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Problem 7'7' Insection 6.5 I derived the useful relation F: -lcTlnZ betu'een

the Helmholtz fiee energy and the ordinary partition function. use an analogous

argument to Prove that

Þ: -kTInZ,

where Z is the grand partition function and Õ is the grand free energy introd

in Problem 5.23.
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7 "2 Bosons and Fermions

ThemostimportantapplicationofGibbsfactorsistoquantumstatistics,the
study of d.ense systems in which two or more identical particles have a reasonable

chance of wanting to occupy the same singie-particle state. In this situation, mv

derivation (in Section 6.6) ;i the partition functìon for a system of ll indistinguish-

able, noninteracting Particles'

breaks dor¡¡n. The problem is that the counting factor of N!' the number of ways of

interchanging the particles among their various states' is correct only ifthe particles

are always ín d,,ifferent states. (In this section I'll use the word "stâte" to mean a

single-particle state. For the state of the system as a whole I'11 alvgays sa¡'' 
((s¡'5lsm

state." )
To better understand this issue, let's consider a very simple example: a system

containing two noninteracting particles, either ofwhich can occllpy any offrve states

(see Figure 7.3) . Imagine that all five of these states have enetgy zero' so ever)¡

Boltzmann factor equals 1 (and therefore Z is the same as 0)'
If the two particles arc'd,tstinguishable, then each has five avaiiable states and

the total number of system states is Z : 5 x 5 : 25' If the two particles are

ind,istinguishøblr, equaiion 7.16 would predicf' Z :5'12 -- 12'5' and this can't be

right, since Z mttsl' (for this system) be an integer'

so let's count the system states more carefuli¡'' since the pa'rticles are indis-

tinguishable, all that matters is the number of particles in any given state' I can

therefbre represent any system state by a sequence of five integels' each representing

the number of particles in a particular state. For instance, 01100 wouid represent

the system state in which the second and third states each contain one particle'

z{, (7.16)

Figure 7.3' A simPle model of frve

single-particle states, with tr¡u'o particles

that can occupy these states
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u..hile the rest contain none. Here, then, are all the allowed system states:

20000

02000

00200

00020

00002

(If you pretend that the states are harmonic oscillators and the particles a.re energy
units, ¡'ou can count the system states in the same way as for an Einstein solid.)
There are 15 system states in all, of which 10 have the two particles in different
states while 5 have the two particles in the same state. Each of the first 10 system
states would actually be two different system states if the particles were distinguish-
able, since then they could be placed in either order. These 20 system states, plus
the last 5 listed above, make the 25 counted in the previous paragraph. The factor
of.TlNl in equation 7.16 correctly cuts the 20 down to 10, but also incorrectly cuts
out half of the last fi.ve states.

Here I'm implicitly assuming that two identical particles cl,n occùpy the same
state. It turns out that some types of particles can do this while others can't. Par-
ticles that cøn shate a state with another of the same species are called bosons,*
and include photons, pions, helium-4 atoms, and a variety of others. The number
of identical bosons in a given state is unlimited. Experiments show, however, that
many types of particles cannot share a state with another particle of the same
type-not because they physically repel each other, but due to a quirk of quantum
mechanics that I won't try to explain here (see Appendix A for some further dis-
cttssion of this point), These particles are called fermions,t and include electrons,
protons, neutrons, neutrinos, helium-3 atoms, and others. If the particles in the
preceding example are identical fermions, then the five system states in the flnal
column of the table are not allowed, so Z is only 10, not 1b. (In formula 7.16, a
system state with two particles in the same state is counted as half a system state,
so this formula interpolates between the correct result for fermions and the cor¡ect
result for bosons.) The rule that two identical fermions cannot occupy the same
state is called the Pauli exclusion principle.

You can tell which particles are bosons and which are fermions by looking at
their sp'ins. Particles with integer spin (0, L,2, etc., in units of h/2r) are bosons,
while particles with half-integer spin (712, 3f 2, etc.) are fermions. This rule is noú
the d'efi'nition of a boson or fermion, however; it is a nontrivial fact of nature, a deep
consequence of the theories of relativity and quantum mechanics (as flrst derived
by lVolfgang Pauli).

*Afher Satyendra Nath Bose, who in !924 introduced the method of treating a photon
gas presented in Section 7.4. T};re generalization to other bosons was provided by Einstein
shortly thereafter.

IAfber Enrico Fermi, who in 1926 worked out the basic implications of the exclusion
principle for statistical mechanics. Paul A. \,I. Dirac independently did the same thing,
in the same year.
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264 Chapter 7 Quantum Statistics

In many situations, ho'*,evet, it just doesn't mattel whether the particles in a
fluid are bosons or fermions. When the number of available single-particle states is

much greater than the number of particles,

Zt)) N, (7.17)

the chance of any two particles wanting to occupy the same state is negligible.

More precisely, only a tiny fraction of aìl system states have a signiflcant number

of states doubly occupied. For an ideai gas, the single-particle partition function is

Zt : V Z¡ntluq, where 21,1 is some reasonably small number and 'uç is the quantum

volume,

"/h\3ua:(3a:læl , (7'r8)

roughly the cube of the average de Broglie wavelength. The condition (7.17) for
the formula Z : Z{ lNl to apply then translates to

V
ñ Þ'Q, (7.1e)

which says that the average distance between particles must be much greater than
the average de Broglie wavelength. For the air we breathe, the average distance

between molecules is about 3 nm while the average de Broglie wavelength is less

than 0.02 nm, so this condition is definitely satisfied. Notice, by the wa¡ that
this condition depends not only on the density of the s¡'stem, but aìso on the

temperature and the mass of the particles, both through ue.
It's hard to visualize what actually happens in a gas when conditiot 7.17 breaks

down and multiple particles start trying to get into the same state. Figure 7.4,

though imperfect, is about the best I can do. Picture each particle as beiag smeared

out in a quantum wavefunction fllling a volume equal to uq. (This is equivalent to
putting the particles into wavefunctions that are as localized in space as possible.

To squeeze them into narrower wavefunctions v¡e would have to introduce uncer-
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Normal gas, Vf N >> uq Quantum gas, Vf N x uq

Figure 7,4, It a normal gas, the space between particles is much greater than the
typical size of a particle's wavefunction. When the wavefunctions begin to "touch"
and overlap, we call it a quanturn gas.
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tainties in momentum that are large compaled to the average moment:u;r- hf lq,
thus increasing the energy and tempelature of the system.) In a normal gas, the

effective volume thus occupied by atl the particles will be much less than the \¡olume

of the container. (Often the quantum volume is less than the physical volume of
a moìecule.) But if the gas is sufficiently dense or oç is sufÉciently large, then

the wavefunctions will start trying to touch and overlap. At this point it starts to
matter rvhether the particles a¡e ferrnions or bosons; either wa¡ the behavior will
be much difierent from that of a normal gas.

There are plenty of systems that violate condition 7.17, eitlner because they are

very dense (like a neutron star), or very cold (like liquid helium), or composed of
I'ery light particles (like the electrons in a metal or the photons in a hot oven). The
rest of this chapter is devoted to the study of these fascinating systems.

Problem 7.8. Suppose you have a "box" in which each particle may occupy âny

of 10 single-particle states. For simplicit¡ assume that each of these states has

energy zero.

(a) What is the partition function of this system if the box contains only one

particle?

(b) What is the partition function of this system if the box contains two dis-

tinguishable particles?

(c) What is the partition function if the box contains two identical bosons?

(d) What is the partition function if the box contains two identical fermions?

(e) What would be the partition function of this system according to equa-

tion 7.16?

(f) \Mhat is the probability of fi.nding both particles in the same single-particle
state, for the three cases of distinguishable particles, identical bosons, and

identical fermions?

Problem 7.9. Compute the quantum volume for an N2 molecule at room tem-
perature, and argue that a gas of such molecules at atmospheric pressure can be

treated using Boltzmann statistics. At about what temperature would quantum

statistics become relevant for this system (keeping the density constant and pre-

tending that the gas does not liquefy)?

Problem 7.10. consider a system of five particles, inside a container where

the allowed enetgy levels are nondegenerate and evenly spaced. For instance, the
particles could be trapped in a one-dimensional harmonic oscillator potential. In
this problem you will consider the allowed states for this system, depending on

whether the particles are identical fermions, identical bosons, or distinguishable
particles.

(a) Describe the ground state of this system, for each of these three cases.

(b) Suppose that the system has one unit of energy (above the ground state)'
Describe the allowed states of the system, for each of the three cases. How

many possible system states are there in each case?

(c) Repeat part (b) for two units of energy and for three units of energy'

(d) 'suppose that the temperature of this system is low, so that the total energy

is low (though not necessarily zero). In what way will the behavior of the

bosonic system differ from that of the system of distinguishable particles?

Discuss.
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266 Chapter 7 Quantum Statistics

The Distribution F\rnctions

When a system violates the condition Zt )) N, so that we cannot treat it using
the methods of Chapter 6, we can use Gibbs factors instead. The idea is to first
consider a "system" consisting of one si,ngle-parti,cle støte, rather than a particle
itself. Thus the system will consist of a particular spatial wavefunction (and, for
particles with spin, a particular spin orientation). This idea seems strange at first,
because we normally work with wavefunctions of defi.nite energy, and each of these
wavefunctions shares its space with ail the other wavefunctions. The '¿s¡'slsrn'
and the "reservoir" therefore occupy the same physical space, as in Figure z.b.
Fortunatel¡ the mathematics that went into the derivation of the Gibbs factor
couldn't care less whether the system is spatiaìly distinct from the reservoir, so all
those formulas still apply to a single-particle-state systern.

So let's concentrate on just one singÌe-particle state of a system (say, a particle
in a box), whose energy when occupied by a single particle is e. when the state
is unoccupied, its energy is 0; if it can be occupied by n particles, then the energ¡'
will be ne. The probability of the state being occupied by n particles is

P(n): !"-f"' pn)/kr : I="-'\'-*¡¡r'. 
(7.20)\'"/ z- z" 1

where Z is the grand partition function, that is, the sum of the Gibbs factors for
all possibÌe n,.

If the particles in question are fermions, then n can only be 0 or 1, so the grand
partition function is

Z:Il"-(e-¡t)/kr (fermions). (7.21)

From this ì¡/e can compute the probability of the state being occupied or unoccupied,
as a function of e, p,1 andT. We can also compute the øuerage number of particles
in the state, also called the occupancy of the state:

Anr

(si

To

- :DnP@): 0' 2(0) + 1. P(I) :
n

1

s(e-ù/kT ¡ 1
(fermions)

Reservoir

s- (e'u) / kT

t ¡ ¿-(e-u)/kr
(7.22)

System

Figure 7.5. To treat a quantum gas using Gibbs factors, we consider a ,,system,,

consisting of one single-particle state (or wavefunction). The "reservoir" consists
of all the other possible single-particle states.
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This important formula is called the Fermi-Dirac distribution; I'll call it

1

IFD:

(7.23)IùFD:
¿(e-u)/kT ¡ |

The Fermi-Dirac distribution goes l,o zero when e ) p, and goes to 1 when

e for three different temperatures is shown in Figure 7'6'

If instead the particles in question are bosons, then r¿ can be any nonnegative

integer, so the grand partition function is

Z :7I 
"-G-ù/k:t 

¡ s-2('-u)/k'r + " '

_ 1¡.-(e-u)/hr +þ-G-ù/nr¡, +... (7.24)

1
(bosons)- 1 - e-G-ù/*r

(since the Gibbs factors cannot keep growing without limit, p must be less than e

and therefore the series must converge.) Nleanwhile, the average number of particles

in the state is

ñ :ÐnP(n): 0. 2(0) + 1'P(1) +2'P(2) + " " (7'25)

r

I

S

2)

n

To evaluate this sum let's abbreviate r: (e - p')lkT' Then

(7.26)
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You can easily check that this formula works for fermions. For bosons. w.e ha\¡e

n: -(I - "-,) *f, - "-,)-r: (1 - "-,)(I - e ')-z(e-,¡' dî'
1 0 '27)

--7:=:tjrî . (bosons).
--L

This important formula is called the Bose-Einstein distribution; I'll cail it nr":
1tuBE: (7.28)s(e-ù/kT - 1

Like the Fermi-Dirac distribution, the Bose-Einstein distribution goes to zero
when e )) ¡-r,. unlike the Fermi-Dirac distribution, however, it goes to infinity as e
approaches pl from above (see Figure 7.7). rt would be negative if e could be less
than pl, but we've already seen that this cannot happen. Çsr t3a*rr$

To better understand the Fermi-Dirac and Bose-Einstein distributions, it's use-
ful to ask what n would be for particles obeying Boltzmann statistics. In this case,
the probability of any single particle being in a ce¡tain state of energ)¡ € is

(Boltzmann), (7.2e)

so if there are ly' independent particles in total, the average number in this state is

DBoltr**r : Iy'Z(st N --'/*r,: 4e 
'r*' (7.30)

But according to the result of problem 6.44, t]^e chemicai potential for such a
s)'stem is p - -krln(z1lN). Therefore the average occupancy can be written

ñBott, unn: "u/nr "-e/kr 
_ 

"_G_Ð/hr. (2.31)

when e is sufÊciently greater than ¡t, so that this exponentiai is very small, we can
neglect the 1 in the denominator of either the Fermi-Dirac distribution (7.23) or
the Bose-Einstein distribution (7.28), and both reduce to the Boitzmann distribu-
tion (7'31). The equality of the three distribution functions in this timit is shou,n
in Figure 7.7 - T}re precise condition for the three distributions to agree is that the
exponent (e - ¡L')lkr be much greater than 1. If we take the lowest-energ¡r state to
have e æ 0, then this condition wiÌl be met for aI states v¡hene.",er ¡r, K. -kr, that
is, when Zt )) N. This is the same condition that we arrived at through d.ifferent
reasoning at the beginning of this section

we now know how to compute the average number of particles occupying a
single-particle state, whether the particles are fermions or bosons, in terms of the en-
ergy of the state, the temperature, and the chemical potential. To apply these ideas
to any particular s¡rstem, we still need to know what the energies of all the states are.
This is a problem in quantum mechanics, and can be extremely dificult in man;,
cases. In this book we'll deal mostly with particles in a ,,box,', where the quantum_
mechanical wal'efunctions are simple sine waves and the corresponding energies can
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n

Boltzmann

Bose-Einstein

Fermi-Dirac

tt 11' + kT

7.7. Comparison of the Fermi-Dirac, Bose-Einstein, and Boltzmann distri-
all for the same value of ¡r. When (e- p,)lkT )) 1, the three distributions

become equal.

be determined straightforwardly. The particles could be elect¡ons in a metal, neu-
trons in a neutron star, atoms in a fluid at very low temperature, photons inside a
hot oven, or even "phonons," the quantized units of vibrational energ-y in a solid.

For any of these applications, before \ /e can apply the Fermi-Dirac or Bose-
Einstein distribution, we'll also have to figure out what the chemical potential is.
In a few cases this is quite easy, but in other applications it will require considerable
work. As we'll see, p is usually determined indirectly by the total number of
particles in the system.

Problem 7,11. For a system of fermions at room temperature, compute the
probability of a single-particle state being occupied if its energy is

(a) 1 eV less than ¡.r

(b) 0.01 eV less thar. p.

(c) equal to ¡-r

(d) 0.01 eV greater than ¡-r

(e) 1 eV greater than ¡-r

Problem 7,12. Consider two single-particle states, A and B, in a system of
fermions, where e4 n a,nd eB : p + ø; that is, level A ties below p by
the same amount that level B lies above ¡.r. Prove that the probability of level B
being occupied is the same a,s the probability of levei A being znoccupied. In other
words, the Fermi-Dirac distribution is "symmetrical" about the point where e: Lt.

Problern 7.13, For a system of bosons at room temperatrue, compute the average
occupancy of a single-particle state and the probability of the state containing 0,
L,2, or 3 bosons, if the energy of the state is

(a) 0.001 eV greater lhan p,

(b) 0 01 eV greater than ¡i
(c) 0.1 eV greater than p,

(d) 1 eV greater than p.
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Problem 7.14. For a system of particles at room temperature, how large must

e- p,be before the Fermi-Dirac, Bose-Einstein, and Boltzmann distributions agree

within t%? Is this condition ever violated for the gases in our atmosphere? Ex-

plain.

Problern 7.15. For a system obeying Boltzmann statistics, u'e know what p
is fiom chapter 6. suppose, though, that you knew the distribution function
(equation 7.31) but didn,t know ¡r. You could still determine ¡r by requiring that
the total number of particles, summed over all single-particle states' equal -Ay'.

Carry out this calculation, to rederive the formula 1t: -kTln(ZllN)' (This is

normally how ¡-r, is determined in quantum statistics, although the math is usuaily

more difficult.)

Problem 7.16. consider an isolated system of .ll identical fermions, inside a con-

tainer where the allowecl enelgy levels are nondegenerate and evenly spaced'* For

instance, the fermions could be trapped in a one-dimensional harmonic oscillator

potential. For simplicity, neglect the fact that fermions can have multiple spin

àrientations (or assume that they are all forced to have the same spin orientation).

Then each energy level is either occupied or unoccupied, and any allowed system

state can be represented by a column of dots, with a filled dot representing an oc-

cupied level and a hollow dot representing an unoccupied level. The lowest-energy

system state has all levels below a certain point occupied, and all levels above

that point unoccupied. Let 4 be the spacing bett'een energy levels, and let q be

the number of energy units (each of size 4) in excess of the ground-state energy.

Assume lhat q 1ly'. Figure 7.8 shows all system states up to q:3'
(a) Draw dot diagrams, as in the figure, for all allowed system states rvith

q:4,q:5,andq:6'
(b) According to the fundamental assumption, all allowed system states ¡n'ith

a given value of q are equally probable. compute the probability of each

energy level being occupied, for g - 6. Draw a graph of this probability as

a function of the energy of the level.

(c) In the thermodynamic Iimit where q is large, the probability of a level being

occupied should be given by the Fermi-Dirac distribution. Even though 6

is not a large number, estimate the values of p and ? that you would have

to plug into the Fermi-Dirac distribution to best fit the graph you drew in
part (b).

q:0 4:l A:2 4:3
Figure 7.8. A representation of
the system states of.a fermionic sys-

tem with evenly spaced, nondegen-
erate energy levels. A filled dot rep-
resents an occupied single-particle
state, while a hollow dot represents
an unoccupied single-particle state.

*This problem and Problem 7.27 are based on an article by J. Arnaud et al'., Ameúcan

Journal of Physics 67, 2I5 (1999).
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aa

(d) i.",*Ëï:Ïiîå"Î, lî"':åi1
estimate of the temPerature of

in rough agreement with Your

answer to Part (c).

Problem 7.17 . In analogy with the previous

tical spin-0 bosons ftapped in a region where

Assume that -l[ is a large number' and again

(a) Draw diagrams representing all allowed system states from Ç : 0 up to

6. Instead of ìsing dots as in the previous problem' use mrmbers to

indicate the number of bosons occupying each level'

(b) Compute the occupancy of each energy levei' for 4 : 6 Draw a graph of

the occupancy as a function of the energy of the level'

(c) Estimate the values of ¡-i and ? that you would have to plug into the Bose-

Einstein distribution to best fit the graph of part (b)'

(d) As in part (d) of ihe previous problem, drat' a graph of entropy vs' energy

and estimate the temperature at q : 6 from this graph'

7.3 Degenerate Fermi Gases

As a first application of quantum statistics and the Fermi-Dirac distribution, I'd

like to consider a "gas" of ferrnions at very lov' temperature' The fermions could

behelium-3atoms,orprotonsandneutronsinanatomicnucleus,orelectronsin
awhitedwarfstar,orneutronsinaneutronstar'Themostfamiliarexample,
though,istheconductionelectronsinsideachunkofmetal.Inthissectionl'llsay
,,electrons,, to be specific, even though the results apply to other types of fermions

as well
By ..very low temperature,', I do not necessarily mean low compared to room

temperature.Whatt*e','isthatthecond.itionforBoltzmannstatisticstoapply
to an id.eal gas,Vf N rr rn,is badty violated, so that in fact VIN < uo' For an

electron at room temperature, the quantum volume is

,.: ( -L=)t : 1+.a ,,*¡t. (7's2)
\t/2rmkT )

But in a typical metal there is about one cond'uction electron per atom' so the

volume per conduction electron is roug 0'2 nm)3' Thus'

the temperat rrre is much too low for B Instead' we are

in the opposite limit' where for many p hat T :0' Let

us therefore first consider the properties 0' and later ask

what happens at small nonzero temperatures'
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