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(d) Calculate the entropy of this system for each value of q from Oto 6, and 
draw a graph of entropy vs. energy. Make a rough estimate of the slope 
of this graph near q = 6, to obtain another estimate of the temperature of 
this system at that point. Check that it is in rough agreement with your 
answer to part ( c). 

Problem 7.17. In analogy with the previous problem, consider a system of iden­
tical spin-0 bosons trapp~d in a region where the energy levels are evenly spaced. 
Assume that N is a large number, and again let q be the number of energy units. 

(a) Draw diagrams representing all allowed system states from q = 0 up to 
q = 6. Instead of using dots as in the previous problem, use numbers to 
indicate the number of bosons occupying each level. 

(b) Compute the occupancy of each energy level, for q = 6. Draw a graph of 
the occupancy as a function of the energy of the level. 

(c) Estimate the values ofµ and T that you would have to plug into the Bose­
Einstein distribution to best fit the graph of part (b). 

(d) As in part (d) of the previous problem, draw a graph of entropy vs. energy 
and estimate the temperature at q = 6 from this graph. 

Problem 7.18. Imagine that there exists a third type of particle, which can share 
a single-particle state with one other particle of the same type but no more. Thus 
the number of these particles in any state can be 0, 1, or 2. Derive the distribution 
function for the average occupancy of a state by particles of this type, and plot the 
occupancy as a function of the state's energy, for several different temperatures. 

7.3 Degenerate Fermi Gases 

As a first application of quantum statistics and the Fermi-Dirac distribution, I'd 
like to consider a "gas" of fermions at very low temperature. The fermions could 
be helium-3 atoms, or protons and neutrons in an atomic nucleus, or electrons in 
a white dwarf star, or neutrons in a neutron star. The most familiar example, 
though, is the conduction electrons inside a chunk of metal. In this section I'll say 
"electrons" to be specific, even though the results apply to other types of fermions 
as well. 

By "very low temperature,'' I do not necessarily mean low compared to room 
temperature. What I mean is that the condition for Boltzmann 'statistics to apply 
to an ideal gas, V / N » VQ, is badly violated, so that in fact V / N « VQ. For an 
electron at room temperature, the quantum volume is 

VQ = ( h )
3 

= (4.3 nm) 3
. 

../27rmkT 
(7.32) 

But in a typical metal there is about one conduction electron per atom, so the 
volume per conduction electron is roughly the volume of an atom, (0.2 nm) 3 . Thus, 
the temperature is much too low for Boltzmann statistics to apply. Instead, we are 
in the opposite limit, where for many purposes we can pretend that T = 0. Let 
us therefore first consider the properties of an electron gas at T = 0, and later ask 
what happens at small nonzero temperatures. 
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Zero Telllperature 

At T = 0 the Fermi-Dirac distribution becomes a step function (see Figure 7.9). 
All single-particle states with energy less thanµ are occupied, while all states with 
energy greater than µ are unoccupied. In this context µ is also called the Fermi 
energy, denoted EF: 

EF =: µ(T = 0). (7.33) 

When a gas of fermions is so cold that nearly all states below Ep are occupied while 
nearly all states above EF are unoccupied, it is said to be degenerate. (This use 
of the word is completely unrelated to its other use to describe a set of quantum 
states that have the same energy.) 

The value of Ep is determined by the total number of electrons present. Imagine 
an empty box, to which you add electrons one at a time, with no excess energy. 
Each electron goes into the lowest available state, until the last electron goes into a 
state with energy just below Ep. To add one more electron you would have to give it 
an energy essentially equal to Ep = µ; in this context, the equationµ = (au I a N) s, v 
makes perfect physical sense, since dU = µ when dN = 1 (and S is fixed at zero 
when all the electrons are packed into the lowest-energy states). 

In order to calculate Ep, as well as other interesting quantities such as the total 
energy and the pressure of the electron gas, I'll make the approximation that the 
electrons are free particles, subject to no forces whatsoever except that they are 
confined inside a box of volume V = L 3 . For the conduction electrons in a metal, 
this approximation is not especially accurate. Although it is reasonable to neglect 
long-range electrostatic forces in any electrically neutral material, each conduction 
electron still feels attractive forces from nearby ions in the crystal lattice, and I'm 
neglecting these forces.* 

The definite-energy wavefunctions of a free electron inside a box are just sine 
waves, exactly as for the gas molecules treated in Section 6.7. For a one-dimensional 

0 ..., E 

µ= EF 

Figure 7.9. At T = 0, the Fermi-Dirac distribution equals 1 for all states with 
E < µ and equals 0 for all states with E > µ. 

*Problems 7.33 and 7.34 treat some of the effects of the crystal lattice on the conduction 

electrons. For much more detail, see a solid state physics textbook such as Kittel (1996) 
or Ashcroft and Mermin (1976). 
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box the allowed wavelengths and momenta are (as before) 

, _ 2L 
An - ' n 

(7.34) 

where n is any positive integer. In a three-dimensional box these equations apply 
separately to the x, y, and z directions, so 

hnx 
Px = 2L, 

hny 
Py= 2L ' 

hnz 
Pz = 2L ' (7.35) 

where (nx, ny, nz) is a triplet of positive integers. The allowed energies are therefore 

IP1 2 
h

2 
( 2 2 2) 

E = 2m = 8mL2 nx + ny + nz . (7.36) 

To visualize the set of allowed states, I like to draw a picture of "n-space,'' the 
three-dimensional space whose axes are nx, ny, and nz (see Figure 7.10). Each 
allowed n vector corresponds to a point in this space with positive integer coor­
dinates; the set of all allowed states forms a huge lattice filling the first octant of 
n-space. Each lattice point actually represents two states, since for each spatial 
wavefunction there are two independent spin orientations. 

In n-space, the energy of any state is proportional to the square of the distance 
from the origin, n; + n~ + n~. So as we add electrons to the box, they settle into 
states starting at the origin and gradually working outward. By the time we're done, 
the total number of occupied states is so huge that the occupied region of n-space 
is essentially an eighth of a sphere. (The roughness of the edges is insignificant, 
compared to the enormous size of the entire sphere.) I'll call the radius of this 
sphere nmax. 

It's now quite easy to relate the total number of electrons, N, to the chemical 
potential or Fermi energy, µ = EF. On one hand, EF is the energy of a state that 
sits just on the surface of the sphere in n-space, so 

Figure 7.10. Each triplet of 
integers (nx, ny, nz) represents 
a pair of definite-energy elec-
tron states (one with each spin 
orientation). The set of all inde­
pendent states fills the positive 
octant of n-space. 

(7.37) 
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On the other hand, the total volume of the eighth-sphere in n-space equals the 
number of lattice points enclosed, since the separation between lattice points is 1 
in all three directions. Therefore the total number of occupied states is twice this 
volume (because of the two spin orientations): 

( f h h h ) 
1 4 3 7rn~ax 

N = 2 x volume o eig t -sp ere = 2 · S · 37rnmax = --
3
-. (7.38) 

Combining these two equations gives the Fermi energy as a function of N and the 
volume V = L 3 of the box: 

EF = !!:___ (3N)2/3 
8m 7rV 

(7.39) 

Notice that this quantity is intensive, since it depends only on the number density 
of electrons, N /V. For a larger container with correspondingly more electrons, EF 

comes out the same. Although I have derived this result only for electrons in a 
cube-shaped box, it actually applies to macroscopic containers (or chunks of metal) 
of any shape. 

The Fermi energy is the highest energy of all the electrons. On average, they'll 
have somewhat less energy, a little more than half EF. To be more precise, we have 
to do an integral, to find the total energy of all the electrons; the average is just 
the total divided by N. 

To calculate the total energy of all the electrons, I'll add up the energies of the 
electrons in all occupied states. This entails a triple sum over.'nx, ny, and n z: 

U = 2 LLLE(n) = 2 j j j 1:(n) dnx dnydnz. 
n 3.1 ny nz 

(7.40) 

The factor of 2 is for the two spin orientations for each ii'.. I'm allowed to change 
the sum into an integral because the number of terms is so huge, it might as well be 
a continuous function. To evaluate the triple integral I'll use spherical coordinates, 
as illustrated in Figure 7.11. Note that the volume element dnx dny dnz becomes 

ayaa 
() ,': nsinBdcjJ 

, , I 
, I 

, n I 

, , I 

; 

Figure 7.11. In spherical coordinates (n, B, ¢),the infinitesimal volume element 
is (dn)(ndB)(n sinBd¢). 
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n 2 sin() dn d() d</J. The total energy of all the electrons is therefore 

rmax r/2 r/2 
U = 2 lo dn lo d() lo d</Jn

2
sin()E(n). (7.41) 

The angular integrals give 1f /2, one-eighth the surface area of a unit sphere. This 
leaves us with 

fnmax 1fh2 rnrna.x 1fh2n5 3 
U = 1f lo E(n) n2 dn = 8mL2 lo n4 dn = 40m~;" = 5NEF. (7.42) 

The average energy of the electrons is therefore 3/5 the Fermi energy. 
If you plug in some numbers, you'll find that the Fermi energy for conduction 

electrons in a typical metal is a few electron-volts. This is huge compared to the 
average thermal energy of a particle at room temperature, roughly kT ~ 1/40 eV. 
In fact, comparing the Fermi energy to the average thermal energy is essentially 
the same as comparing the quantum volume to the average volume per particle, as 
I did at the beginning of this section: 

v 
N «vQ is the same as (7.43) 

When this condition is met, the approximation T ~ 0 is fairly accurate for many 
purposes, and the gas is said to be degenerate. The temperature that a Fermi gas 
would have to have in order for kT to equal EF is called the Fermi temperature: 
TF = EF/k. This temperature is purely hypothetical for electrons in. a metal, since 
metals liquefy and evaporate long before it is reached. 

Using the formula P = -(8U/8V)s,N, which you can derive from the thermo­
dynamic identity or straight from classical mechanics, we can calculate the pressure 
of a degenerate electron gas: 

p = -~ [~N !!!__ (3N)
2/3v-2/3] = 2NEF = ~ U. 

av 5 Sm 1f 5V 3 v (7.44) 

This quantity is called the degeneracy pressure. It is positive because when you 
compress a degenerate electron gas, the wavelengths of all the wavefunctions are 
reduced, hence the energies of all the wavefunctions increase. Degeneracy pressure 
is what keeps matter from collapsing under the huge electrostatic forces that try 
to pull electrons and protons together. Please note that degeneracy pressure has 
absolutely nothing to do with electrostatic repulsion between the electrons (which 
we've completely ignored); it arises purely by virtue of the exclusion principle. 

Numerically, the degeneracy pressure comes out to a few billion N /m2 for a 
typical metal. But this number is not directly measurable-it is canceled by the 
electrostatic forces that hold the electrons inside the metal in the first place. A 
more measurable quantity is the bulk modulus, that is, the change in pressure 
when the material is compressed, divided by the fractional change in volume: 

B = -v(8p) 
av T 

lOU 
9V 

(7.45) 
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This quantity is also quite large in SI units, but it is not completely canceled by the 
electrostatic forces; the formula actually agrees with experiment, within a factor of 
3 or so, for most metals. 

Problem 7.19. Each atom in a chunk of copper contributes one conduction 
electron. Look up the density and atomic mass of copper, and calculate the Fermi 
energy, the Fermi temperature, the degeneracy pressure, and the contribution of 
the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low 
to treat this system as a degenerate electron gas? 

Problem 7.20. At the center of the sun, the temperature is approximately 107 K 
and the concentration of electrons is approximately 1032 per cubic meter. Would 
it be (approximately) valid to treat these electrons as a "classical" ideal gas (using 
Boltzmann statistics), or as a degenerate Fermi gas (with T ::::; O), or neither? 

Problem 7.21. An atomic nucleus can be crudely modeled as a gas of nucleons 
with a number density of 0.18 fm- 3 (where 1 fm = 10-15 m). Because nucleons 
come in two different types (protons and neutrons), each with spin 1/2, each spatial 
wavefunction can hold four nucleons. Calculate the Fermi energy of this system, 
in MeV. Also calculate the Fermi temperature, and comment on the result. 

Problem 7.22. Consider a degenerate electron gas in which essentially all of the 
electrons are highly relativistic (c » mc2), so that their energies are E =pc (where 
p is the magnitude of the momentum vector). 

(a) Modify the derivation given above to show that for a relativistic electron 
gas at zero temperature, the chemical potential (or Fermi energy) is given 

by I'· = hc(3N/81fV) 113
. 

(b) Find a formula for the total energy of this system in t erms of N and µ. 

Problem 7.23. A white dwarf star (see Figure 7.12) is essentially a degenerate 
electron gas, with a bunch of nuclei mixed in to balance the charge and to provide 
the gravitational attraction that holds the star together. In this problem you will 
derive a relation between the mass and the radius of a white dwarf star, modeling 
the star as a uniform-density sphere. \Vhite dwarf stars tend _to be extremely hot 
by our standards; nevertheless, it is an excellent approximation in this problem to 
set T = 0. 

(a) Use dimensional analysis to argue that the gravitational potential energy 
of a uniform-density sphere (mass M , radius R) must equal 

GM2 

Ugrav =-(constant)~, 

where (constant) is some numerical constant. Be sure to explain the minus 
sign. The constant turns out to equal 3/5; you can derive it by calculating 
the (negative) work needed to assemble the sphere, shell by shell, from the 
inside out. 

(b) Assuming that the star contains one proton and one neutron for each elec­
tron, and that the electrons are nonrelativistic, show that the total (kinetic) 
energy of the degenerate electrons equals 

h2 M5/3 
ukinetic = (0.0088) 5/3 2 

memp R 



Figure 7.12. The double star system Sir­
ius A and B. Sirius A (greatly overexposed 
in the photo) is the brightest star in our 
night sky. Its companion, Sirius B, is hot­
ter but very faint, indicating that it must 
be extremely small-a white dwarf. From 
the orbital motion of the pair we know that 
Sirius B has about the same mass as our 
sun. (UCO/Lick Observatory photo.) 
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The numerical factor can be expressed exactly in terms of 11' and cube roots 
and such, but it's not worth it. 

( c) The equilibrium radius of the white dwarf is that which minimizes the total 
energy Ugrav + Ukinetic· Sketch the total energy as a function of R, and 
find a formula for the equilibrium radius in terms of the mass. As the mass 
increases, does the radius increase or decrease? Does this make sense? 

(d) Evaluate the equilibrium radius for M = 2 x 1030 kg, the mass of the sun. 
Also evaluate the density. How does the density compare to that of water? 

( e) Calculate the Fermi energy and the Fermi temperature, for the case con­
sidered in part (d). Discuss whether the approximation T = 0 is valid. 

(f) Suppose instead that the electrons in the white dwarf star are highly rel­
ativistic. Using the result of the previous problem, show that the total 
kinetic energy of the electrons is now proportional to 1 / R instead of 1 / R 2 . 

Argue that there is no stable equilibrium radius for such a star. 
(g) The transition from the nonrelativistic regime to the ultrarelativistic regime 

occurs approximately where the average kinetic energy of an electron is 
equal to its rest energy, mc2 . Is the nonrelativistic approximation valid for 
a one-solar-mass white dwarf? Above what mass would you expect a white 
dwarf to become relativistic and· hence unstable? 

Problem 7.24. A star that is too heavy to stabilize as a white dwarf can collapse 
further to form a neutron star: a star made entirely of neutrons, supported 
against gravitational collapse by degenerate neutron pressure. Repeat the steps 
of the previous problem for a neutron star, to determine the following: the mass­
radius relation; the radius, density, Fermi energy, and Fermi temperature of a 
one-solar-mass neutron star; and the critical mass above which a neutron star 
becomes relativistic and hence unstable to further collapse. 

Small Nonzero Temperatures 

One property of a Fermi gas that we cannot calculate using the approximation 
T = 0 is the heat capacity, since this is a measure of how the energy of the system 
depends on T. Let us therefore consider what happens when the temperature is 
very small but nonzero. Before doing any careful calculations, I'll explain what 
happens qualitatively and try to give some plausibility arguments. 

At temperature T, all particles typically acquire a thermal energy of roughly kT. 
However, in a degenerate electron gas, most of the electrons cannot acquire such 
a small amount of energy, because all the states that they might jump into are 
already occupied (recall the shape of the Fermi-Dirac distribution, Figure 7.6). 
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The only electrons that can a quire some thermal energy are those that are already 
within about kT of the Fern i energy-these can jump up into unoccupied states 
above EF· (The spaces they leave behind allow some, but not many, of the lower­
lying electrons to also gain energy.) Notice that the number of electrons that can 
be affected by the increase in T is proportional to T. This number must also be 
proportional to N, because it is an extensive quantity. 

Thus, the additional energy that a degenerate electron gas acquires when its 
temperature is raised from zero to T is doubly proportional to T: 

additional energy ex (number of affected electrons) x (energy acquired by each) 

ex (NkT) x (kT) 

ex N(kT) 2
. (7.46) 

We can guess the constant of proportionality using dimensional analysis. The quan­
tity N(kT) 2 has units of (energy) 2 , so to get something with units of (energy)1, 
we need to divide by some constant with units of energy. The only such constant 
available is Ep, so the additional energy must be N(kT) 2 /t:F, times some constant 
of order 1. In a few pages we'll see that this constant is n 2 

/ 4, so the total energy 
of a degenerate Fermi gas for T « EF / k is 

U = ~Ncp + n2 N(kT)2. 
5 4 Ep 

(7.47) 

From this result we can easily calculate the heat capacity: 

(7.48) 

Notice that the heat capacity goes to zero at T = 0, as required by the third 
law of thermodynamics. The approach to zero is linear in T, and this prediction 
agrees well with experiments on metals at low temperatures. (Above a few kelvins , 
lattice vibrations also contribute significantly to the heat capacity of a metal.) 
The numerical coefficient of n 2 /2 usually agrees with experiment to within 503 or 
better, but there are exceptions. 

Problem 7.25. Use the results of this section to estimate the contribution of 
conduction electrons to the heat capacity of one mole of copper at room temper­
ature. How does this contribution compare to that of lattice vibrations, assuming 
that these are not frozen out? (The electronic contribution has been measured at 
low temperatures, and turns out to be about 40% more than predicted by the free 
electron model used here.) 

Problem 7.26. In this problem you will model helium-3 as a noninteracting 
Fermi gas. Although 3He liquefies at low temperatures, the liquid has an unusually 
low density and behaves in many ways like a gas because the forces between the 
atoms are so weak. Helium-3 atoms are spin-1/2 fermions, because of the unpaired 
neutron in the nucleus. 

{a) Pretending that liquid 3He is a noninteracting Fermi gas, calculate the 
Fermi energy and the Fermi temperature. The molar volume (at low pres­
sures) is 37 cm3 . 



(b) 

(c) 
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Calculate the heat capacity for T « TF, and compare to the experimental 
result Cv = (2.8 K- 1 )NkT (in the low-temperature limit). (Don't expect 
perfect agreement.) 

The entropy of solid 3He below 1 K is almost entirely due to its multiplicity 
of nuclear spin alignments. Sketch a graph S vs. T for liquid and solid 3He 
at low temperature, and estimate the temperature at which the liquid and 
solid have the same entropy. Discuss the shape of the solid-liquid phase 
boundary shown in Figure 5.13. 

Problem 7.27. The argument given above for why Cv ex T does not depend on 
the details of the energy levels available to the fermio.ns, so it should also apply 
to the model considered in Problem 7.16: a gas of fermions trapped in such a way 
that the energy levels are evenly spaced and nondegenerate. 

(a) Show that, in this model, the number of possible system states for a given 
value of q is equal to the number of distinct ways of writing q as a sum of 
positive integers. (For example, there are three system states for q = 3, 
corresponding to the sums 3, 2 + 1, and 1+1+1. Note that 2 + 1 and 
1 + 2 are not counted separately.) This combinatorial function is called 
the number of unrestricted partitions of q, denoted p(q). For example, 
p(3) = 3. 

(b) By enumerating the partitions explicitly, compute p(7) and p(8). 

(c) Make a table of p(q) for values of q up to 100, by either looking up the 
values in a mathematical reference book, or using a software package that 
can compute them, or writing your own program to compute them. From 
this table, compute the entropy, temperature, and heat capacity of this 
system, using the same methods as in Section 3.3. Plot the heat capacity 
as a function of temperature, and note that it is approximately linear. 

(d) Ramanujan and Hardy (two famous mathematicians) have shown that 
when q is large, the number of unrestricted partitions of q is given ap­
proximately by 

7rvl2i73 e 
p(q):::::: V3 . 

4 3q 

Check the accuracy of this formula for q = 10 and for q = 100. Working in 
this approximation, calculate the entropy, temperature, and heat capacity 
of this system. Express the heat capacity as a series in decreasing powers of 
kT /TJ, assuming that this ratio is large and keeping the two largest terms. 
Compare to the numerical results you obtained in part ( c). Why is the 
heat capacity of this system independent of N, unlike that of the three­
dimensional box of fermions discussed in the text? 

The Density of States 

To better visualiz~and quantify-the behavior of a Fermi gas at small nonzero 
temperatures, I need to introduce a new concept. Let's go back to the energy 
integral (7.42), and change variables from n to the electron energy E: 

h2 
- 2 

E - 8mL2n ' 
~ 

n = y-,;:x- .fi, 
. rs:;;;v 1 

dn = y -,;:2 2.fi dt:. (7.49) 
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With this substitution, you can show that the energy integral for a Fermi gas at 
zero temperature becomes 

u = 1EF f [~ (8~~2 y/2VE] df (T = O}. (7.50) 

The quantity in square brackets has a nice interpretation: It is the number of single­
particle states per unit energy. To compute the total energy of the system we carry 
out a sum over all energies of the energy in question times the number of states 
with that energy. 

The number of single-particle states per unit energy is called the density of 
states. The symbol for it is g(E), and it can be written in various ways: 

n(8m)312 3N 
g(E) = 2h3 v VE= ---af2 VE· 

2f F 
(7.51) 

The second expression is compact and handy, but perhaps rather confusing since 
it seems to imply that g( f) depends on N, when in fact the N dependence is 
canceled by fF· I like the first expression better, since it shows explicitly that g(E) 
is proportional to V and independent of N. But either way, the most important 
point is that g( f), for a three-dimensional box of free particles, is proportional to Vf.. 
A graph of the function is a parabola opening to the right, as shown in Figure 7.13. 
If you want to know how many states there are between two energies €1 and E2 , 

you just integrate this function over the desired range. The density of states is a 
function whose purpose in life is to be integrated. 

The density-of-states idea can be applied to lots of other systems besides this 
one. Equation 7.51 and Figure 7.13 are for the specific case of a gas of "free" 
electrons, confined inside a fixed volume but not subject to any other forces. In 
more realistic models of metals we would want to take into account the attraction of 
the electrons toward the positive ions of the crystal lattice. Then the wavefunctions 
and their energies would be quite different, and therefore g(E) would be a much more 
complicated function. The nice thing is that determining g is purely a problem of 
quantum mechanics, having nothing to do with thermal effects or temperature. And 

Figure 7.13. Density of states for a system of noninteracting, nonrelativistic 
particles in a three-dimensional box. The number of states within any energy 
interval is the area under the graph. For a Fermi gas at T = O, all states with 
€ < fF are occupied while all states with € > fF are unoccupied. 
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once you know g for some system, you can then forget about quantum mechanics 
and concentrate on the thermal physics. 

For an electron gas at zero temperature, we can get the total number of electrons 
by just integrating the density of states up to the Fermi energy: 

1
EF 

N= 0 g(E)df (T = 0) . (7.52) 

(For a free electron gas this is the same as equation 7.50 for the energy, but without 
the extra factor off.) But what if Tis nonzero? Then we need to multiply g(E) by 
the probability of a state with that energy being occupied, that is, by the Fermi­
Dirac distribution function. Also we need to integrate all the way up to infinity, 
since any state could conceivably be occupied: 

100 100 

1 N = g(E) npu(i=) dE = g(E) ( _ )/kT dE 
0 0 eEJ.L +1 

(any T). (7.53) 

And to get the total energy of all the electrons, just slip in an f: 

100 100 

1 u = Eg(E)npu(E)df = Eg(E) ( - )/kT df 
0 0 eEJ.L +1 

(any T). (7.54) 

.----..... Figure 7.14 shows a graph of the integrand of the N-integral (7.53), for a free 
electron gas at nonzero T. Instead of falling immediately to zero at f = Ep, the 
number of electrons per unit energy now drops more gradually, over a width of a 
few times kT. The chemical potential, µ, is the point where the probability of a 
state being occupied is exactly 1/2, and it's important to note that this point is no 
longer the same as it was at zero temperature: 

µ(T) =/:- Ep except when T = 0. (7.55) 

Figure 7.14. At nonzero T, the number of fermions per unit energy is given by 
the density of states times the Fermi-Dirac distribution. Because increasing the 
temperature does not change the total number of fermions, the two lightly shaded 
areas must be equal. Since g(E) is greater above Ep than below, this means that the 
chemical potential decreases as T increases. This graph is drawn for T /Tp = 0.1; 
at this temperatureµ is about 1% less than Ep. 

/ 
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Why not? Recall from Problem 7.12 that the Fermi-Dirac distribution function is 
symmetrical about E = µ,: The probability of a state above µ, being occupied is 
the same as the probability of a state the same amount below µ, being unoccupied. 
Now suppose thatµ, were to remain constant as T increases from zero. Then since 
the density of states is greater to the right of µ, than to the left, the number of 
electrons we would be adding at E > µ, would be greater than the number we are 
losing from E < µ,. In other words, we could increase the total number of electrons 
just by raising the temperature! To prevent such nonsense, the chemical potential 
has to decrease slightly, thus lowering all of the probabilities by a small amount. 

The precise formula for µ,(T) is determined implicitly by the integral for N, 
equation 7.53. If we could carry out this integral, we could take the resulting 
formula and solve it for µ,(T) (since N is a fixed constant). Then we could plug 
our value of µ(T) into the energy integral (7.54), and try to carry out that integral 
to find U(T) (and hence the heat capacity). The bad news is that these integrals 
cannot be evaluated exactly, even for the simple case of a free electron gas. The 
good news is that they can be evaluated approximately, in the limit kT « EF. In 
this limit the answer for the energy integral is what I wrote in equation 7.47. 

Problem 7.28. Consider a free Fermi gas in two dimensions, confined to a square 
area A= L2 . 

(a) Find the Fermi energy (in terms of N and A), and show that the average 
energy of the particles is EF/2. 

(b) Derive a formula for the density of states. You should find that it is a 
constant, independent of E. 

( c) Explain how the chemical potential of this system should behave as a func­
tion of temperature, both when kT « EF and when Tis much higher. 

(d) Because g(E) is a constant for this system, it is possible to carry out the 
integral 7.53 for the number of particles analytically. Do so, and solve for 
µ as a function of N. Show that the resulting formula has the expected 
qualitative behavior. 

(e) Show that in the high-temperature limit, kT :» EF, the chemical potential 
of this system is the same as that of an ordinary ideal gas. 

The Sommerfeld Expansion 

After talking about the integrals 7.53 and 7.54 for so long, it's about time I explained 
how to evaluate them, to find the chemical potential and total energy of a free 
electron gas. The method for doing this in the limit kT « EF is due to Arnold 
Sommerfeld, and is therefore called the Sommerfeld expansion. None of the 
steps are particularly difficult, but taken as a whole the calculation is rather tricky 
and intricate. Hang on. 

I'll start with the integral for N: 

N = fo 00

g(1:)nFD(1:)d1:=g0 fo
00

1:1l 2 nFD(1:)dc (7.56) 

(In the second expression I've introduced the abbreviation g0 for the constant that 
multiplies ,,/€ in equation 7.51 for the density of states.) Although this integral 
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runs over all positive E, the most interesting region is near E =µ,where nFn(E) falls 
off steeply (for T «: EF). So the first trick is to isolate this region, by integrating 
by parts: 

2 3/2 ( )1 00 
2 1°" 3/2( dnFn) N = -goE nFD E +-go E --- dE. 

3 0 3 O dE 
(7.57) 

The boundary term vanishes at both limits, leaving us with an integral that is much 
nicer, because dnF0 /dE is negligible everywhere except in a narrow region around 
E·= µ (see Figure 7.15). Explicitly, we can compute 

_ dnFD = _.!!:_(e(E-µ)/kT + l)-1 = _.!._ ex ' 
dE dE kT (ex+ 1)2 

(7.58) 

where x = (E - µ)/kT. Thus the integral that we need to evaluate is 

- ~ 1°" _.!._ ex 3/2 - ~ 1°" ex 3/2 N - go kT ( l)2 E dE - go ( l)2 E dx, 3 o ex + 3 -µ/kT ex + (7.59) 

where in the last expression I've changed the integration variable to x. 
Because the integrand in this expression dies out exponentially when IE - µI » 

kT, we can now make two approximations. First, we can extend the lower limit 
...----.... on the integral down to -oo; this makes things look more symmetrical, and it's 

harmless because the integrand is utterly negligible at negative E values anyway. 
Second, we can expand the function E3/ 2 in a Taylor series about the point E = µ, 
and keep only the first few terms: 

d I 1 d
2 

I €3/2 = µ3/2 + (E _ µ) -E3/2 + -(E _ µ)2 _
2 

€3/2 + . .. 
dE <=µ 2 dE <=µ (7.60) 

3 3 = µ3/2 + -(E _ µ)µ1/2 + -(E _ µ)2µ-1/2 + .. .. 
2 8 

With these approximations our integral becomes 

N = -g µ312 + -xkTµ 112 + -(xkT)2µ- 1!2 + · · · dx. 2 j°" ex [ 3 3 ] 
3 ° _00 (ex+1) 2 2 8 

(7.61) 

Now, with only integer powers of x appearing, the integrals can actually be per­
formed, term by term. 

Figure 7.15. The derivative of the 
Fermi-Dirac distribution is negligible 
everywhere except within a few kT 
ofµ. 

_ dnFD 
d€ 

µ € 
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The first term is easy: 

1= e"' 1= dn 
( x ) 2 dx = - dFD dt = nFD ( -00) - nFD ( 00) = 1 - 0 = 1. 

-<X> e + 1 -<X> E 

The second term is also easy, since the integrand is an odd function of x: 

1= _x_e_"'_ dx = 1= x dx = 0 
-= (e"' + 1)2 -= (e"' + 1)(1 + e-"') · 

(7.62) 

(7.63) 

The third integral is the hard one. It can be evaluated analytically, as shown in 
Appendix B: 

1= x2 e"' 7r2 

_
00 

(e"' + 1)2 dx = 3· (7.64) 

You can also look it up in tables, or evaluate it numerically. 
Assembling the pieces of equation 7.61, we obtain for the number of electrons 

2 3/2 1 2 1/2 7r
2 

N=-goµ +-go(kT) µ- ·-+ ... 
3 4 3 

_ (.1!__)3/2 7r2 .(kT)2 ... 
- N + N 3/2 1/2 + · 

EF €F µ 

(7.65) 

(In the second line I've plugged in go= 3N/2t~2 , from equation 7.51.) Canceling 
the N's, we now see that µ/tF is approximately equal to 1, with a correction 
proportional to (kT/tF)2 (which we assume to be very small). Since the correction 
term is already quite small, we can approximate µ ~ EF in that term, then solve 
for µ/ EF to obtain 

[ 
2 kT 2 ]2/3 

~ = 1- ~ (fy) +· .. 

= 1- ~~ ( ::Y + .... 
(7.66) 

As predicted, the chemical potential gradually decreases as T is raised. The behav­
ior ofµ over a wide range of temperatures is shown in Figure 7.16. 

The integral (7.54) for the total energy can be evaluated using exactly the same 
sequence of tricks. I'll leave it for you to do in Problem 7.29; the result is 

3 µ5/2 37r2 (kT)2 
U = -N- + -N-- + · .. 

5 i/2 8 EF . 
F 

(7.67) 

Finally you can plug in formula 7.66 for µ and do just a bit more algebra to obtain 

3 7r2 (kT) 2 

U= -NEF +-N-- + .. ., 
5 4 EF 

(7.68) 

as I claimed in equation 7.47. 
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Figure 7.16. Chemical potential of a noninteracting, nonrelativistic Fermi gas 
in a three-dimensional box, calculated numerically as described in Problem 7.32. 
At low temperatures µ is given approximately by equation 7.66, while at high 
temperatures µ becomes negative and approaches the form for an ordinary gas 
obeying Boltzmann statistics. 

Now admittedly, that was a lot of work just to get a factor of 7r2 /4 (since we 
had already guessed the rest by dimensional analysis). But I've presented this 
calculation in detail not so much because the answer is important, as because the 
methods are so typical of what professional physicists (and many other scientists 
and engineers) often do. Very few real-world problems can be solved exactly, so it's 
crucial for a scientist to learn when and how to make approximations. And more 
often than not, it's only after doing the hard calculation that one develops enough 
intuition to see how to guess most of the answer. 

Problem 7.29. Carry out the Sommerfeld expansion for the energy integral 
(7.54), to obtain equation 7.67. Then plug in the expansion for µ to obtain the 
final answer, equation 7.68. 

Problem 7.30. The Sommerfeld expansion is an expansion in powers of kT/EF, 
which is assumed to be small. In this section I kept all terms through order 
(kT/EF) 2, omitting higher-order terms. Show at each relevant step that the term 
pr~portional to T 3 is zero, so that the next nonvanishing terms in the expansions 
for µ and U are proportional to T 4 . (If you enjoy such things, you might try 
evaluating the T 4 terms, possibly with the aid of a computer algebra program.) 

Problem 7.31. In Problem 7.28 you found the density of states and the chemical 
potential for a two-dimensional Fermi gas. Calculate the heat capacity of this gas 
in the limit kT « EF. Also show that the heat capacity has the expected behavior 
when kT » EF. Sketch the heat capacity as a function of temperature. 

Problem 7.32. Although the integrals (7.53 and 7.54) for N and U cannot be 
carried out analytically for all T, it's not difficult to evaluate them numerically 
using a computer. This calculation has little relevance for electrons in metals (for 
which the limit kT «: EF is always sufficient), but it is needed for liquid 3He and 
for astrophysical systems like the electrons at the center of the sun. 

(a) As a warm-up exercise, evaluate the N integral (7.53) for the case kT = EF 
and µ = 0, and check that your answer is consistent with the graph shown 
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above. (Hint: As always when solving a problem on a computer, it's best to 
first put everything in terms of dimensionless variables. So let t = kT/€F, 
c = µ/£F, and x = €/€F· Rewrite everything in terms of these variables, 
and then put it on the computer.) 

(b) The next step is to vary µ, holding T fixed, until the integral works out to 
the desired value, N. Do this for values of kT/EF ranging from 0.1 up to 2, 
and plot the results to reproduce Figure 7.16. (It's probably not a good idea 
to try to use numerical methods when kT/EF is much smaller than 0.1, since 
you can start getting overflow errors from exponentiating large numbers. 
But this is the region where we've already solved the problem analytically.) 

(c) Plug your calculated values ofµ into the energy integral (7.54), and evaluate 
that integral numerically to obtain the energy as a function of temperature 
for kT up to 2EF. Plot the results, and evaluate the slope to obtain the 
heat capacity. Check that the heat capacity has the expected behavior at 
both low and high temperatures. 

Problem 7.33. When the attractive forces of the ions in a crystal are taken into 
account, the allowed electron energies are no longer given by the simple formula 
7.36; instead, the allowed energies are grouped into bands, separated by gaps 
where there are no allowed energies. In a conductor the Fermi energy lies within 
one of the bands; in this section we have treated the electrons in this band as 
"free" particles confined to a fixed volume. In an insulator, on the other hand, 
the Fermi energy lies within a gap, so that at T = 0 the band below the gap is 
completely occupied while the band above the gap is unoccupied. Because there 
are no empty states close in energy to those that are occupied, the electrons are 
"stuck in place" and the material does not conduct electricity. A semiconductor 
is an insulator in which the gap is narrow enough for a few electrons to jump across 
it at room temperature. Figure 7.17 shows the density of states in the vicinity of 
the Fermi energy for an idealized semiconductor, and defines some terminology 
and notation to be used in this problem. 

(a) As a first approximation, let us model the density of states near the bottom 
of the conduction band using the same function as for a free Fermi gas, with 
an appropriate zero-point: 9(€) = 90VE - Ee, where 90 is the same constant 
as in equation 7.51. Let us also model the density of states near the top 

9(€) 

Valence 
band 

-----Gap----<_.. 

Conduction 
band 

-r----~~~-~--t-----+----~1----------..€ 

Figure 7 .1 7. The periodic potential of a crystal lattice results in a density­
of-states function consisting of "bands" (with many states) and "gaps" 
(with no states). For an insulator or a semiconductor, the Fermi energy 
lies in the middle of a gap so that at T = 0, the "valence band" is completely 
full while the "conduction band" is completely empty. 
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of the valence band as a mirror image of this function. Explain why, in 
this approximation, the chemical potential must always lie precisely in the 
middle of the gap, regardless of temperature. 

(b) Normally the width of the gap is much greater than kT. Working in this 
limit, derive an expression for the number of conduction electrons per unit 
volume, in terms of the temperature and the width of the gap. 

( c) For silicon near room temperature, the gap between the valence and con­
duction bands is approximately 1.11 eV. Roughly how many conduction 
electrons are there in a cubic centimeter of silicon at room temperature? 
How does this compare to the number of conduction electrons in a similar 
amount of copper? 

(d) Explain why a semiconductor conducts electricity much better at higher 
temperatures. Back up your explanation with some numbers. (Ordinary 
conductors like copper, on the other hand, conduct better at low temper­
atures.) 

(e) Very roughly, how wide would the gap between the valence and conduction 
bands have to be in order to consider a material an insulator rather than 
a semiconductor? 

Problem 7.34. In a real semiconductor, the density of states at the bottom of 
the conduction band will differ from the model used in the previous problem by 
a numerical factor, which can be small or large depending on the material. Let 
us therefore write for the conduction band 9(E) = 90e~, where 90e is a new 
normalization constant that differs from 90 by some fudge factor. Similarly, write 
9(E) at the top of the valence band in terms of a new normalization constant 90v· 

(a) Explain why, if 90v f= 90e, the chemical potential will now vary with tem­
perature. When will it increase, and when will it decrease? 

(b) Write down an expression for the number of conduction electrons, in terms 
of T, µ, Ee, and 90e· Simplify this expression as much as possible, assuming 
Ee - µ :$> kT. 

( c) An empty state in the valence band is called a hole. In analogy to part (b), 
write down an expression for the number of holes, and simplify it in the 
limit µ - Ev :$> kT. 

( d) Combine the results of parts (b) and ( c) to find an expression for the 
chemical potential as a function of temperature. 

( e) For silicon, gocf 90 = 1.09 and 90v / 90 = 0.44. * Calculate the shift in µ for 
silicon at room temperature. 

Problem 7.35. The previous two problems dealt with pure semiconductors, 
also called intrinsic semiconductors. Useful semiconductor devices are instead 
made from doped semiconductors, which contain substantial numbers of impurity 
atoms. One example of a doped semiconductor was treated in Problem 7.5. Let 
us now consider that system again. (Note that in Problem 7.'5 we measured all 
energies relative to the bottom of the conduction band, Ee. We also neglected the 
distinction between 90 and 90ei this simplification happens to be ok for conduction 
electrons in silicon.) 

*These values can be calculated from the "effective masses" of electrons and holes. See, 
for example, S. M. Sze, Physics of Semiconductor Devices, second edition (Wiley, New 
York, 1981). 
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(a) Calculate and plot the chemical potential as a function of temperature, for 
silicon doped with 1017 phosphorus atoms per cm3 (as in Problem 7.5). 
Continue to assume that the conduction electrons can be treated as an 
ordinary ideal gas. 

(b) Discuss whether it is legitimate to assume for this system that the con­
duction electrons can be treated as an ordinary ideal gas, as opposed to a 
Fermi gas. Give some numerical examples. 

( c) Estimate the temperature at which the number of valence electrons ex­
cited to the conduction band would become comparable to the number of 
conduction electrons from donor impurities. Which source of conduction 
electrons is more important at room temperature? 

Problem 7.36. Most spin-1/2 fermions, including electrons and helium-3 atoms, 
have nonzero magnetic moments. A gas of such particles is therefore paramagnetic. 
Consider, for example, a gas of free electrons, confined inside a three-dimensional 
box. The z component of the magnetic moment of each electron is ±µB. In the 
presence of a magnetic field B pointing in the z direction, each "up" state acquires 
an additional energy of -µBB, while each "down" state acquires an additional 
energy of +µBB· 

(a) Explain why you would expect the magnetization of a degenerate electron 
gas to be substantially less than that of the electronic paramagnets studied 
in Chapters 3 and 6, for a given number of particles at a given field strength. 

(b) Write down a formula for the density of states of this system in the presence 
of a magnetic field B, and interpret your formula graphically. 

(c) The magnetization of this system is µB(Nr-N!), where Nr and N! are the 
numbers of electrons with up and down magnetic moments, respectively. 
Find a formula for the magnetization of this system at T = 0, in terms of 
N, µB, B, and the Fermi energy. 

( d) Find the first temperature-dependent correction to your answer to part ( c), 
in the limit T « TF. You may assume that µBB « kT; this implies 
that the presence of the magnetic field has negligible effect on the chemical 
potentialµ. (To avoid confusing µB withµ, I suggest using an abbreviation 
such as 8 for the quantity µBB.) 

7.4 Blackbody Radiation 

As a next application of quantum statistics, I'd like to consider the electromagnetic 
radiation inside some "box" (like an oven or kiln) at a given temperature. First let 
me discuss what we would expect of such a system in classical (i.e., non-quantum) 
physics. 

The Ultraviolet Catastrophe 

In classical physics, we treat electromagnetic radiation as a continuous "field" that 
permeates all space. Inside a box, we can think of this field as a combination 
of various standing-wave patterns, as shown in Figure 7.18. Each standing-wave 
pattern behaves as a harmonic oscillator with frequency f = c/ .A. Like a me­
chanical oscillator, each electromagnetic standing wave has two degrees of freedom, 




