
166 Chapter 5 Free Energ¡, and Cherrical Thermodynamics

Problem 5.22. Show that equation 5.40 is in agr-eement with the explicit formula
fo'the chemical potential of a monatomic icleaLgas derived in section 3.b. show
how to calculate ¡1" for a monatomic ìdeal gas.

þ

Prot¡lem 5.23. By subtracting ¡-rrv from u, H, F, or G, o'e can obta,i'fo*r'new
thermodynamic potentials. of tire four', trre rnost usef'l is the grand free energy
(or grand potential).

A: U TS ¡tN.

(a) Derive the thermodynamic identity for. Õ, and the related formulas for the
partial derivatives of @ with respect to T, V, and ¡-r,.

(b) Prove that, for a system in thermal and ctiffusive equilibriurn (with a reser-
voir that can sr,rpply both energy and particles), Õ tends to decrease.

(c) Prove that Õ : -PV.
(d) As a simple appÌicatiorr, let the system be a singre proton, ¡¡,hich can be

"occupied" either by a single erectron (making a hydrogen atom, with en-
ergy -13.6 ev) or b)'none (with energy zero), Neglect the excited states
of the atom and the two spin states of the electron, so that both the oc-
cupied and unoccupied states of the proton have zero entropy. suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-

5.3 Phase Tlansformations of pure Substances
A phase transformation is a discontinuous change in the properties of a sub-
stance, as its environment is changed only infinitesimally. Familiar examples in-
clude melting ice and boiling rvater, either of which can be accomplished with only
a very small change in temperature. The different forms of the substance-in this
case ice, water, and steam are called phases.

Often there is more than one variable that can affect the phase of a s¡bstance.
For instance, you ca,n conclense steam either by lowering the temperafure or by
raising the pressure. A graph showing the equilibrium phases as a function of
temperature and pressure is called a phase diagram.

Figure 5.11 shows a clualitative phase diagrarn for H2o, along with some quanti-
tative data on its phase transformations. The diagram is divided into three regions,
indicating the conditions under which ice, water, or steam is the most stable phase.
It's important to realize, though, that "metastable', phases can still exist; for in-
stance, liquid water can be "supercooled" berow the freezing point yet remain a
liquid for some time. At high pressures there are actually several different phases
of ice, with differing crystal structures ancl other physicar properties.

The lines on a phase diagram represent conclitions under which two different
phases can coexist in equilibrium; for instance, ice and water can coexist stabl¡, ¿f
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168 Chapter 5 Flee Energy and Chemical Thermodynamics

pressure lowers its melting temperature. We will soon see that this is a result of
the fact that ice is less dense than water.

The liquid-gas phase boundary always has a positive slope: If you have liq-
uid and gas in equilibrium and you raise the temperature, you must apply more
pressure to keep the liquid from vaporizing. As the pressure increases, however,
the gas becornes more dense, so the difference between liquid and gas grows less.

Eventually a point is reached where there is no longer any discontinuous change

from liquid to gas. This point is calied the critical point, and occurs at 374"C
and 22I bars for HzO. The critical point of carbon dioxide is more accessible, at
31'C and 74 bars, while that of nitrogen is at only 126 K and 34 bars. Close to the
critical point, it's best to hedge and simply call the substance a "fluid." There's
no critical point on the soÌid-liquid phase boundary, since the distinction between
solids and liquids is a qualitative issue (solids having cr)¡stal structure and liquids
having randomly arranged molecules), not just a matter of degree. Some materials
made of long molecules can, however, form a liquid crystal phase, in which the
molecules move around randomly as in a liquid but still tend to be oriented parallel
to each other.

Helium has the most exotic phase behavior of any element. Figure 5.13 shows

the phase diagrams of the two isotopes of heÌium, the common isotope aHe and
the rare isotope 3He. The boiling point of aHe at atmospheric pressure is only
4.2 K, and the critical point is only slightly higher, at 5.2 K and 2.3 bars; for
3He these parameters are somewhat lower stiÌl. Helium is the only element that
remains a liquid at absolute zero temperature: It will form a solid phase, but
only at rather high pressures, about 25 bars for aHe and 30 bars for 3He. The
soìid-liquid phase boundary for aHe is almost horizontal below 1 K, while for 3He

this boundary has a negat'iue slope below 0.3 K. Even more interesting, aHe has

two distinct liquid phases: a "normal" phase called helium I, and a superfluid
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Figure 5.13. Phase diagrams of 4He (left) and 3H" f.ight;. Neither diagram is
to scale, but qualitative relations between the diagrams are shown correctly. Not
shown are the three difierent solid phases (crystal structures) of each isotope, or
the superfluid phases of 3He below 3 mK.
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phase, beÌou'about 2 K, calred herium IL The superfluid phase has a number ofrema¡kable properties including zero viscosity-urr¿ ,..ryîüñirr"ì_" conductivity.

ffi:ffiii"ua,v 
has rwo distincr superfluid phases, bu1 0nlv ar remperatures

Besides temperature and pressure, changing other variables such as compositionand magnetic field strength can utro .u.,rã"ft *" t,phase diagrams for two different -ugrr"ti.iyrtu_.ical type-I superconductor, such ä tin J, 
^u."rr.y opha,se, with zero electrical resistance, 

"*iri, orfy *n"the externar magnetic field strengtrr .t" ,"m"ientry low. At right is the diagramfor a ferromagnet such as i.on,ïnicr, iJ" 
^ogr"t¿red 

phases pointing either upor down, depending on the direction of thJ appried fierd. (For simpricity, this dia_gram assumes that the appried field arwavs poinls either up o. do*o arong a givenaxis') when the applied fit rd is ,"t;, ;t;", that are magnetized in both direc_tions can coexist. As the temperaturel-rrË"¿, however, the magneti zationof both
if"î:ff:r',äïJälï Evenìuailv, at the ôurie ,"*o"""ì,ä[ron, n ror iron),
point.* 

ìppears completely, so the phase boundr.y und. at a critical
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*For 
several decades people have tried to classify phase transformations according tothe abruptness of the change. Solid-liquid and liquid-gas transformations are classifled as"first-order,,' because S and V, tbe first de¡ivatives of G, are discontinuous at the phaseboundary Less abrupt transitions (such as critical points and the helium I to helium IItransition) used to be classified a^s "second-order,, and so on, depending on how manysuccessive derivatives you had to take before getting a discontinuous quantitv. Because ofvarious problems with this classification scheme, the
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Diamonds and Graphite
Elemental carbon has tv¡o familial phases, diamond and graphite (both solids, but
with different crystal structures). At ordinary pressures the more stable phase is
graphite, so diamonds will spontaneously convert to graphite, although this process
is extremel¡' slow at room ternperature. (At high temperatures the conversion
proceeds more rapidly, so if you own any diamonds, be sure not to throw them into
the fireplace.*)

The fact that graphite is more stable than diamond under standard conditions
is reflected in their Gibbs free energies: The Gibbs free energl' of a rnole of diamond
is greater, by 2900 J, than the Gibbs free energy of a mole of graphite. At a given
temperature ancl pressure, the stable phase is always the one with the lower Gibbs
free energy, according to the analysis of Section 5.2.

But the difference of 2900 J is for standard conditions, 298K and atmospheric
pressure (1 bar). What happens at higher presstires? The pressure dependence of
the Gibbs free energy is determined by the volume of the substance,

/ aG\I I :V, (5.41)\ôPl",'
and since a mole of graphite has a greater volume than a mole of diamond, its Gibbs
free energy will grow more rapidly as the pressure is raised. Figure 5.15 shows a
graph ofG vs. P for both substances. Ifwe treat the volumes as constant (neglecting
the compressibility of both substances), then each curve is a straight line. The
slopes are V:5.37 x 10-o m3 for graphite andV:3.42 x 10-o m3 for diamond.
As you can see, the t'lvo lines intersect at a pressure of about 15 kilobars. Above
this very high pressure, diamond should be more stable than graphite. ApparentÌy,

G

Diamond

Graphite

2.9 kJ
I

I
P (kbar)

5101520
Figure 5.15, lvlolar Gibbs free energies of diamond and graphite as functions of
pressure, at room temperature. These straight-line graphs are extrapolated from
low pressures, neglecting the changes in volume as pressure increases.

*The temperature required to convert diamond to graphite quickly is actually quite
high, about 1500oC. But in the presence of oxygen, either dia,mond or graphite wiil easily
burn to form carbon dioxide.



5.3 Phase Thansformations of pure Substances

natural diamonds must form at very great depths. Taking rock to be about three
times as dense as water, it's eas¡, to estimate that underground. pressures normalry
increase bv 3 bars for every 10 meters of depth. so a pressure of 1b kbar requires
a depth of about 50 kilometers.

The temperature dependence of the Gibbs free energies can be determined in asimilar way, using the ¡elation

/ ôG\f _l -_,s.\ù )r,*: -ù' (5.42)

As the temperature is raised the Gibbs free energy of either substance decreases,but this decrease is more rapid. for graphite since ii has more entropy. Thus, raisingthe temperature tends to make graphiie more stabre rerative to diamond; the higherthe temperature, the rnore pressure is required before diamond becomes the stablephase.

Analyses of this type are extremely usefur to geochemists, whose job is to lookat rocks and determine the conditions under which they formed. More generally,the Gibbs free energv is the key to attaining a quantitative understanding of phasetransformations.

Problem 5'24' Go through the arithmetic to verify that diamond becomes morestable than graphite at approximately 1b kbar.

Problem 5'25' In working high-pressure geochemistry problems it is usuany moreconvenient to express vorumes in units of t.l/t¡ar. wórk out the conversion factorbetween this unit and m3.

Problem 5'26' How can diamond ever be more stabre than graphite, when it hasless entropy? Explain how at high pressures the conversr"" 
"i s.íoiìtb" to diamondcan increase the total entropy of the carbon plus its environment.

Problem 5.22. Graphite is more compressible than diamond.
(a) Taking compressibilifies into account, would you expect the transition fromgraphite to diamond to occur at higher or lowe¡ p.ur.rrr" than that pre_dicted in the text?
(b) The isothermal.compressibility of graphite is about B x 10-6 bar-1, whilethat of diamond is more than ten fi*", t"., and hence

ison. (Isothermal compressibility is the fiactional red
unit increase in pressure, as defined in problem 1.46.)
to make a revised estimate of the pressure at which diamond becomes morestable than graphite (at room temperature)

Problem 5'28' calcium carbonate, caco3, has two common crystatine forms,calcite and aragonite. Thermodynamic data ior these phases can be found at theback of this book.

(a) Which is stable at earth,s surface, calcite or aragonite?
(b) calculate the pressure (still at room temperature) at which the other phaseshould become stable.
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Problem 5'29. Alumirurn silicate, Al2SiO5. has three diffelent cr-ystallirre forms:
Ì<yanite, ¿rndalusite. and sillimartite. Becanse each is stable ulder. a cliffer-ent set
of tempelatule-pr-essltre condltions, and all are comrnonly for-rnd in rnetamorphic
locks, these minerals ale important indìcators of the geologic histor¡.of rock bodies.

(a) Referring to the thernod¡,namic c.lata at the b¿ck of this book, ai-gue that
at 298 K the stable phase should be kyanite. r.egardless of pressur.e.

(b) Norv consider- u'hat happens at fixecl pr-essure âs r1.e \'âr)' the temperatur.e.
Let aG be the diffelence in Gibbs free energies betu,een anJ,. tlr.o phases,
and similarly for AS Shorv that the I dependence of AG is given by

fTzLc('.rz) LC(Tt) | LStT) dT.
JTt

Although the entrop¡' of an¡- gi'e' phase ."r'ill increase significantly as the
temperature increases, abo'e roo'r temperat're it ìs often a goocl approx-
imation to take 4.9, the rJ,i,fference i' entropies betv,een tu,o phases, to be
independe't of z rhis is because the temperature clependence of ,s is a
function of the heat capacity (as rve sas- in chapter 3), ancl the heat ca-
pacit), of a solid at high temperature depe'ds, to a good approximation,
only on the number of atoms it contains.

(c) Taking Äs to be independent of T, find the range of temperatures over
u'hich kyanite, andalusite, and sillima'ite should be stable (at l bar).

(d) Referring to the room-temperatu.e heat capacities of the three forms of
Al2SiO5, discuss the accurac¡.the approximation AS : constant

Problem 5.30. Sketch qualitativell, accurate graphs of G r-s. Z for the three
phases of H2o (ice, rvater, and steam) at atmospheric pressure. put all three
graphs on the same set of axes, and label the temperatures 0"c and 100oc. Hov,.
¡¡.'ould the graphs differ at a pressure of 0.001 bar?

Problem 5.31. sketch qualitati'ely accurate graphs of G r.s. p for the three
phases of H2o (ice, rvater. arrd steam) at 0"c. put all three graphs on the same
set of axes, and label the point corresponding to atmospheric pressure. Horv nould
the graphs differ at slightìy higher temperatures?

The Clausius-Clapeyron Relation
Since entropy determines the temperature depenclence of the Gibbs free energ\.,
r¡''hile volume determines its pressure dependence. the shape of any phase bou¡clar;-
line on a PT diagt-arn is related in a velv simple rva¡'to the entropies and yol¡rnes
of the tu'o phases. Let rne now delive this relation.

For clefiniteness, I'll discuss the phase boundary between a licluid ancj. a gas,
although it could just as s,'ell be an¡' other phase bounclalr.-. Let's consider some
fixed amount of the stuff, sa¡. one mole. At the phase boundary, this material is
equaÌly stable as a liquid or a, gas, so its Gibbs free energy rnust be the same,
whether it is in either phase:

Gt: Gs at phase boundar¡.. (5.43)

(You can also think of this condition in terms of the chemical poteltials: If some
liquid and solne gas are in diffusive ecluilibrium u'ith each other, their their chemicai
potentials, t,: , 

"tbrr 
free energies per molecule, mlrst be equal.)



Figure 5.16. Infinitesimal changes in
pressure and temperature, reiated in such
a way a"s to remain on the phase bound_
afy.
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Now imagi'e increasing the temperature by d,T and.the pressure Iry dp,in such
a \¡/ay that the trvo phases remain equally stable (see Figure 5.16)- under this
change, the Gibbs free energies must rentain equal to each other, so

dG¡ : ¿çn to remain on phase boundary. (5.44)

Therefore, b), the thermodynamic identity for G (equation 5.23),

-SLd,T +VdP - -,Sa dT +Vsdp. (5.45)

(I've omitted the p'dN terms because I've arready assumed that the total amount
of stuff is fixed') Now it's easy to soÌve for the srope of the phase boundary line,
d,PldT:

d,P:sn-sL
dT Vn -V (5.46)

(5.47)

As expected, the slope is determined by the entropies ancl volumes of the two phases.
A large difference in entropy means that a small change in temperature can be 

'erysignificant in shifting the equilibrium from one phase to the other. This resultsin a steep phase boundary cur\¡e, since a rarge pressure change is th. a required to
compensate the small temperature change. on the other hanã, a large difference in
volume means that a smalr.ch-ange in pressure can be significant anter all, making
the phase boundary curve shallower.

It's often more convenient to write the difierence in entropies, sn - st, as LfT,
where z is the (total) latent heat for converting the materiat iin inat"ver quantity
we're considering) from liquid to gas. Then equation 5.46 takes the form

dPL
d,T T AV'

rvhere A7:ve- 14. (Notice that, since both tr and Lv are extensive, their ratio
is intensive-independent of the amount of material.) This result is known as theclausius-clapeyron reration. It appries to the srope of any phase boundary line
on a PT diagram, not just to the line separating liquid frorrrgas.

As an example, consider again the diamond.-graphite systãm. when a more ofdiamond con'erts to g:aphite its entropy increases by J.Ã JfK, whire its volume
increases by 1.g x 10-6 m3. (Both of these numbers are for room temperature; at
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higher temperatures the difference in entropy is somewhat greater.) Therefore the
slope of the diamond-graphite phase boundary is

dP A,S 3,4 J/K
* 

: 
Ñ - Lffiã : 1.8 x 106 PalK : 18 bar/K. (5.48)

In the previous subsection I showed that at room temperature, diamond is stable
at pressures above approximately 15 kbar. Now we see that if the temperatur.e is
100 K higher, we need an additional 1.8 kbar of pressure to make diamond stable.
Rap'id conversion of graphite to diamond requires still higher temperatures, and
correspondingly higher pressures, as shown in the phase diagram in Figure b.17.
The first synthesis of diamond from graphite was accomplished at approximately
1800 K and 60 kbar. Natural diamonds are thought to form at similar pressures
but somewhat lower temperatures, at depths of 100-200 km beiow earth,s surface.*

100

0 1000 2000 3000 4000 5000 6000

" 
(K)

Figure 5.17, The experimen-
tal phase diagram of ca¡bon.
The stability region of the gas
phase is not visible on this scale;
the graphite-liquid-gas triple
point is at the bottom of the
graphite-liquid phase boundary,
at 110 bars pressure. Flom
David A. Young, Phase Dia-
grams of the Ðlements (Univer-
sity of California Press, Berke-
Iey,1991).

Problem 5.32. The density of ice is 9L7 kglrns.
(a) use the clausius-clapeyron relation to explain why the srope of the phase

boundary between water and ice is negative.
(b) How much pressure would you have to put on an ice cube to make it melt

at -1oC?
(c) Approximately how deep under a glacier would you have to be before the

weight of the ice above gives the pressure you found in part (b)? (Note
that the pressure can be greater at some locations, as where the glacier
flows over a protruding rock.)

(d) Make a rough estimate of the pressure under the brade of an ice skate, and
calculate the melting temperature of ice at this pressure. some authors
have claimed that skaters glide with very little friction because the increased
pressure under the blade melts the ice to create a thin layer of water. what
do you think of this explanation?

tFor more on the formation ofnatural diamonds and the processes that bring them near
earth's surface, see Keith G. Cox, "Kimberlite pipes," scientific American 2Ba. r20-Lg2
(April, 1978).
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Problem 5.33. An inventor proposes to make a heat engine using water/ice as the
working substance, taking advantage of the fact that wáter expands as it freezes.
A weight to be lifted is placed on top of a piston over a cyrinder of water at 1oc.
The system is then placed in thermar contact with a low-temperature reservoir
at -1oc until the water freezes into ice, rifting the weight. The weight is then
removed and the ice is melted by putting it in contact *itt u high-temperature
reservoir at 1oc. The inventor is pieased with this device because ii can seemingry
perform an unlimited amount of work while absorbing onl¡. a finite amount of
heat. Explain the flaw in the inventor's reasoning, and use the crausius-clapeyron
relation to prove that thre maximum efficiency of this engine is stil given by the
Carnot formula, I -TcfTh.
Problern 5'34. Below 0.8 K the srope of the SHe solid-riquid phase boundary is
negative (see Figure b.13).

(a) whìch phase, solid or liquid, is more dense? which phase has more entropy
(per mole)? Explain your reasoning carefully.

(b) use the third law of thermodynamics to argue that the srope of the phase
boundary must go to zero atT:0. (Note ihut th" aH".oiid-riqrrid phase
boundary is essentially horizontal below 1 K.)

(c) Suppose that you compress liquid 3He adiabatically until it becomes a solid.
If the temperature just before the phase change is o.t r, wil the temper-
ature after the phase change be higher or lower? Explain your reasoning
carefully.

Froblem 5.35. The clausius-crapeyron reration b.47 is a differential equation
that can, in principle, be solved to find the shape of the entire phase-boundary
curve' To solve it, however, you have to know how both L atd, av depend on
temperature and pressure. often, over a reasonabry smail section ofthe curve, you
can take tr to be constant. N'foreover, if one of the phases is a gas, you can usualry
neglect the volume of the condensed phase and just take az to be the vorume of
the gas' expressed in terms of temperature and pressure using the idear gas law.
Making all these assumptions, sorve the differentiai equation ãxpricitry to obtain
the following formula for the phase boundary curve:

P: (constant) x e-L/nr.
This result is called the vapor pressure equation. caution: Be sure to use this
formula only when all the assumptions just listed are valid.

Problem 5.36. Effect of altitude on boiling water.
(a) use the result of the previous problem and the data in Figure b.rl to plot

a graph of the vapor pressure of water between b0"c and ioo.c. How well
can you match the data at the two endpoints?

(b) Reading the graph backwards, estimate the boiling temperature of water at
each of the locations for which you determined the pressure in problem 1.16.
Explain why it takes longer to cook noodles when you're camping in the
mountains.

(c) show that the dependence ofboiling temperature on artitude is very nearry
(though not exactly) a rinear function, and carcurate the srope in degrees
Celsius per thousand feet (or in degrees Celsius per kilometer).
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176 Chapter- 5 Free Energy and Chemical Thelmodynarnics

Problem 5.37. Use the data at the back of this book to calculate the slope of the
calcite-aragonite phase bor-rndary (at 298 K). You located one point on this phase
boundarS' in Problem 5.28; use this infolmatio' to sketch the phase diaglam of
calcium carbonate.

Problem 5.38. In Problems 3.30 and 3 31 ¡,ou calculated the entropies of diamonci
and graphite at 500 K. use tÌrese values to predict the slope of the graphite-
diamond phase boundary at 500 K, and cornpare to Figure 5.i7. why is the siope
almost constant at still higher ternperatures? \Á'hv is the slope zero at T :0?

Problem 5.39' Consider again the aluminosilicate system treatecl ln Problem
5.29. Calculate the slopes of all three phase boundaries for this s1,s¡s¡1. kyanite-
andalusite, kyanite-sillimanite, and andalusite-siÌlirranite. Sketch the phase dia-
gram, and calculate the temperature and pressure of the trìple point.

Problern 5.40. The methods of this section can also be applied to reactions in
u'hich one set of solids converts to another'. ,4. geologically important example is
the transformation of albite into jadeite I qnartz:

NaAlSi3Os 
- 

NaAlSizOo * SiOz

use the data at the back of this book to detelmine the temperatures and pressures
under *'hich a combination of jadeite and quartz is more stable than âlbite. Sketch
the phase dìagram of this system. For simpÌicity, neglect the temperature and
pressure dependence of both AS and AV.

Problem 5'41. suppose you have a liquid (sa¡', *,ater) in equilibrium rvith its
gas phase, inside some closed container. You then pump in an inert gas (say, aìr),
thus raising the pressure exerted on the liquid. \\¡hat happens?

(a) For the liquid to remain in diffusive equilibrium s.ith its gas phase, the
chemical potentials of each must change b;, the same amount: d,¡t¿: cl¡1n.
use this fact and equation 5.40 to derive a differential equation for the
equilibrium vapor pressure, P., as a function ofthe total pressure p. (Treat
the gases as ideal, and assume that none of the inert gas dissoÌr'es in the
liquid.)

(b) Solve the differential equation to obtain

Pu(P): Pu(P,) e(P-P")v/Nkr ,

ç.here the ralio Vf N in the exponent is that of the liquirt. (The quantity
Pr(P") is just the vapor pressure in the absence of the inert gas.) Thus,
the presence ofthe inert gas Ìeads to a slight increase in the'apor pressure:
It causes more of the liquid to evaporate

(c) calculate the percent increase in vapor pressure rvhen air at atmospheric
pressure is added to a system of water and water vapor ir' equilibrium
at 25"C. Argue more generally that the increase in vapor pressure due
to the presence of an inert gas u'ill be negligible except under extreme
conditions.
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Problem 5'42 al pressure of water. vapor in the air is less
than the equilib the ambient temperature; this is why a cup
of water '"r'ill sp The ratio of the partial pressure of water
vapor to the equilibrium vapor pressure is called the relative humidity. when
the relative humidit¡' is 100%, so that water vapor in the atmosphere would be in
diffusive equilibrium with a cup of liquid water, we say that the air is saturated.*
The dew point is the temperature at which the relative humidity would be 100%,
for a given partial pressure of water vapor.

(a) use the vapor pressure equation (Problem 5.Bb) and the data in Figure b.11
to plot a graph of the vapor pressure of water from OoC to 40oC. Notice
that the vapor pressure approximately doubles for every 10o increase in
ternperature.

(b) The temperature on a certain summer day is B0oc. what is the dew point
if the relative humiditl, is g07o? What if the reiative humidity ts 40%?

Problem 5.43' Assume that the air you exhale is at 3boc, with a relative hu-
midity of 90%. This air immediately mixes with environmental air at 10oc and
unknown relative humidity; during the mixing, a variety of intermediate tempera-
tures and rvater vapor percentages temporarily occur. If you are able to "see your
breath" due to the formation of cloud droplets during this mixing, what can you
conclude about the relative humidity of your environment? (Refer to the vapor
pressure graph dravvn in Problem b.42.)

Problem 5.44. Suppose that an unsaturated air ng at the
dry adiabatic lapse rate found in Problem 1.40. if und level
is 25"C and the relative humidity there is 50To, aT, air mass
become saturated so that condensation begins and a cloud forms (see Figure 5.1g)?
(Refer to the vapor pressure graph drawn in problem b.42.)

Problem 5.45, In Problem L.40 you calculated the atmospheric temperature
gradient required for unsaturated air to spontaneously undergo convection. !\¡hen
a rising air mass becomes saturated, however, the condensing vrater droplets will
give up energy, thus slowing the adiabatic cooling process.

(a) use the first law of thermodynamics to show that, as condensation forms
during adiabatic expansion, the temperature of an air mass changes by

dr:?T¿r- ? L ,^
7 P J npanw'

where n- is the number of rnoles of water vapor present, z is the latent
heat of vaporization per mole, and I've set 7 : T l5 for air. you may a,ssume
that the H2O makes up only a small fraction of the air mass.

(b) process, the ratio
Carefully express

re P¿(T). Use the

(c) combine the results of parts (a) and (b) to obiain a formura rerating the
temperature gradient, d,Tld,z, to the pressure gradient, dpld,z. Eliminate

*This term is widely used, but is unfortunate and misleading. Air is not a sponge that
can hold oniy a certain amount of tiquid; even "saturated" air is mostly empty space. As
shown in the previous problem, the density of water vapor that can exist in equilibrium
has aimost nothing to do with the presence of air.
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The van der Waals Model

To understand phase transfolmations more deeply, a good apploach is to introduce
a specifrc mathematical model. For liquid-gas systems, the rrost famous rnodel is

the van der Waals equation,

. - t¡2.
(, * l)\v - Nb) : Nkr, (b.4e)

proposed by Johannes van der Waals in 1873. This is a modification of the ideal gas

law that takes moleculal interactions into account in an approximate r¡.ay. (Aty
proposed relation among P, V, and ?, like the ideal gas la.*'or the van der \A-aals

equation, is called an equation of state.)
The van der Waals equation makes two modifications to the ideal gas law:

adding aN2 lVz to P and subtracting Nb from V. The second modiflcation is
easier to understand: A fluid can't be compressed all the v/a¡r deqrl to zero volume,

so we've limited the volume to a minimum value of ly'b, at which the pressure goes

to infinity. The constant ò then represents the minimum volume occupied b-1' a

moÌecule, when it's "touching" all its neighbors. The first modification, adding
aN2 f V2 to P, accounts for the short-range attractive forces bets'een molecules

when they're not touching (see Figure 5.19) . Imagine freezing all the molecules in
place, so that the only type of energy present is the negative potential energ)' due to
molecular attraction. If we were to double the density of the system, each molecu.le

would then have twice as many neighbors as before, so the potentiai energy due to all
its interactions with neighbors rvould double. In other words, the potential energy

associated with a single molecule's interactions with all its neighbors is proportional
to the density of particles, or to NfV. The total potential energ)¡ associated with
all molecules' interactions must then be proportional to Nz f V, since there are -òI

molecules:

total potentiaì. energy : -+:, (5.50)

where a is some positive constant of proportionalit¡, ¡¡¿¿ depends on the type
of molecules. To calculate the pressure, imagine \¡arying the volume slightly while
holding the entropy fixed (.n'hich isn't a problem if we've frozen all therrnal motion) ;

then by the thermodynamic identity, d,U : -PdV ot P : -(AUIAV)s. The
contribution to the pressure from just the potential energy is therefore

Þ. d(
I clue to p.e. - dy \

aN2
V

aN2
v2

(5.5 1)

If we add this negative pressllre to the pressure that the fluid would have in the

Figure 5.19, When two molecules come very close together they repel each other
strongly. When they are a short distance apart they attract each other.
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absence of attractive forces (nameIy, NkTl(V -¡fb))' we obtain the van der \Maals

equation, Nk.f aN2Ð-_'-v_ Nb v2

while the van der waals equation has the right properties to account for the

qualitative behavior of reaÌ fluids, I need, to emphasize that it is nowhere near exact'

¡r ,,d,eriving,' it I've negÌected a number of effects, most notably the fact that as

u gu. ¡".o*es more deÃe it can become inhomogeneous on the microscopic scale:

clusters of molecules can begin to form, violating my assertion that the number of

neighbors a moÌecule has will be directly proportional to N lv . so throughout this

,""tio.r, please keep in mind that we won't be making any accurate quantitative pre-

dictions. What we're after is quaìitative understanding, which can provide a start-

ing point if you later decid,e to study liquid-gas phase transformations in more depth'

The constants ø and b will have different values for different substances, and

(since the model isn't exact) will even vary somewhat for the same substance under

difierent conditions. For sma1l molecules like N2 and H2O, a good value of b is about

ã " 
ro-rn ,r,3 = (4 Ä.)3, roughly the cube of the average width of the molecule.

The constant a is much more variable, because some types of molecules attract

each other much more strongly than others. For N2, a good value of ø is about

4x 70-'as J.m3, or 2.5 eV.Äã. If v¡e think of a as being roughly the product of

the average interaction energy times the volume over which the interaction can act'

then this value is fairly sensible: a small fraction of an eleciron-volt times a few tens

of cubic ångstroms. The value of ø for Hzo is about four times as large' because

of the molecule's permanent electric polarization. Helium is at the other extreme'

with interactions so weak that its value of a is 40 times less than that of nitrogen'

Now let us investigate the consequences of the van der waals model. A good

way to start is by piotting the predicted pressure as a function of volume for

a variety of different tempãratures (see Figure 5.20). At volumes much greater

than llb the isotherm, ur" 
"on"u.re-up, 

Iike those of an ideal gas' At sufficiently high

Pl P.

t

vlv"

(5.52)
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Figur der Wa¿'ls fluid'

From '2 times T"' I'he

tempe the Pressure and

' (l/b) is 1/3'volum
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temperatures, reducitlg the volume causes the pressure to rise smoothly, eventuallJ/
approaching infinity as the voiume goes to lvb. At lou'er temperatures, I1o\Ã,ever,
the behavior is mnch more complica,ted: As I,/ decreases the isotherm rises, falls,
and then rises again, seeming to impl¡. that for some states, cornpressing the fluid
can cause its pressure to decrease. Real fluids don't behave lil<e this. But a more
careful analysis shows that the van der \A/aals model doesn't predict this, either.

At a given temperature and pressure, the true equilibrium state of a system is
determined by its Gibbs free energy. To calculate G for a van cler Waals fluid., let,s
start with the thermodynamic identity for G:

dG : -S dT +V dP 1- p,dN. (b.b3)

For a fixed amount of material at a given, flxed temperature, this equation reduces
to d,G:VdP. Dividing both sides by dV then gives

/ aG\ /aP\
\* )*,,:'\* ) .., 

(5 54)

The right-hand side can be computed directly from the van der Waals equation
(5.52), yielding

(#) NKTV 2aN2r'v,
To integrate the right-hand side, write the l¿ in the numerator of the first term as
(v - Nb) + (¡/å), then integrate each of these two pieces separately. The result is

.t - NkTtn(V - ¡,¡b) + (¡/k")(Nb) 
-'oN' * ",L¡:-;' 

V_Nb V ,_\T), (5.b6)

where the integration constant, c(T), can be different for different temperatures
but is unimportant for our purposes. This equation allows us to plot the Gibbs free
energ-y for any fixed ?.

Instead of plotting G as afunction of volume, it's rnore useful to plot G vertically
and P horizontall¡ calculating each as a function of the parametet V. Figure b.21
shows an example, for the temperature whose isother-m is shown alongside. A1-
though the van der Waals equation associates some pressures $/ith more than one
volume, the thermodynamically stable state is that with the lowest Gibbs free en-
ergy; thus the triangular loop in the graph of G (points 2-3-4-5-6) corresponds to
unstable states. As the pressure is gradually increased, the s¡.'stem will go straight
from point 2 to point 6, with an abrupt decrease in voiume: a phase transformation.
At point 2 we should call the fluid a gas, because its volume decreases rapidly with
increasing pressure. At point 6 we should call the fluid a liquid, because its voÌume
decreases only slightly under a large increase in pressure. At intermed.iate volumes
between these points, the thermodynamìcally stable state is actualiy a combination
of part gas and part liquid, still at the transition pressure, as indicated by the
straight horizontal line on t]ne PV diagram. The curved portion of the isotherm
that is cut ofi by this straight line correctly indicates what the allowed states would,
be if the fluid were homogeneous; but these homogeneous states are unstable, since

(5.55)
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Figure 5'21-. Gibbs free energy as a function of pressure for a van der Waals fluid

at T :0.9?c' The 
"o1''"'pottJi"g 

isothern is shown at right' States in the range

2-3-4-5-6 are unstable.

thereisalwaysanotherstate(gasorliquid)atthesamepressulewithalowerGibbs
free energY.

Thepressureatthephasetransformationiseasyenoughtodeterminefromthe
graplrofG,butthereisaclevermethodofreadingitstraightoffthePVdiagram,
without plotting G at all. To derive this method,, note that the net change in G as

we go around the triangular loop (2-3-4-5-6) is zero:

l^"o'o'lr""oo'

AG

T
dP (5.57)

0 AP

Written in this last fbrm, the integral can be computed from the PV díagram'

though it,s easier to turn the diagram sideways (see Figure 5'22)' The integral

frompoint2topoint3gir.estheentirerreaunderthissegment,buttheintegral
from point B to point 4 cänceis out all but the shad.ed. region A' The integral from

4 to 5 gives minus the area under that segment' but then the integral from 5 to 6

adds back alt but the shaded region B. Thus the entire integral equals the area
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Figure 6.22. Tlne same isotherm
as in Figure 5.21, plotted sideways'

Regions A and B have equal areas'
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of .4, minus the area of B, and if this is to equal zero) we conclude that the two
shaded regions must have equal areas. Drawing the straight line so as to enclose
equal areas in this way is called the Maxwell construction, after James Clerk
Maxwell.

Repeating the Maxwell construction for a variety of temperatures yields the
results shown in Figure 5.23. For each temperature there is a well-defined pressure,
called the vapor pressure, at which the liquid-gas transformation takes place;
plotting this pressure vs. temperature gives us a prediction for the entire liquid-gas
phase boundary. N{eanwhile, the straight segments of the isotherms on the PV
diagram fill a region in which the stable state is a combination of gas and liquid,
indicated by the shaded area.

But what about the h'igh-temperature isotherms, which rise monotonicaÌÌy as V
decreases? For these temperatures there is no abrupt transition from low-density
states to high-density states: no phase transformation. The phase boundary there-
fore disappears above a certain temperature, called the critical temperature,7".
The vapor pressure just at Q is called the critical pressure, P,, while the corre-
sponding volume is called the critical volume, I/.. These values define the critical
point, where the properties of the liquid and gas become identical.

I find it remarkable that a model as simple as the van der Waals equation
predicts all of the important qualitative properties of real fluids: the liquid-gas
phase transformation, the general shape of the phase boundary curve, and even
the critical point. Unfortunately, the model fails when it comes to numbers. For
example, the experimental phase boundary for H2O falls more steeply f¡om the
critical point than does the predicted boundary shown above; atTfT.:0.8, the
measured vapor pressure is only about 0.2P., instead of 0.4P" as predicted. N{ore
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Fígure 5.23. Complete phase diagrams predicted by the van der Waals model.
The isotherms shown at left are f.or TfT¿ ranging from 0.75 to 1.1 in increments
of 0.05. In the shaded region the stable state is a combination of gas and liquid.
The full vapor pressure curve is shown at right. AII axes are labeled in units of
the critical values.
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