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( c) The spectrum of the star Betelgeuse, plotted as a function of energy, peaks 
at a photon energy of 0.8 eV, while Betelgeuse is approximately 10,000 
times as luminous as the sun. How does the radius of Betelgeuse compare 
to the sun's radius? Why is Bet_elgeuse called a "red supergiant" ? 

Problem 7.55. Suppose that the concentration of infrared-absorbing gases in 
earth's atmosphere were to double, effectively creating a second "blanket" to warm 
the surface. Estimate the equilibrium surface temperature of the earth that would 
result from this catastrophe. (Hint: First show that the lower atmospheric blanket 
is warmer than the upper one by a factor of 2114 . The surface is warmer than the 
lower blanket by a smaller factor .) 

Problem 7.56. The planet Venus is different from the earth in several respects. 
First, it is only 703 as far from the sun. Second, its thick clouds reflect 773 of all 
incident sunlight. Finally, its atmosphere is much more opaque to infrared light. 

(a) Calculate the solar constant at the location of Venus, and estimate what 
the average surface temperature of Venus would be if it had no atmosphere 
and did not reflect any sunlight. 

(b) Estimate the surface temperature again, taking the reflectivity of the clouds 
into account. 

~) The opaqueness of Venus's atmosphere at infrared wavelengths is roughly 70 
times that of earth's atmosphere. You can therefore model the atmosphere 
of Venus as 70 successive "blankets" of the type considered in the text, 
with each blanket at a different equilibrium temperature. Use this model 
to estimate the surface temperature of Venus. (Hint: The temperature of 
the top layer is what you found in part (b). The next layer down is warmer 
by a factor of 2114 . The next layer down is warmer by a smaller factor. 
Keep working your way down until you see the pattern.) 

7.5 Debye Theory of Solids 

In Section 2.2 I introduced the Einstein model of a solid crystal, in which each 
atom is treated as an independent three-dimensional harmonic oscillator. In Prob­
lem 3.25, you used this model to derive a prediction for the heat capacity, 

(EjkT) 2e•/ kT 
Cv = 3Nk (e• /kT - 1)2 (Einstein model), (7.103) 

where N is the number of atoms and f. = hf is the universal size of the units of 
energy for the identical oscillators. When kT » E, the heat capacity approaches a 
constant value, 3Nk, in agreement with the equipartition theorem. Below kT ~ E, 

the heat capacity falls off, approaching zero as the temperature goes to zero. This 
prediction agrees with experiment to a first approximation, but not in detail. In 
particular, equation 7.103 predicts that the heat caW:city goes to zero exponen­
tially in the limit T---+ 0, whereas experiments show diat the true low-temperature 
behavior is cubic: Cv ex: T 3 • 

The problem with the Einstein model is that the atoms in a crystal do not 
vibrate independently of each other. If you wiggle c;me atom, its neighbors will also 
start to wiggle, in a complicated way that depends on the frequency of oscillation. 
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There are low-frequency modes of oscillation in which large groups of atoms are 
all moving together, and also high-frequency modes in which atoms are moving 
opposite to their neighbors. The units of energy come in different sizes, proportional 
to the frequencies of the modes of vibration. Even at very low temperatures, when 
the high-frequency modes are frozen out, a few low-frequency modes are still active. 
This is the reason why the heat capacity goes to zero less dramatically than the 
Einstein model predicts. 

In many ways, the modes of oscillation of a solid crystal are similar to the modes 
of oscillation of the electromagnetic field in vacuum. This similarity suggests that 
we try to adapt our recent treatment of electromagnetic radiation to the mechanical 
oscillations of the crystal. Mechanical oscillations are also called sound waves, and 
behave very much like light waves. There are a few differences, however: 

• Sound waves travel much slower than light waves, at a speed that depends on 
the stiffness and density of the material. I'll call this speed Cs; and treat it as a 
constant, neglecting the fact that it can depend on wavelength and direction. 

• Whereas light waves must be transversely polarized, sound waves can also be 
longitudinally polarized. (In seismology, transversely polarized waves are called 
shear waves, or S-waves, while longitudinally polarized waves are called pres­
sure waves, or P-waves.) So instead of two polarizations we have three. For 
simplicity, I'll pretend that all three polarizations have the same speed. 

• Whereas light waves can have arbitrarily short wavelengths, sound waves in 
solids cannot have wavelengths shorter than twice the atomic spacing. 

The first two differences are easy to take into account. The third will require some 
thought. 

Aside from these three differences, sound waves behave almost identically to 
light waves. Each mode of oscillation has a set of equally spaced energy levels, with 
the unit of energy equal to 

E =hf= hes = hcsn 
.A 2L . (7.104) 

In the last expression, L is the length of the crystal and n = liil is the magnitude 
of the vector in n-space specifying the shape of the wave. When this mode is in 
equilibrium at temperature T, the number of units of energy it contains, on average, 
is given by the Planck distribution: 

1 n - ---,~-­
Pi - ee/kT - 1. (7.105) 

(This n is not to be confused with the n in the previous equation.)_ As with elec­
tromagnetic waves, we can think of these units of energy as particles obeying Bose­
Einstein statistics with µ = 0. This time the "particles" are called phonons. 

To calculate the total thermal energy of the crystal, we add up the energies of 
all allowed modes: 

(7.106) 
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The factor of 3 counts the three polarization states for each n. The next step will 
be to convert the sum to an integral. But first we'd better worry about what values 
of n are being summed over. 

If these were electromagnetic oscillations, there would be an infinite number of 
allowed modes and each sum would go to infinity. But in a crystal, the atomic 
spacing puts a strict lower limit on the wavelength. Consider a lattice of atoms in 
just one dimension (see Figure 7.26). Each mode of oscillation has its own distinct 
shape, with the number of "bumps" equal to n. Because each bump must contain 
at least one atom, n cannot exceed the number of atoms in a row. If the three­
dimensional crystal is a perfect cube, then the number of atoms along any direction 
is {/N, so each sum in equation 7.106 should go from 1 to {/N. In other words, 
we're summing over a cube in n-space. If the crystal itself is not a perfect cube, 
then neither is the corresponding volume of n-space. Still, however, the sum will 
run over a region inn-space whose total volume is N. 

Now comes the tricky approximation. Summing (or integrating) over a cube 
or some other complicated region of n-space is no fun, because the function we're 
summing depends on nx, ny, and~~in a very complicated way (an exponential of 
a square root). On the other hand, :ri function depends on the magnitude of n in 
a simpler way, and it doesn't depend on the angle inn-space at all. So Peter Debye 
got the clever idea to pretend that the relevant region of n-space is a sphere, or 
rather, an eighth of a sphere. To preserve the total number of degrees of freedom, 
he chose a sphere whose total volume is N. You can easily show that the radius of 
the sphere has to be 

(7.107) 

n= ifN 

n=3 

n=2 

n=l 

Figure 7.26. Modes of oscillation of a row of atoms in a crystal. If the crystal 
is a cube, then the number of atoms along any row is ifN. This is also the total 
number of modes along this direction, because each "bump" in the wave form must 
contain at least one atom. 
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Figure 7.27. The sum in equation 7.106 is technically over a cube in n-space 
whose width is W. As an approximation, we instead sum over an eighth-sphere 
with the sarr.e total volume. 

Figure 7.27 shows the cube in n-space, and the sphere that approximates it. 
Remarkably, Debye's approximation is exact in both the high-temperature and 

low-temperature limits. At high temperature, all that matters is the total number 
of modes, ~ha~the total number of degrees of freedom; this number is preserved 
by choosing the sphere to have the correct volume. At low temperature, modes 
with large ii are frozen out anyway, so we can count them however we like. At 
intermediate temperatures, we'll get results that are not exact, but they'll still be 
surprisingly good. 

When we make Debye's approximation, and convert the sums to integrals in 
spherical coordinates, equation 7.106 becomes 

1

nmax 11f /2 11f /2 E 
U = 3 dn d() de/> n 2 sin() </kT . 

a a a e -1 
(7.108) 

The angular integrals give 7f /2 (yet again), leaving us with 

U=- - dn 
37f 1nmax hes n3 

2 
0 

2L ehc.n/2LkT _ 1 · (7.109) 

This integral cannot be done analytically, but it's at least a little cleaner if we 
change to the dimensionless variable 

hesn 
x = 2LkT. 

The upper limit on the integral will then be 

hesnmax hes (6N)113 
Tn 

Xmax = 2LkT = 2kT 1fV = T' 

(7.110) 

(7.111) 

where the last equality defines the Debye temperature, Tn-essentially an ab­
breviation for all the constants. Making the variable change and collecting all the 
constants is now straightforward. When the smoke clears, we obtain 

- 9NkT41Tn/T x3 
U- 3 --dx. 

TD a ex -1 
(7.112) 
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At this point you can do the integral on a computer if you like, for any desired 
temperature. Without a computer, though, we can still check the low-temperature 
and high-temperature limits. 

When T » Tn, the upper limit of the integral is much less than 1, so xis always 
very small and we can approximate ex ~ 1 + x in the denominator. The 1 cancels, 
leaving the x to cancel one power of x in the numerator. The integral then gives 
simply i(Tn/T)3 , leading to the final result 

U = 3NkT when T » Tn, (7.113) 

in agreement with the equipartition theorem (and the Einstein model). The heat 
capacity in this limit is just Cv = 3Nk. 

When T « Tn , the upper limit on the integral is so large that by the time we 
get to it, the integrand is dead (due to the ex in the denominator) . So we might 
as well replace the upper limit by infinity- the extra modes we're adding don't 
contribute anyway. In this approximation, the integral is the same as the one we 
did for the photon gas (equation 7.85), and evaluates to rr4 /15. So the total energy 
is 

~rr4 NkT4 

- 5 T6 when T « Tn. (7.114) 

To get the heat capacity, differentiate with respect to T: 

when T « Tn. (7.115) 

The prediction Cv ex T 3 agrees beautifully with low-temperature experiments 
on almost any solid material. For metals, though, there is also a lirtear contribution 
to the heat capacity from the conduction electrons, as described in Section 7.3. The 
total heat capacity at low temperature is therefore 

C - T 12rr4Nk T3 
- 'Y + 5r,3 

D 
(metal, T « Tn), (7.116) 

where 'Y = rr2 Nk2 /2EF in the free electron model. Figure 7.28 shows plots of C /T 

Figure 7.28. Low-temperature 
measurements of the heat capac­
ities (per mole) of copper, sil­
ver, and gold. Adapted with per­
mission from William S. Corak 
et al., Physical Review 98, 1699 
(1955). 
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vs. T 2 for three familiar metals. The linearity of the data confirms the Debye theory 
of lattice vibrations, while the intercepts give us the experimental values of r· 

At intermediate temperatures, you have to do a numerical integral to get the 
total thermal energy in the crystal. If what you really want is the heat capacity, it's 
best to differentiate equation 7.109 analytically, then change variables to x. The 
result is 

( 
T )3 rTn/T x4 ex 

Cv = 9Nk Tn Jo (ex - 1)2 dx. (7.117) 

A computer-generated plot of this function is shown in Figure 7.29. For comparison, 
the Einstein model prediction, equation 7.103, is also plotted, with the constant E 

chosen to make the curves agree at relatively high temperatures. As you can see, the 
two curves still differ significantly at low temperatures. Figure 1.14 shows further 
comparisons of experimental data to the prediction of the Debye model. 

The Debye temper~any particular substance can be predicted from the 
speed of sound in that substance, using equation 7.111. Usually, however, one 
obtains a better fit to the data by choosing Tn so that the measured heat capacity 
best fits the theoretical prediction. Typical values of Tn range from 88 K for lead 
(which is soft and dense) to 1860 K for diamond (which is stiff and light). Since the 
heat capacity reaches 953 of its maximum value at T = Tn, the De bye temperature 
gives you a rough idea of when you can get away with just using the equipartition 
theorem. When you can't, Debye's formula usually gives a good, but not great, 
estimate of the heat capacity over the full range of temperatures. To do better, 
we'd have to do a lot more work, taking into account the fact that the speed of a 
phonon depends on its wavelength, polarization, and direction of travel with respect 
to the crystal axes. That kind of analysis belongs in a book on solid state physics. 
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Figure 7.29. The Debye prediction for the heat capacity of a solid, with the 
prediction of the Einstein model plotted for comparison. The constant € in the 
Einstein model has been chosen to obtain the best agreement with the Debye 
model at high temperatures. Note that the Einstein curve is much flatter than the 
Debye curve at low temperatures. 
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7.5 Debye Theory of Solids 

Problem 7.57. Fill in the steps to derive equations 7.112 and 7.117. 

Problem 7.58. The speed of sound in copper is 3560 m/s. Use this value to 
calculate its theoretical Debye temperature. Then determine the experimental 
Debye temperature from Figure 7.28, and compare. 

Problem 7.59. Explain in some detail why the three graphs in Figure 7.28 all 
intercept the vertical axis in about the same place, whereas their slopes differ 
considerably. 

Problem 7.60. Sketch the heat capacity of copper as a function of temperature 
from 0 to 5 K, showing the contributions of lattice vibrations and conduction 
electrons separately. At what temperature are these two contributions equal? 

Problem 7.61. The heat capacity of liquid 4He below 0.6 K is proportional 
to T 3 , with the measured value Cv/Nk = (T/4.67 K) 3

. This behavior suggests 
that the dominant excitations at low temperature are long-wavelength phonons. 
The only important difference between phonons in a liquid and phonons in a solid 
is that a liquid cannot transmit transversely polarized waves~sound waves must 
be longitudinal. The speed of sound in liquid 4He is 238 m/s, and the density is 
0.145 g/cm3 . From these numbers, calculate the phonon contribution to the heat 
capacity of 4He in the low-temperature limit, and compare to the measured value. 

Problem 7.62. Evaluate the integrand in equation 7.112 as a power series in x, 
keeping terms through x4 . Then carry out the integral to find a mote accurate ex­
pression for the energy in the high-temperature limit. Differentiate this expression 
to obtain the heat capacity, and use the result to estimate the percent deviation 
of Cv from 3Nk at T = Tn and T = 2Tn. 

Problem 7.63. Consider a two-dimensional solid, such as a stretched drumhead 
or a layer of mica or graphite. Find an expression (in terms of an integral) for the 
thermal energy of a square chunk of this material of area A = L2

, and evaluate 
the result approximately for very low and very high temperatures. Also find an 
expression for the heat capacity, and use a computer or a calculator to plot the 
heat capacity as a function of temperature. Assume that the material can only 
vibrate perpendicular to its own plane, i.e., that there is only one "polarization." 

Problem 7.64. A ferromagnet is a material (like iron) that magnetizes sponta­
neously, even in the absence of an externally applied magnetic field. This happens 
because each elementary dipole has a strong tendency to align parallel to its neigh­
bors. At T = 0 the magnetization of a ferromagnet has the maximum possible 
value, with all dipoles perfectly lined up; if there are N atoms, the total magneti­
zation is typically rv2µBN, where µB is the Bohr magneton. At somewhat higher 
temperatures, the excitations take the form of spin waves, which can be visualized 
classically as shown in Figure 7.30. Like sound waves, spin waves are quantized: 
Each wave mode can have only integer multiples of a basic energy unit. In analogy 
with phonons, we think of the energy units as particles, called magnons. Each 
magnon reduces the total spin of the system by one unit of h/27r, and therefore 
reduces the magnetization by rv2µB. However, whereas the frequency of a sound 
wave is inversely proportional to its wavelength, the frequency of a spin wave is 
proportional to the square of 1/).. (in the limit of long wavelengths). Therefore, 
since E = hf and p = h/).. for any "particle," the energy of a magnon is proportional 

313 
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Figure 7.30. In the ground state of a ferromagnet, all the elementary 
dipoles point in the same direction. The lowest-energy excitations above 
the ground state are spin waves, in which the dipoles precess in a conical 
motion. A long-wavelength spin wave carries very little energy, because the 
difference in direction between neighboring dipoles is very small. 

to the square of its momentum. In analogy with the energy-momentum relation 
for an ordinary nonrelativistic particle, we can write E = p 2 /2m*, where m* is a 
constant related to the spin-spin interaction energy and the atomic spacing. For 
iron, m* turns out to equal 1.24x10-29 kg, about 14 times the mass of an electron. 
Another difference between magnons and phonons is that each magnon (or spin 
wave mode) has only one possible polarization. 

(a) Show that at low temperatures, the number of magnons per unit volume 
in a three-dimensional ferromagnet is given by. 

(b) 

(c) 

(d) 

Nm _ (2m*kT)
312 

{= Vx 
V - 21!" h2 lo ex - 1 dx. 

Evaluate the integral numerically. 

Use the result of part (a) to find an expression for the fractional reduction 
in magnetization, (M(O) - M(T))/M(O). Write your answer in the form 
(T/To) 312

, and estimate the constant To for iron. 

Calculate the heat capacity due to magnetic excitations in a ferromagnet 
at low temperature. You should find Cv / Nk = (T /T1)312, where T1 differs 
from To only by a numerical constant. Estimate T1 for iron, and compare 
the magnon and phonon contributions to the heat capacity. (The Debye 
temperature of iron is 470 K.) 

Consider a two-dimensional array of magnetic dipoles at low tempera­
ture. Assume that each elementary dipole can still point in any (three­
dimensional) direction, so spin waves are still possible. Show that the 
integral for the total number of magnons diverges in this case. (This re­
sult is an indication that there can be no spontaneous magnetization in 
such a two-dimensional system. However, in Section 8.2 we will consider a 
different two-dimensional model in which magnetization does occur.) 


