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7.6 Bose-Einstein Condensation 

The previous two sections treated bosons (photons and phonons) that can be cre­
ated in arbitrary numbers-whose total number is determined by the condition of 
thermal equilibrium. But what about more "ordinary" bosons, such as atoms with 
integer spin, whose number is fixed from the outset? 

I've saved this case for last because it is more difficult. In order to apply the 
Bose-Einstein distribution we'll have to determine the chemical potential, which 
(rather than being fixed at zero) is now a nontrivial function of the density and 
temperature. Determining µ will require some careful analysis, but is worth the 
trouble: We'll find that it behaves in a most peculiar way, indicating that a gas 
of bosons will abruptly "condense" into the ground state as the temperature goes 
below a certain critical value. 

It's simplest to first consider the limit T---> 0. At zero temperature, all the atoms 
will be in the lowest-energy available state, and since arbitrarily many bosons are 
allowed in any given state, this means that every atom will be in the ground state. 
(Here again, when I say simply "state" I mean a single-particle state.) For atoms 
confined to a box of volume V = L 3 , the energy of the ground state is 

h2 2 2 2) 3h2 
Eo = 8mL2 (1 + 1 + 1 = 8mL2, (7.118) 

which works out to a very small energy provided that L is macroscopic. At any 
temperature, the average number of atoms in this state, which I'll call No, is given 
by the Bose-Einstein distribution: 

N, - 1 
o - e(<o-µ,)/kT - 1. (7.119) 

When Tis sufficiently low, N 0 will be quite large. In this case, the denominator of 
this expression must be very small, which implies that the exponential is very close 
to 1, which implies that the exponent, (Eo - µ)/kT, is very small. We can therefore 
expand the exponential in a Taylor series and keep only the first two terms, to 
obtain 

1 . kT 
No=--------

1 + ( Eo - µ) / kT - 1 Eo - µ 
, (when No» 1). (7.120) 

The chemical potential µ, therefore, must be equal to Eo at T = 0, and just a tiny 
bit less than Eo when T is nonzero but still sufficiently small that nearly all of the 
atoms are in the ground state. The remaining question is this: How low must the 
temperature be, in order for N 0 to be large? 

The general condition that determines µ is that the sum of the Bose-Einstein 
distribution over all states must add up to the total number of atoms, N: 

N-~ 1 
- L.,, e(E 8 -µ,)/kT _ 1' 

all s 

(7.121) 

In principle, we could keep guessing values of µ until this sum works out correctly 
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(and repeat the process for each value of T). In practice, it's usually easier to 
convert the sum to an integral: 

1
00 1 

N = g(f.) ( )/kT df.. 
0 e <-µ - 1 (7.122) 

This approximation should be valid when kT » Ea, so that the number of terms 
that contribute significantly to the sum is large. The function g(E) is the density of 
states: the number of single-particle states per unit energy. For spin-zero bosons 
confined in a box of volume V, this function is the same as what we used for 
electrons in Section 7.3 (equation 7.51) but divided by 2 because now there is only 
one spin orientation: 

2 (27fm)3
/

2 

g(f.) = V7f f;,2 V/f.. (7.123) 

Figure 7.31 shows graphs of the density of states, the Bose-Einstein distribution 
(drawn for µ slightly less than zero), and the product of the two, which is the 
distribution of particles as a function of energy. 

Unfortunately, the integral 7.122 cannot be performed analytically. Therefore 
we must guess values of µ until we find one that works, doing the integral numer­
ically each time. The most interesting (and easiest) guess is µ = 0, which should 
work (to a good approximation) at temperatures that are low enough for N0 to be 
large. Plugging inµ= 0 and changing variables to x = E/kT gives 

N = ~ (27rm)3/2 V { ..fide 
V7f h2 Jo e e/kT - 1 

= ~ (27fmkT)3/2 V [
00 ft dx. 
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(7.124) 

The integral over x is equal to 2.315; combining this number with the factor of 
2 /fa yields the formula 

( 
21fmkT )3/2 

N = 2.612 h2 V. (7.125) 

This result is obviously wrong: Everything on the right-hand side is independent 
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Figure 7.31. The distribution of bosons as a function of energy is the product of 
two functions, the density of states and the Bose-Einstein distribution. 
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of temperature except T, so it says that the number of atoms depends on the 
temperature, which is absurd. In fact, there can be only one particular temperature 
for which equation 7.125 is correct; I'll call this temperature Tc: 

or ( 
h2 ) (N)2/3 

kTc = 0.527 27!"m V . (7.126) 

But what's wrong with equation 7.125 when T =f. Tc? At temperatures higher than 
Tc, the chemical potential must be significantly less than zero; from equation 7.122 
you can see that a negative value of µ will yield a result for N that is smaller than 
the right-hand side of equation 7.125, as desired. At temperatures lower than Tc, 
on the other hand, the solution to the paradox is more subtle; in this case, replacing 
the discrete sum 7.121 with the integral 7.122 is invalid. 

Look carefully at the integrand in equation 7.124. As E goes to zero, the density 
of states (proportional to vlf) goes to zero while the Bose-Einstein distribution 
blows up (in proportion to 1/E). Although the product is an integrable function, 
it is not at all clear that this infinite spike at E = 0 correctly represents the sum 
7.121 over the actual discretely spaced states. In fact, we have already seen in 
equation 7.120 that the number of atoms in the ground state can be enormous 
when µ ~ 0, and this enormous number is not included in our integral. On the 
other hand, the integral should correctly represent the number of particles in the 
vast majority of the states, away from the spike, where E » E6. If we imagine 
cutting off the integral at a lower limit that is somewhat greater than Eo but much 
less than kT, we'll still obtain approximately the same answer, 

(
2rrmkT)3/2 

Nexcited = 2.612 h2 V (when T <Tc)· (7.127) 

This is then the number of atoms in excited states, not including the ground state. 
(Whether this expression correctly accounts for the few lowest excited states, just 
above the ground state in energy, is not completely clear. If we assume that the 
difference between N and the preceding expression for Nexcited is sufficiently large, 
then it follows that µ must be much closer to the ground-state energy than to 
the energy of the first excited state, and therefore that no excited state contains 
anywhere near as many atoms as the ground state. However, there will be a narrow 
range of temperatures, just below Tc, where this condition is not met. When the 
total number of atoms is not particularly large, this range of temperatures might 
not even be so narrow. These issues are explored in Problem 7.66.) 

So the bottom line is this: At temperatures higher than Tc, the chemical poten­
tial is negative and essentially all of the atoms are in excited states. At temperatures 
lower than Tc, the chemical potential is very close to zero and the number of atoms 
in excited states is given by equation 7.127; this formula can be rewritten more 
simply as 

( 
T )3/2 

Nexcited = Tc N (T <Tc)· (7.128} 



318 Chapter 7 Quantum Statistics 

The rest of the atoms must be in the ground state, so 

(T <Tc)· (7.129) 

Figure 7.32 shows a graph of No and Nexcited as functions of temperature; Fig­
ure 7.33 shows the temperature dependence of the chemical potential. 

The abrupt accumulation of atoms in the ground state at temperatures below Tc 
is called Bose-Einstein condensation. The transition temperature Tc is called 
the condensation temperature, while the ground-state atoms themselves are 
called the condensate. Notice from equation 7.126 that the condensation tem­
perature is (aside from the factor of 2.612) precisely the temperature at which the 
quantum volume (vQ = (h2 /21fmkT) 312 ) equals the average volume per particle 
(V / N). In other words, if we imagine the atoms being in wavefunctions that are as 
localized in space as possible (as in Figure 7.4), then condensation begins to occur 

Figure 7.32. Number of atoms in the ground state (No) and in excited states, 
for an ideal Bose gas in a three-dimensional box. Below Tc the number of atoms 
in excited states is proportional to r 312 . 
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Figure 7.33. Chemical potential of an ideal Bose gas in a three-dimensional 
box. Below the condensation temperature, µ differs from zero by an amount that 
is too small to show on this scale. Above the condensation temperature µ be­
comes negative; the values plotted here were calculated numerically as described 
in Problem 7.69. 
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just as the wavefunctions begin to overlap significantly. (The condensate atoms 
themselves have wavefunctions that occupy the entire container, which I won't try 
to draw.) 

Numerically, the condensation temperature turns out to be very small in all 
realistic experimental situations. However, it's not as low as we might have guessed. 
If you put a single particle into a box of volume V, it's reasonably likely to be found 
in the ground state only when kT is of order Eo or smaller (so that the excited states, 
which have energies of 2Eo and higher, are significantly less probable). However, if 
you put a large number of identical bosons into the same box, you can get most of 
them into the ground state at temperatures only somewhat less than Tc, which is 
much higher: From equations 7.118 and 7.126 we see that kTc is greater than Eo by 
a factor of order N 213 . The hierarchy of energy scales-(Eo - µ) « Eo « kTc-is 
depicted schematically in Figure 7.34. 
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Figure 7 .34. Schematic representation of the energy scales involved in Bose­
Einstein condensation. The short vertical lines mark the energies of various single­
particle states. (Aside from growing closer together (on average) with increasing 
energy, the locations of these lines are not quantitatively accurate.) The conden­
sation temperature (times k) is many times larger than the spacing between the 
lowest energy levels, while the chemical potential, when T < Tc, is only a tiny 
amount below the ground-state energy. 

Real-World Examples 

Bose-Einstein condensation of a gas of weakly interacting atoms was first achieved 
in 1995, using rubidium-87. * In this experiment, roughly 104 atoms were confined 
(using the laser cooling and trapping technique described in Section 4.4) in a volume 
of order 10-15 m3 . A large fraction of the atoms were observed to condense into 
the ground state at a temperature of about 10-7 K, a hundred times greater than 
the temperature at which a single isolated atom would have a good chance of being 
in the ground state. Figure 7.35 shows the velocity distribution of the atoms in 
this experiment, at temperatures above, just below, and far below the condensation 
temperature. As of 1999, Bose-Einstein condensation has also been achieved with 
dilute gases of atomic sodium, lithium, and hydrogen. 

*For a beautiful description of this experiment see Carl E. Wieman, "The Richtmyer 
Memorial Lecture: Bose-Einstein Condensation in an Ultracold Gas," American Journal 
of Physics 64, 847-855 (1996). 
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T = 200 nK T = 100 nK 'l' ~ 0 

Figure 7.35. Evidence for Bose-Einstein condensation of rubidium-87 atoms. 
These images were made by turning off the magnetic field that confined the atoms, 
letting the gas expand for a moment, and then shining light on the expanded cloud 
to map its distribution. Thus, the positions of the atoms in these images give a 
measure of their velocities just b efore the field was turned off. Above the conden­
sation temperature (left), the velocity distribution is broad and isotropic, in accord 
with the Maxwell-Boltzmann distribution. Below the condensation temperature 
(center), a substantial fraction of the atoms fall into a small , elongated region 
in velocity space. These atoms make up the condensate; the elongation occurs 
because the trap is narrower in the vertical direction, causing the ground-state 
wavefunction to be narrower in position space and thus wider in velocity space. 
At the lowest temperatures achieved (right), essentially all of the atoms are in the 
ground-state wavefunction. From Carl E. Wieman, American Journal of Physics 
64, 854 (1996). 

Bose-Einstein condensation also occurs in systems where particle interactions 
are significant, so that the quantitative treatment of this section is not very accu­
rate. The most famous example is liquid helium-4, which forms a superfluid phase, 
with essentially zero viscosity, at temperatures below 2.17 K (see Figure 5.13). 
More precisely, the liquid below this temperature is a mixture of normal and su­
perfiuid components, with the superfiuid becoming more predominant as the tem­
perature decreases. This behavior suggests that the superfl.uid component is a 
Bose-Einstein condensate; indeed, a naive calculation, ignoring interatomic forces , 
predicts a condensation temperature only slightly greater than the observed value 
(see Problem 7.68). Unfortunately, the superfiuid property itself cannot be under­
stood without accounting for interactions between the helium atoms. 

If the superfl.uid component of helium-4 is a Bose-Einstein condensate, then you 
would think that helium-3, which is a fermion, would have no such phase. And 
indeed, it has no superfl.uid transition anywhere near 2 K. Below 3 millikelvin, 
however, 3He turns out to have not one but two distinct superfiuid phases.* How 

*These phases were discovered in the early 1970s. To achieve such low temperatures the 

experimenters used a helium dilution refrigerator (see Section 4.4) in combination with 

the cooling t echnique described in Problem 5.34. 
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is this possible for a system of fermions? It turns out that the "particles" that 
condense are actually pairs of 3He atoms, held together by the interaction of their 
nuclear magnetic moments with the surrounding atoms.* A pair of fermions has 
integer spin and is therefore a boson. An analogous phenomenon occurs in a su­
perconductor, where pairs of electrons are held together through interactions with 
the vibrating lattice of ions. At low temperature these pairs "condense" into a 
superconducting state, yet another example of Bose-Einstein condensation. t 

Why Does it Happen? 

Now that I've shown you that Bose-Einstein condensation does happen, let me 
return to the question of why it happens. The derivation above was based entirely on 
the Bose-Einstein distribution function-a powerful tool, but not terribly intuitive. 
It's not hard, though, to gain some understanding of this phenomenon using more 
elementary methods. 

Suppose that, instead of a collection of identical bosons, we have a collection of 
N distinguishable particles all confined inside a box. (Perhaps they're all painted 
different colors or something.) Then, if the particles don't interact with each other, 
we can treat each one of them as a separate system using Boltzmann statistics. 
At temperature T, a given particle has a decent chance of occupying any single­
particle state whose energy is of order kT, and the number of such states will be 
quite large under any realistic conditions. (This number is essentially equal to the 
single-particle partition function, Zi-) The probability of the particle being in the 
ground state is therefore very small, namely 1/Z1 . Since this conclusion applies 
separately to each one of the N distinguishable particles, only a tiny fraction of the 
particles will be found in the ground state. There is no Bose-Einstein condensation. 

It's useful to analyze this same situation from a different perspective, treating 
the entire system all at once, rather than one particle at a time. From this view­
point, each system state has its own probability and its own Boltzmann factor. The 
system state with all the particles in the ground state has a Boltzmann factor of 1 
(taking the ground-state energy to be zero for simplicity), while a system state with 
total energy Uhas a Boltzmann factor of e-U/kT. According to the conclusion of 
the previous paragraph, the dominant system states are those for which nearly all 
of the particles are in excited states with energies of order kT; the total system 
energy is therefore U rv NkT, so the Boltzmann factor of a typical system state is 
something like e-NkT/kT = e-N. This is a very small number! How can it be that 
the system prefers these states, rather than condensing into the ground state with 
its much larger Boltzmann factor? 

The answer is that while any particular system state with energy of order NkT 
is highly improbable, the number of such states is so huge that taken together they 

*For an overview of the physics of both isotopes of liquid helium, see Wilks and Betts 

(1987). 
tFor review articles on Bose-Einstein condensation in a variety of systems, see A. Griffin, 

D. W. Snoke, and S. Stringari, eds., Bose-Einstein Condensation (Cambridge University 

Press, Cambridge, 1995). 
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Figure 7.36. When most particles are in excited states, the Boltzmann factor for 
the entire system is always very small (of order e -N). For distinguishable particles, 
the number of arrangements among these states is so large that system states of 
this type are still very probable. For identical bosons, however, the number of 
arrangements is much smaller. 

are quite probable after all (see Figure 7.36). The number of ways of arranging N 
distinguishable particles among Z1 single-particle states is Zf", which overwhelms 
the Boltzmann factor e-N provided that Z1 » 1. 

Now let's return to the case of identical bosons. Here again, if essentially all the 
particles are in single-particle states with energies of order kT, then the system state 
has a Boltzmann factor of order e-N. But now, the number of such system states 
is much smaller. This number is essentially the number of ways of arranging N 
indistinguishable particles among Z1 single-particle states, which is mathematically 
the same as the number of ways of arranging N units of energy among Z1 oscillators 
in an Einstein solid: 

( 
number of ) ,...., (N+Z1 -1) ,...., { (eZi/N)N 

system states N (eN/Z1)Zi 

when Z1 » N; 

when Z1 « N. 
(7.130) 

When the number of available single-particle states is much larger than the number 
of bosons, the combinatoric factor is p.gain large enough to overwhelm the Boltz­
mann factor e-N, so system states wi~h essentially all the bosons in excited states 
will again predominate. On the other \hand, when the number of available single­
particle states is much smaller than the number of bosons, the combinatoric factor 
is not large enough to compensate for the Boltzmann factor, so these, system states, 
even all taken together, will be exponentially improbable. (This last conclusion is 
not quite clear from looking at the formulas, but here is a simple numerical exam­
ple: When N = 100 and Z1 = 25, a system state with all the bosons in excited 
states has a Boltzmann factor of order e-100 = 4 x 10-44 , while the number of such 
system states is only (i~~) = 3 x 1025 .) In general, the combinatoric factor will 
be sufficiently large to get about one boson, on average, into each available excited 
state. Any remaining bosons condense into the ground state, because of the way 
the Boltzmann factor favors system states with lower energy. 

So the explanation of Bose-Einstein condensation lies in the combinatorics of 
counting arrangements of identical particles: Since the number of distinct ways of 
arranging identical particles among the excited states is relatively small, the ground 
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state becomes much more favored than if the particles were distinguishable. You 
may still be wondering, though, how we know that bosons of a given species are 
truly identical and must therefore be counted in this way. Or alternatively, how 
do we know that the fundamental assumption, which gives all distinct states (of 
the system plus its environment) the same statistical weight, applies to systems 
of identical bosons? These questions have good theoretical answers, but the an­
swers require an understanding of quantum mechanics that is beyond the scope of 
this book. Even then, the answers are not completely airtight-there is still the 
possibility that some undiscovered type of interaction may be able to distinguish 
supposedly identical bosons from each other, causing a Bose-Einstein condensate 
to spontaneously evaporate. So far, the experimental fact is that such interactions 
do not seem to exist. Let us therefore invoke Occam's Razor and conclude, if only 
tentatively, that bosons of a given species are truly indistinguishable; as David 
Griffiths has said,* even God cannot tell them apart. 

Problem 7.65. Evaluate the integral in equation 7.124 numerically, to confirm 
the value quoted in the text. 

Problem 7.66. Consider a collection of 10,000 atoms of rubidium-87, confined 
inside a box of volume c10-5 m) 3 . 

(a) Calculate Eo, the energy of the ground state. (Express your answer in both 
joules and electron-volts.) 

(b) Calculate the condensation temperature, and compare kTc to Eo. 

(c) Suppose that T = 0.9Tc. How many atoms are in the ground state? How 
close is the chemical potential to the ground-state energy? How many 
atoms are in each of the (threefold-degenerate) first excited states? 

(d) Repeat parts (b) and (c) for the case of 106 atoms, confined to the same 
volume. Discuss the conditions under which the number of atoms in the 
ground state will be much greater than the number in the first excited 
state. 

Problem 7.67. In the first achievement of Bose-Einstein condensation with 
atomic hydrogen, t a gas of approximately 2 x 1010 atoms was trapped and cooled 
until its peak density was 1.8 x 1014 atoms/cm3 . Calculate the condensation tem­
perature for this system, and compare to the measured value of 50 µK. 

Problem 7.68. Calculate the condensation temperature for liquid helium-4, pre­
tending that the liquid is a gas of noninteracting atoms. Compare to the observed 
temperature of the sup~rfluid transition, 2.17 K. (The density of liquid helium-4 
is 0.145 g/cm3 

.) 

Problem 7.69. If you have a computer system that can do numerical integrals, 
it's not particularly difficult to evaluate µ for T > Tc. 

(a) As usual when solving a problem on a computer, it's best to start by 
putting everything in terms of dimensionless variables. So define t = T /Tc, 

*Introduction to Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1995), 
page 179. 

tnale G. Fried et al., Physical Review Letters 81, 3811 (1998). 
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c = µ/kTc, and x = E/kTc. Express the integral that defines µ, equation 
7.122, in terms of these variables. You should obtain the equation 

- loo -/Xdx 
2.315 = ( - )/t . o e"' c -1 

(b) According to Figure 7.33, the correct value of c when T = 2Tc is approx­
imately -0.8. Plug in these values and check that the equation above is 
approximately satisfied. 

(c) Now varyµ, holding T fixed, to find the precise value ofµ for T = 2Tc. 
Repeat for values of T /Tc ranging from 1.2 up to 3.0, in increments of 0.2. 
Plot a graph of µ as a function of temperature. 

Problem 7.70. Figure 7.37 shows the heat capacity of a Bose gas as a function of 
temperature. In this problem you will calculate the shape of this unusual graph. 

(a) Write down an expression for the total energy of a gas of N bosons confined 
to a volume V, in terms of an integral (analogous to equation 7.122). 

(b) For T < Tc you can set µ = 0. Evaluate the integral numerically in this 
case, then differentiate the result with respect to T to obtain the heat 
capacity. Compare to Figure 7.37. 

(c) Explain why the heat capacity must approach ~Nk in the high-T limit. 

( d) For T > Tc you can evaluate the integral using the values of µ calculated in 
Problem 7.69. Do this to obtain the energy as a function of temperature, 
then numerically differentiate the result to obtain the heat capacity. Plot 
the heat capacity, and check that your graph agrees with Figure 7.37. 
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Figure 7.37. Heat capacity of an ideal Bose gas in a three-dimensional 
box. 

Problem 7.71. Starting from the formula for Cv derived in Problem 7.70(b), 
calculate the entropy, Helmholtz free energy, and pressure of a Bose gas for T < Tc. 
Notice that the pressure is independent of volume; how can this be the case? 
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Problem 7.72. For a gas of particles confined inside a two-dimensional box, the 
density of states is constant, independent of E (see Problem 7.28). Investigate 
the behavior of a gas of noninteracting bosons in a two-dimensional box. You 
should find that the chemical potential remains significantly less than zero as 
long as T is significantly greater than zero, and hence that there is no abrupt 
condensation of particles into the ground state. Explain how you know that this 
is the case, and describe what does happen to this system as the temperature 
decreases. What property must g(E) have in order for there to be an abrupt Bose­
Einstein condensation? 

Problem 7. 73. Consider a gas of N identical spin-0 bosons confined by an 
isotropic three-dimensional harmonic oscillator potential. (In the rubidium ex­
periment discussed above, the confining potential was actually harmonic, though 
not isotropic.) The energy levels in this potential are E = nhf, where n is any 
nonnegative integer and f is the classical oscillation frequency. The degeneracy of 
level n is (n + l)(n + 2)/2. 

(a) Find a formula for the density of states, g(E), for an atom confined by this 
potential. (You may assume n » 1.) 

(b) Find a formula for the condensation temperature of this system, in terms 
of the oscillation frequency f. 

( c) This potential effectively confines particles inside a volume of roughly the 
cube of the oscillation amplitude. The oscillation amplitude, in turn, can 
be estimated by setting the particle's total energy (of order kT) equal to the 
potential energy of the "spring." Making these associations, and neglecting 
all factors of 2 and 7r and so on, show that your answer to part (b) is 
roughly equivalent to the formula derived in the text for the condensation 
temperature of bosons confined inside a box with rigid walls. 

Problem 7.74. Consider a Bose gas confined in an isotropic harmonic trap, as in 
the previous problem. For this system, because the energy level structure is much 
simpler than that of a three-dimensional box, it is feasible to carry out the sum in 
equation 7.121 numerically, without approximating it as an integral.* 

(a) Write equation 7.121 for this system as a sum over energy levels, taking 
degeneracy into account. Replace T andµ with the dimensionless variables 
t = kT/hf and c =µ/hf. 

(b) Program a computer to calculate this sum for any given values of t and c. 
Show that, for N = 2000, equation 7.121 is satisfied at t = 15 provided 
that c = -10.534. (Hint: You'll need to include approximately the first 
200 energy levels in the sum.) 

( c) For the same parameters as in part (b), plot the number of particles in each 
energy level as a function of energy. 

(d) Now reduce t to 14, and adjust the value of c until the sum again equals 
2000. Plot the number of particles as a function of energy. 

(e) Repeat part (d) for t = 13, 12, 11, and 10. You should find that the 
required value of c increases toward zero but never quite reaches it. Discuss 
the results in some detail. 

*This problem is based on an article by Martin Ligare, American Journal of Physics 
66, 185-190 (1998). 
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Problem 7.75. Consider a gas of noninteracting spin-0 bosons at high tempera­
tures, when T »Tc. (Note that "high" in this sense can still mean below 1 K.) 

(a) Show that, in this limit, the Bose-Einstein distribution function can be 
written approximately as 

- _ -(e-µ)/kT [l + -(e-µ)/kT + J nBE - e e · ... 

(b) Keeping only the terms shown above, plug this result into equation 7.122 
to derive the first quantum correction to the chemical potential for a gas 
of bosons. 

(c) Use the properties of the grand free energy (Problems 5.23 and 7.7) to show 
that the pressure of any system is given by P = (kT/V) lnZ, where Z is the 
grand partition function. Argue that, for a gas of noninteracting particles, 
lnZ can be computed as the sum over all modes (or single-particle states) 
of lnZi, where Zi is the grand partition function for the ith mode. 

(d) Continuing with the result of part (c), write the sum over modes as an 
integral over energy, using the density of states. Evaluate this integral 
explicitly for a gas of noninteracting bosons in the high-temperature limit, 
using the result of part (b) for the chemical potential and expanding the 
logarithm as appropriate. When the smoke clears, you should find 

p = NkT (l _ NvQ ) 
V 4v'2V ' 

again neglecting higher-order terms. Thus, quantum statistics results in a 
lowering of the pressure of a boson gas, as one might expect. 

(e) Write the result of part (d) in the form of the virial expansion introduced 
in Problem 1.17, and read off the second virial coefficient, B(T). Plot the 
predicted B(T) for a hypothetical gas of noninteracting helium-4 atoms'. 

(f) Repeat this entire problem for a gas of spin-1/2 fermions. (Very few mod­
ifications are necessary.) Discuss the results, and plot the predicted virial 
coefficient for a hypothetical gas of noninteracting helium-3 atoms. 

Ten percent or more of a complete stellar inventory consists of white dwarfs, 
just sitting there, radiating away the thermal (kinetic) energy of their carbon 
and oxygen nuclei from underneath very thin skins of hydrogen and helium. 
They will continue this uneventful course until the universe recontracts, 
their baryons decay, or they collapse to black holes by barrier penetration. 
(Likely time scales for these three outcomes are 1014, 1033 , and 101076 

-years 
for the first two and for the third one it doesn't matter.) 

-Virginia Trimble, SLAG Beam Line 
21, 3 (fall, 1991). 




