to account for the
qualitative behavior of real fluids, I need to emphasize that it is nowhere near exact.
In “deriving” it I've neglected a number of effects, most notably the fact that as
a gas becomes more dense it can become inhomogeneous on the microscopic scale:
Clusters of molecules can begin to form, violating my assertion that the number of
neighbors a molecule has will be directly proportional to N/V. So throughout this
section, please keep in mind that we won’t be making any accurate quantitative pre-
dictions. What we're after is qualitative understanding, which can provide a start-
ing point if you later decide to study liquid-gas phase transformations in more depth.
The constants ¢ and b will have different values for different substances, and
(since the model isn’t exact) will even vary somewhat for the same substance under
different conditions. For small molecules like No and H,0, a good value of b is about
6 x 1072 m® ~ (4 A)3, roughly the cube of the average width of the molecule.
The constant a is much more variable, because some types of molecules attract
cach other much more strongly than others. For Ng, a good value of a is about
4% 104 Jam®, or 2.5 eV-A%. If we think of a as being roughly the product of
the average interaction energy times the volume over which the interaction can act,
then this value is fairly sensible: a small fraction of an electron-volt times a few tens
of cubic angstroms. The value of a for H,O is about four times as large, because
of the molecule’s permanent electric polarization. Helium is at the other extreme,
with interactions so weak that its value of a is 40 times less than that of nitrogen.
Now let us investigate the consequences of the van der Waals model. A good
way to start is by plotting the predicted pressure as a function of volume for
a variety of different temperatures (see Figure 5.20). At volumes much greater
than Nb the isotherms are concave-up, like those of an ideal gas. At sufficiently high

P (5.52)

P/P. |

2

=L 1 . L I [N — V V
2 3 Ve

Figure 5.20. Isotherms (lines of constant temperature) for a van der Waals fluid.
From bottom to top, the lines are for 0.8, 0.9, 1.0, 1.1, and 1.2 times Te, the
temperature at the critical point. The axes are labeled in units of the pressure and
volume at the critical point; in these units the minimum volume (Nb) is 1/3.
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temperatures, reducing the volume causes the pressure to rise smoothly, eventually
approaching infinity as the volume goes to Nb. At lower temperatures, however,
the behavior is much more complicated: As V decreases the isotherm rises, falls,
and then rises again, seeming to imply that for some states, compressing the fluid
can cause its pressure to decrease. Real fluids don’t behave like this. But a more
careful analysis shows that the van der Waals model doesn’t predict this, either.

At a given temperature and pressure, the true equilibrium state of a system is
determined by its Gibbs free energy. To calculate G for a van der Waals fluid, let’s
start with the thermodynamic identity for G-

dG = —SdT + V dP + pdN. (5.53)

For a fixed amount of material at a given, fixed temperature, this equation reduces
to dG = VdP. Dividing both sides by dV then gives

o) —y(%Ey (5.54)
OV )y o )nr
The right-hand side can be computed directly from the van der Waals equation
(5.52), yielding

<8G) ___ NkTV  2aN®
N, T

v (DR E (5.55)

To integrate the right-hand side, write the V in the numerator of the first term as
(V — Nb) + (Vb), then integrate each of these two pieces separately. The result is

NET)(Nb)  2aN?
V — Nb 1%

G = —NkT In(V — Nb) + ( + (T, (5.56)
where the integration constant, ¢(T), can be different for different temperatures
but is unimportant for our purposes. This equation allows us to plot the Gibbs free
energy for any fixed T'.

Instead of plotting G as a function of volume, it’s more useful to plot G vertically
and P horizontally, calculating each as a function of the parameter V. Figure 5.21
shows an example, for the temperature whose isotherm is shown alongside. Al-
though the van der Waals equation associates some pressures with more than one
volume, the thermodynamically stable state is that with the lowest Gibbs free en-
ergy; thus the triangular loop in the graph of G (points 2-3-4-5-6) corresponds to
unstable states. As the pressure is gradually increased, the system will go straight
from point 2 to point 6, with an abrupt decrease in volume: a phase transformation.
At point 2 we should call the fluid a gas, because its volume decreases rapidly with
increasing pressure. At point 6 we should call the fluid a liquid, because its volume
decreases only slightly under a large increase in pressure. At intermediate volumes
between these points, the thermodynamically stable state is actually a combination
of part gas and part liquid, still at the transition pressure, as indicated by the
straight horizontal line on the PV diagram. The curved portion of the isotherm
that is cut off by this straight line correctly indicates what the allowed states would
be if the fluid were homogeneous; but these homogeneous states are unstable, since
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Figure 5.21. Gibbs free energy as a function of pressure for a van der Waals fluid
at T = 0.9T%. The corresponding isotherm is shown at right. States in the range
2-3-4-5-6 are unstable.

there is always another state (gas or liquid) at the same pressure with a lower Gibbs
free energy.

The pressure at the phase transformation is easy enough to determine from the
graph of G, but there is a clever method of reading it straight off the PV diagram,
without plotting G at all. To derive this method, note that the net change in G as
we go around the triangular loop (2-3-4-5-6) is zero:

o=/ 4G = (5—q> dP:/ V dP. (5.57)
loop loop opP T loop

Written in this last form, the integral can be computed from the PV diagram,
though it’s easier to turn the diagram sideways (see Figure 5.22). The integral
from point 2 to point 3 gives the entire area under this segment, but the integral
from point 3 to point 4 cancels out all but the shaded region A. The integral from
4 to 5 gives minus the area under that segment, but then the integral from 5 to 6
adds back all but the shaded region B. Thus the entire integral equals the area

as in Figure 5.21, plotted sideways.

Figure 5.22. The same isotherm l
Regions A and B have equal areas. l
|
|
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of A minus the area of B, and if this is to equal zero, we conclude that the two
shaded regions must have equal areas. Drawing the straight line so as to enclose
equal areas in this way is called the Maxwell construction, after James Clerk
Maxwell.

Repeating the Maxwell construction for a variety of temperatures yields the
results shown in Figure 5.23. For each temperature there is a well-defined pressure,
called the vapor pressure, at which the liquid-gas transformation takes place;
plotting this pressure vs. temperature gives us a prediction for the entire liquid-gas
phase boundary. Meanwhile, the straight segments of the isotherms on the PV
diagram fill a region in which the stable state is a combination of gas and liquid,
indicated by the shaded area.

But what about the high-temperature isotherms, which rise monotonically as V
decreases? For these temperatures there is no abrupt transition from low-density
states to high-density states: no phase transformation. The phase boundary there-
fore disappears above a certain temperature, called the critical temperature, 7.
The vapor pressure just at T is called the critical pressure, P,, while the corre-
sponding volume is called the critical volume, V.. These values define the critical
point, where the properties of the liquid and gas become identical.

I find it remarkable that a model as simple as the van der Waals equation
predicts all of the important qualitative properties of real fluids: the liquid-gas
phase transformation, the general shape of the phase boundary curve, and even
the critical point. Unfortunately, the model fails when it comes to numbers. For
example, the experimental phase boundary for HyO falls more steeply from the
critical point than does the predicted boundary shown above; at T/T, = 0.8, the
measured vapor pressure is only about 0.2F,, instead of 0.4P, as predicted. More

P Pi
kd - 12 ] Critical point
1O LOf b
0.8F 0.8f
0.6F 0.6
04F 0.4F
0.2F T 02F
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Figure 5.23. Complete phase diagrams predicted by the van der Waals model.
The isotherms shown at left are for T/T¢ ranging from 0.75 to 1.1 in increments
of 0.05. In the shaded region the stable state is a combination of gas and liquid.
The full vapor pressure curve is shown at right. All axes are labeled in units of
the critical values.
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