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(a) calculate and plot the chemicai potential as a function of temperature, for
silicon doped with 1017 phosphorus atoms per 

"-3 (* in probrem 7.5).
continue to assume that the conduction electrons can be treated as an
ordinary ideal gas.

(b) Discuss whether it is legitimate to assume for this system that the con-
duction electrons can be treated as an ordinary ideal gas, as opposed to a
Fermi gas. Give some numerical examples.

(c) Estimate the temperature at which the number of valence electrons ex-
cited to the conduction band would become comparable to the number of
conduction electrons from donor impurities, which source of conduction
electrons is more important at room temperature?

Problern 7.36, Most spin-ll2 fermions, including erectrons and helium-B atoms,
have nonze¡o magnetic moments. A gas of such particles is therefore paramagnetic.
consider, for example, a gas of free electrons, confined inside a three-dimensional
box. The z component of the magnetic moment of each electron is f¡lg. In the
presence of a magnetic fieid B pointing int]he z direction, each ,,up', state acquires
an additional energy of -¡-tgB, while each "do.wn" state acquires an additional
energy of lp,sB.

(a) Explain why you would expect the magnetization of a degenerate electron
gas to be substantially less than that ofthe electronic paramagnets studied
in chapters 3 and 6, for a given number ofparticles at a given field strength.

(b) write down a formula for the density of states of this system in the presence
of a magnetic field B, and interpret your formula graphically.

(c) The magnetization of this system is ¡rs ( he
numbers of electrons with up and dow ly.
Find a formula for the magnetization o of
N, þ8, B, and the Fermi energ-y.

(d) Find the first temperature-dependent correction to your answer to part (c),
in the limit 

" 
<< ?i. You may assume that ¡lsB <1 kTi this implies

that the presence of the magnetic field has negligible efiect on the chemical
potential p. (To avoid confusing ¡-rg with p, I suggest using an abbreviation
such as ô for the quartity /rBB.)

7.4 Blackbody Radiation
As a next application of quantum statistics, I'd tike to consider the electromagnetic
radiation inside some "box" (like an oven or kiln) at a given temperature. First let
me discuss what we would expect of such a system in classical (i.e., non-quantum)
physics.

The Ultraviolet Catastrophe
In classical physics, we treat electromagnetic radiation as a continuous ,,freld', that
permeates all space. Inside a box, we can think of this field as a combination
of various standing-wave patterns, as shown in Figure 7.1g. Each standing-wave
pattern behaves as a harmonic oscillator with frequetcy f : cl 

^. 
Like a me_

chanical oscillator, each electromagnetic standing wave has two degrees of freedom,
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E: leT

E: lcT
Total energy : /c?.oo

E:kT

Figure 7.18. We can analyze the electromagnetic field in a box as a superposition
of standing-wave modes of various wavelengths. Each mode is a harmonic oscil-
Iator with some well-defined frequency. Classically, each oscillator should have an
average energ.y of ,k?. since the total number of modes is infinite, so is the total
energy in the box.

with an average thermal energ'y of 2 . +kr. since the total number cf oscilla_
tors in the electromagnetic field is infinite, the total thermal energy should also
be infinite. Experimentally, though, you're not bla"sted with an infinite amount of
electromagnetic radiation every time you open the oven door to check the cookies.
This disagreement between classical theory and experiment is called. the ultravio-
let catastrophe (because the infinite energ'y would come mostly from very short
wavelengths).

The Planck Distribution
The solution to the ultraviolet catastrophe comes from quantum mechanics. (His-
toricall¡ the ultravioÌet catastrophe led to the bir-th of quantum mechanics.) In
quantum mechanics, a harmonic oscillator can't have just any amount of energy;
its allowed energy levels are

En:O, hf , 2hf , .... (7.69)
(As usual I'm measuring all energies relative to the gro'nd.-state energy. see Ap
pendix A for more discussion of this point.) The partition function for a single
oscillator is therefore

Z:l*e-Phf +e-2þhl +...
1 (7.70)

- T _ e-Bhr
and the average energy is

E: _!92 : hl
Z ôp ehr/kr - I' Q'71)

If we think of the energy as coming in "units" of h./, then the average number of.
units of energy in the oscillator is

1nn: /¡@-l (7'72)
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290 Chapter 7 Quantum Statistics

This formula is called the Planck distribution (after Max Planck).
According to the Planck distribution, short-wavelength modes of the electro-

magnetic field, with hf >> kT, are exponent'iøIly suppressed: They are ,,frozen

out," and might as well not exist. Thus the total number of electromagnetic os-
cillators that effectively contribute to the energy inside the box is finite, and the
ultraviolet catastrophe does not occur. Notice that this solution requires that the
oscillator energies be quantized: It is the size of the energy units, compared to k?,
that provides the exponential suppression factor.

Photons

"IJnits" of energy in the electromagnetic field can also be thought of as part'icles,
called photons. They are bosons, so the number of them in any "mode" or wave
pattern of the field ought to be given by the Bose-Einstein distribution:

1zBE: eéõ1kr=' 0'73)

Here e is the energy of each particle in the mode, that is, e : hf . comparison with
equation 7.72 thercfore requires

þ : 0 for photons. (7.74)

But why should this be true? I'll give you two reasons, both based on the fact
that photons can be created or destroyed in any quantity; their total number is not
coruerved.

First consider the Helmholtz free energy, which must attain the minimum pos-
sible value at equilibrium with r and v held fixed. In a system of photons, the
number l[ of particles is not constrained, but rather takes whatever value will
minimize f'. If ¡f then changes infinitesimall¡ f. should be unchanged:

/ aF\
(*/r,,,: O (at equilibrium)' (7.75)

But this partial derivative is precisely equal to the chemical potential.
A second argument makes use of the condition for chemical equilibrium derived

in Section 5.6. Consider a typical reaction in which a photon (7) is created or
absorbed by an electron:

e <-----+ e +.y. (7.76)

As we saw in Section 5.6, the equilibrium condition for such a reaction is the same
as the reaction equation, with the name of each species replaced by its chemical
potential. In this case,

Fe : tte * þ1 (at equilibrium). (7.77)

In other words, the chemical potential for photons is zero.
By either argument, the chemical potential for a "gas" of photons inside a box

at fixed temperature is zero, so the Bose-Einstein distribution reduces to the Planck
distribution, as required.
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7,4 BlackbodY Radiation 291

Summing over Modes

The Planck distribution tells us how many photons are in any single "mode" (or
,,single-particle state" ) of the electromagnetic field. Next we might want to know

the total number of photons inside the box, and also the tolal energy of all the

photons. To compute either one, we have to sum over all possible states, just as

we did for electrons. I'll compute the total energy, and let you compute the total

number of photons in Problem 7'44.

Let's start in one d.imension, with a "box" of length ,L. The allowed wavelengths

and momenta are the same for photons as for any other particles:

2L
n

hnn:¡

hcn
2L'

(7.78)

(7.7e)

(7.80)

(Here n is a positive integer that labels which mode we're talking about, not to

be confused with np1, the average number of photons in a given mode') Photons'

however, are ultraràlativistic particles, so their energies are given by

instead of e : p2 l2rn. (You can also derive this result straight from the Einstein

relation e: hÍ between a photon's energ'y and its frequency. For light, I : cl\,
so€: hcf\:hcnl2L.)

In three dimensions, momentum becomes a vector, rvith each component given

by hl2L times some integer. The energy is c times t]ne rnagnitude of the momentum

hcn
e :PC: tl

h.c-ne7+e?+e7 nl+ nf; + nf,
vector

e-

where in the last expression I'm using n for the magnitude of the d vector, as in

Section 7.3.

Now the average energy in any particular mode is equal to e times the occupancy

of that mode, and ttre oãcupancy is given by the Planck distribution. To get the

total energy in all modes, we sum over 7¿r' n'u1 aîd nz' We also need to slip

in a factor of 2, since each wave shape can hold photons with two independent

polarizations. So the total energy is

u:rÐÐÐenp1(e) : 
^.n,*.T"r*- 

(781)

As in section 7.3, we can convert the sums to integrals and carry out the integration

in spherical coordinates (see Figure 7.11). This time, however, the upper lìmit on

the integration over n, is infinitY:

¡¡: [* an ["'' o, ["'' orn"sí'rryãr+-=. (2.82)-JoJoJo

Again the angular integrals give r f 2, the surface area of an eighth of a unit sphere'
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292 Chapter 7 Quantum Statistics

The Planck Spectrum

The integral over r¿ looks a little nicer if we change variables to the photon energy,
e: hcnl2L. \Me then get an overall factor of L3 : v, so the total energy per unit
volume is

V
ki
ty
in
ab

(7.83)

Here the integrand has a nice interpretation: It is the energy d.ensity per unit
photon energ'y, or the spectrum of the photons:

u(e) : 8zr e3

@æ e'¡¡¡ -¡ (7.84)

This function, first derived by Planck, gives the relative intensity of the radiation as
a function of photon energy (or as a function of frequenc¡ if you change variables
again to r : elh). If you integrate u(e) from e1 ta e2, you get the energy per unit
volume within that range of photon energies.

To actually evaluate the integral over €, it's convenient to change variables again,
to r: ef lcT. Then equation 7.83 becomes

U
V

(7,85)

The integrand is still proportional to the Planck spectrum; this function is plotted
in Figure 7.19. The spectrum peaks at r : 2.82, or e : 2.g2kr. Not surpris-
ingly, higher temperatures tend to give higher photon energies. (This fact is called

U
V
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Figure 7.19. The Planck spectrum, plotted in terms of the dimensionless variable
: -.!.fT.:.lrf /nf . The area under any porrion of this graph, multiplied by
ön\k'l')= /(hc)", equals the energy density of electromagnetic radiation within the
corresponding frequency (or photon energy) range; see equation 2.g5.
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7.4 Blackbody Radiation 295

W-ien's law.) You can measure the temperature inside an oven (or more likely, a

kiln) by letting a bit of the radiation out and looking at its color. For instance' a

typical clay-firing temperature of 1500 K gives a spectrum that peaks at e : 0.36 eV,

in the near infrared. (Visible-light photons have higher energies, in the range of

about 2-3 eV.)

Problem 7.37. Prove that the peak of the Planck spectrum is at t : 2'82.

Problem 7.38. It's not obvious from Figure 7.19 how the Planck spectrum

changes as a function of temperature. To examine the temperature dependence,

make a quantitative plot of the function u(e) for ? : 3000 K and 
" 

: 6000 K
(both on the same Sraph). Label the horizontal axis in electron-volts'

Problem 7.39, change variables in equation 7.83 to À: hc/e, and thus derive a

formula for the photon spectrum as a function of wavelength. PIot this spectrum,

and find a numerical formula for the walelength where the spectrum peaks, in
terms of hclkT. Explain why the peak does not occur af hclQ'82kT)'

Problem 7,40. starting from equation 7.83, derive a formula for the density of
states of a photon gas (or any other gas of ultrarelativistic pa,rticles having two

polarization states). Sketch this function.

Problem 7.41. consider any two internal states, s1 and s2, of an atom. Let s2

bethehigher-energystate,sothat'Ð(s2)-E(tr):eforsomepositiveconstante'
If the atom is currently in state s2, then there is a certain probability per unit time

fo¡ it to spontaneously decay down to state s1, emitting a photon with energy e.

This probability per unit time is called the Einstein Á coefficient:

1 : probability of spontaneous decay per unit time'

On the other hand, if the atom is currently in state .s1 and we shine light on it with
frequency I : e lh, then there is a chance that it will absorb a photon, jumping into

state s2. The probability for this to occur is proportional not only to the amount

intensity, is called the Einstein -El coefficient:

B: probability of absorption per unit time

-
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at is proportional to the intensity of light
the fundamental mechanism of the laser:

sion of Radiation.) Thus we define a third
coefficient, Bt , that is analogous to B:

of stimulated emission unit time
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As Einstein showed in 1917, knowing any one of these three coefficients is as good

as knowing them all.
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294 Chapter 7 Quantum Statistics

(a) Imagine a collection of many of these atoms, such that lfu of them are in
state s1 and -ôy'2 are in state s2. 

.Write 
down a formula for dNlldt in terms

of A, B, B', Nt, l/2, and u(/).
(b) Einstein's trick is to imagine that these atoms are bathed ín thermal ra-

diation, so that u(/) is the Planck spectral function. At equilibrium, N1
and ly'2 should be constant in time, with their ratio given by a simple
Boltzmann factor. Show, then, that the coefficients must be related by

Bt:B and
8rhf3

c.¿

Total Energy

Enough about the spectrum \¡/hat about the total electromagnetic energy inside
the box? Equation 7.85 is essentially the final ansrver) except for the integral ever t,
which is just some dimensionless number. From Figure 7.19 you can estimate that
this number is about 6.5; a beautiful but very tricky calculation (see Appendix B)
gives it exactÌy as rafl\. Therefore the totaÌ energy density summing over all
frequencies, is

v 15(ft,c)3
(7.86)

The most important feature of this result is its dependence on the fourth poü,er
of the temperature. If ¡'ou double the temperature of your oven, the amount of
electromagnetic energy inside increases by a factor of 2a :16.

Numerically, the total electromagnetic energy inside a typical oven is quite small.
At cookie-baking temperature, 375oF or about 460 K, the energy per unit volume
comes out to 3.5 x 10-5 J/m3. This is tiny compared to the thermal energy of the
air inside the oven.

Formula 7.86 may look complicated, but you could have guessed the answer,
aside from the numerical coeff.cient, by dimensional analysis. The average energy
per photon must be something of order kT, so the total energy must be proportional
to NlcT, where .ðl is the total number of photons. Since l[ is extensive, it must
be proportional to the volume I/ of the container; thus the total energy must be of
the form

[/: (constarr).YF, (7.87)

wherc (, is something with units of length. (If you want, you can pretend that each
photon occupies a volume of /3.) But the only relevant length in the problem is the
typical de Broglie waveÌength of the photons, À : hlp : hclE x hclkT. Plugging
this in for / yields equation 7.86, aside from the factor of 8tr5 ltS.

Problem 7,42. Consider the electromagnetic radiation inside a kiln, with a vol-
ume of 1 m3 and a temperature of 1500 K.

(a) What is the total energy of this radiation?
(b) Sketch the spectrum of the radiation as a function of photon energ'y.

(c) What fraction of all the energy is in the uisible portíon of the spectrum,
with wavelengths between 400 nm and 700 nm?
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7.4 Blackbody Radiation 255

Problem 7,43. At ihe surface of the sun, the temperature is approximately
5800 K.

(a) How much energy is contained in the electromagnetic radiation fllling a
cubic meter of space at the sun's surface?

(b) Sketch the spectrum of this radiation as a function of photon energy. Mark
the region ofthe spectrum that corresponds to visible wavelengths, between
400 nm and 700 nm.

(c) Whai fraction of the energy is in the visible portion of the spectrum? (Hint:
Do the integral numerically.)

Entropy of a Photon Gas

Besides the total energy of a photon gas, we might want to know a number of other
quantities, for instance, the total number of photons present or the total entropy.
These two quantities turn out to be equal, up to a constant factor. Let me now
compute the entropy.

The ea¡iest way to compute the entropy is from the heat capacity. For a box of
thermal photons with volume V,

, /au\C": lar)u:4øTs, (2.88)

where a is an abbreviation for 87r5k4vll5(lzc)3. This expression is good all the
way down to absolute zero, so we can integrate it to find the absolute entropy.
Introducing the symbol ?/ for the integration variable,

^e(,-) 
: 

lr' 
gtfl 

d,r, :4a 
lo't 

,y ¿r, : !øf :Tu(#)'r (7.8e)

The total number of photons is given by the same formula, with a different numerical
coefficient, and without the final k (see Problem7.44).

The Cosmic Background R^adiation

The grandest example of a photon gas is the radiation that fills the entire observ-

able universe, with an almost perfect thermal spectrum at a temperature of 2.73 K.
Interpreting this temperature is a bit trick¡ however: There is no longer any mech-
anism to keep the photons in thermal equilibrium with each other or with anything
else; the radiation is instead thought to be left over from a time when the universe

was filled with ionized gas that interacted strongly with electromagnetic radiation.
At that time, the temperature was more like 3000 K; since then the universe has

expanded a thousandfold in all directions, and the photon wavelengths have been

stretched out accordingly (Doppler-shifted, if you care to think of it this way),
preserving the shape of the spectrum but shifting the efiective temperature down
to 2.73 K.

The photons making up the cosmic background radiation have rather lov¡ en-

ergies: The spectrum peaks a,t e : 2.82kT : 6.6 x 10-a eV. This corresponds to

t-
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wavelengths of about a millimeter, in the far infrared. These wavelengths don't
penetrate our atmosphere, but the long-wavelength tail of the spectrum, in the
microwave region of a few centimeters, can be detected without much difficulty.
It was discovered accidentally by radio astronomers in 1g6b. Figure 2.20 shows
a more recent set of measurements over a wide range of wavelengths, made from
above earth's atmosphere by the cosmic Background, Explorer satellite.

According to formula 7.86, the total energy in the cosmic background rad.iation
is only 0.26 Mev/m3. This is to be contrasted with the average energy density
of ordinary matter, which on cosmic scales is of the order of a proton per cubic
meter or 1000 MeV/m3. (Ironically, the density of the exotic background radiation
is known to three significant figures, v¡hile the average density of ordinary matter
is uncertain by nearly a factor of 10.) on the other hand, t]oe entropy of the
background radiation is much greater than that of ordinary matter: Accord.ing to
equation 7'89, every cubic meter of space contains a photon entropy of (2.gg x tOõ)k,
nearly three billion "units" of entropy. The entropy of ordinary matter is not easy
to calculate precisely, but if we pretend that this matter is an ordinary ideal gas
we can estimate that its entropy is l/,k times some small number, in other *ord.,
only a few ,k per cubic meter.
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Figure 7.20. spectrum of the cosmic background radiation, as measured by the
cosmic Background Explorer satellite. plotted vertically is the energy density per
unit frequenc¡ in sI units. Note that a frequency of 3 x 1011 s-i- corresponds
to a wavelength of À : cl f : L0 mm. Each square represents a measured data
point. The point-by-point uncertainties are too small to show up on this scale; the
size of the squares instead represents a liberal estimate of the uncertainty due to
systematic effects. The solid curve is the theoretical planck spectrum, with the
temperature adjusted to 2.TJ5 K to give the best fit. Fhom J. c. Mather et al.,
Astrophysical Journal t'9!!ers 964, Lzr (1990); adapted courtesy of NASA/GSFi
and the coBE science working Group. subsequent measurements from this ex-
periment and others now give a best-fit temperature of 2.22g + 0.002 K.
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7.4 BlackbodY Radiation 297

Problem 7.44. Number of photons in a photon gas'

(a)ShowthatthenumberofphotonsinequilibriuminaboxofvolumeVat
temPeratule T is

N:\nV KT
h" l,-)'

rt

The integrai cannot be done analytically; either look it up in a table or

evaluate it numericallY'

(b) How does this result compare to the formula derived in the text for the

entropy of a photon gas? (\Mhat is the entropy per photon' in terms of k?)

(c) Calculate the number of photons per cubic meter at the following temper-

â,tures: 300 K; riõo X ia typi"al kiln); 2'73 K (the cosmic background

radiation).

Problem 7,46. rJse the formula P
a photon gas is 1/3 times the energy

by the radiation inside a kiln at 150

exerted by the air' Then comPute

the sun, where the temPerature is

the ionized hydrogen, whose density is ap

Problem 7.46. Sometimes it is useful to know the free energy of a photon gas'

(a) Calculate the (Heìmholtz) free energy directly from the definition l' :

U -TS. (Express the answer in terms of ? and 7')

(b) Check the formula S: -(AFIAT )v for this sYstem'

(c)Differentiatetr.withrespecttoVtoobtainthepressureofaphotongas'
Check that your result agrees with that of the previous problem'

(d) A more interesting way to calculate F is to apply the formula p : -kTln Z

separately to etct -oa" ltnut is, each efiective oscillator)' then sum over

ali modes. Carry out this calcul ;ion' to obtain

- --0rT\4 [*P : a"vffi lo *2r..1l- e-")dr'

Integrate by parts, and check that your answer agrees with part (a)'

problem 7.47. Inthe text I claimed that the universe was filled with ionized gas

until its temperature 
"ooiãã 

to about 3000 K. To see why, assume that the universe

contains only photons and hydrogen atoms' with a coristant ratio of 109 photons

per hydrogen uto*. Cãi*tãt" ui¿ plot the fraction of atoms that were ionized

as a function of temperature, for temperatures between 0 and 6000 K' How does

the result change if the ratio of photons to atoms is 108, or 1010? (Hint' Write

everything in terms of dimensionless variables such as t : kT lI ' where 1 is the

ionization energy of hYdrogen')

ProblemT,4S.Inadditiontothecosmicbackgroundradiationofphotons,the
universe is thought to be permeated with a back[round radiatr¡n ol neutrinos (z)

uo] urrtin"otrioã, iz¡, "t 
itently at an efiective temperature of 1'95-K' There are

three species of ,r"'.rtrirrãr, each of which has an antiiarticle, with only one allowed

polarization state for .u"ï pr.tl.f" or antiparticle. For parts (a) through (c) below'

Lrrr*" that all three species are exactly massless'
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(a) It is reasonable to assume that for each species, the concentration of neu-

trinos equals the concentration of antineutrinos, so that their chemical

potentials are equal: Ltu : l-tr. F\rrthermore, neutrinos and antineutrinos
can be produced and annihilated in pairs by the reaction

ulve21

(where'y is a photon). Assuming that this reaction is at equilibrium (as it
would have been in the very early universe), prove that ¡l:0 for both the
neutrinos and the antineutrinos.

(b) If neutrinos are massless, they must be highly relativistic. They are also

fermions: They obey the exclusion principle. Use these facts to derive

a formula for the total energy density (energy per unit volume) of the
neutrino-antineutrino background radiation. (Hint: There are very few

differences between this "neutrino gas" and a photon gas. Antiparticles
still have positive energ.y, so to include the antineutrinos all you need is

a fanT,or of 2. To account for the three species, just multiply by 3.) To

evaluate the final integral, first change to a dimensionless variable and

then use a computer or look it up in a table or consult Appendix B.

(c) Derive a formula for the num,ber of neutrinos per unit volume in the
neutrino background radiation. Evaluate your result numerically for the
present neutrino temperature of 1.95 K.

(d) It is possible that neutrinos have very small, but nonzero, masses. This
wouldn't have a,ffected the production of neutrinos in the early universe,

when mc2 would have been negligible compared to typical thermal ener-

gies. But today, the total mass of all the background neutrinos could be

significant. Suppose, then, that just one of the three species of neutrinos
(and the corresponding antineutrino) has a nonzero mass rn. What would
*.2 huu" to be (in eV), in order for the totaÌ mass of neutrinos in the
universe to be comparable to the total ma.ss of ordinary matter?

Problem 7.49. For a brief time in the early universe, the temperature was hot
enough to produce large numbers of electron-positron pairs. These pairs then
constituted a third type of "background radiation," in addition to the photons and

neutrinos (see Figure 7.2t). Llke neutrinos, electrons and positrons are fermions'

Unlike neutrinos, electrons and positrons are known to be massive (each with the
same mass), and each has two independent polarization states. During the time
period of interest the densities of electrons and positrons were approximately equal,

so it is a good approximation to set the chemical potentials equal to zero as in

Figure 7.21, When the temperature was
g.*t"r than the electron mass times 

"2 
¡lr, th.

universe was filled with three types of radiation:
electrons and positrons (solid arrows); neutri-
nos (dashed); and photons (wavy)' Bathed in
this radiation were a few protons and neutrons,
roughly one for every billion radiation particles.



the previous problem. Recall from special relativity that the energy of a massive

particle is e: v/@cTT(tnAY.
(a) Show that the energy density of electrons and positrons at temperature ?

7.4 BlackbodY Radiation 299

d,r

is given by

where

where

r6n(kT)a
-1hÐã-

U
V

u(T),

u(Ð: 
Io

,2

e +1

(b) Show that u(?) goes to zero when kT << mcz, and explain why this is a

reasonable result.

(c) Evaluate r.r(?) in the limit kT >> mc2, and compare to the result of the

previous problem for the neutrino radiation'

(d) Use a computer to calculate and plot z(") ai intermediate temperatures.

(e) use the method of Problem 7.46, parl (d), to show that the free energy

density of the electron-positron radiation is

F
V

r (Ð : 
lo* 

*'n(r + "-'/æT6a7ñF) 
a*'

Evaluate /(") in both limits, and use a computer to calculate and plot

f Q:) af intermediate temperatures.

(f) Wriie the entropy of the electron-positron radiation in terms of the func-

tions z(T) and 7(?). Evatuate the entropy explicitly in the high-? limit.

Problem 7,50. The results of the previous problem can be used to explain why the

few minutes, they "heated" the photon radiation but not the neutrino radiation'

assuming that no other species of particles interacted with these.

(b) rino
, bec
tos

photon temPerature ? are related bY

f l)' l'4 * u(r) +/(r)'l : constanr\T")145 " ""i

,t
J:
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as the universe expands and coors. Evaruate the constant by assuming that
T : T" when the temperatures are very high.

(c) calcutate the ratio TfT, ín the rimit of low temperature, to confirm that
the present neutrino temperature should be 1.g5 K.

(d) Use a computer to plot the ratio TII:, as a function of Z, for kTfrnc2
ranging from 0 to 3.*

Photons Escaping through a }Iole
so far in this section I have anaryzed, the gas of photons ins,id,e an oven or any
other box in thermal equilibrium. Eventually, though, we'd like to understand the
photons em'itted by a hot object. To begin, let's ask what happens if you start with
a photon gas in a box, then poke a hore in the box to ret some photons out (see
Figure 7.22).

All photons travel at the same speed (in vacuum), regardress of their wave-
lengths' so low-energy photons will escape through the hole with the same prob-
ability as high-energy photons, and thus the spectrum of the photons coming out
will look the same as the spectrum of the photons inside. what's harder to figure
out is the total amounú of radiation that escapes; the calculation doesn't involve
much physics, but the geometry is rather tricky.

The photons that escape now, during a time interval d,t, were once pointed at
the hole from somewhere within a hemispherical shell, as shown in Figure 7.2J. The
radius ¡l of the shell depends on how long ago we're looking, while the thickness of
the shell is cd,t. I'll use spherical coordinates to label .,ruri,orrc points on the shell,
as shown' The angle d ranges from 0, at the reft end of the sheil, to rf2, at the
extreme edges on the right. There's also an azimuthal angle þ, not shown, which
ranges from 0 to hr as you go from the top edge of the sheil into the page, down

Figure 7.22. Wtlenyou open a hole in
a container filled with radiation (here
a kiin), the spectrum of the light that
escapes is the same as the spectrum of
the light inside. The total amount of
energy that escapes is proportional to
the size of the hole and to the amount
of time that passes.

*Now that you've finished this problem, you'[ find it reratively easy to work out the
dynamics of the early universe, to determine when alL this happenãd. The basic idea is to
,ssume that the universe is expanding at ,,escape velocity.,' Everything you need to know
is in Weinberg 0977).
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(7.e1)

In what follows I'll simply call this quantity tJlv; tjne total energy in the chunk is

thus
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FigureT.2S.Thephotonsthatescapenowv/ereoncesomewherewithinahemi-
spñerical shell inside the box. Flom a given point in this shell, the probability of

"r"up" 
d.p"rrds on the distance from the hole and the angle 0'

to the bottom, out of the page, and back to the top'

Now consider the shadãd chunk of the shell shown Figure 7.23. Its volume is

volume of chunk -- (Rdl) x ('Rsin0 d'þ) x (cd't)' (7'90)

(The depth of the chunk, perpendicula.r to since 'Rsind is

in" .a¿ius of a ring of constant 0 swept out zr') The energ'y

density of the photons within this chunk is

@r)n
(h")t

8zr5

15

U
v

energ:y in chunk : { cat R2 sinl d,0 d'þ' (7.e2)
L

3

t
f
f
)
t

But not all the energy in this chunk of space will escape through the hole,

because most of the photãns are pointed in the wrong direction' The probability of

a photon being pointed in the right dhectlon is equal to the apparent area of the

ho1e, as viewed from the chunk, ãirrid"¿ by the total area of an imaginary sphere

of radius Ê centered on the chunk:

probability of escape : ##' (7'93)

Here A is the area of the hole, and , cosd is its foreshortened alea' as seen from

the chunk. The amount of energy that escapes from this chunk is therefore

energy escaping from chunk : ry{ "at sin| d'0 d'þ' (7'g4)
41t V

Rd0

cdt -'ì
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To find the total energy that escapes through the hole in the time interval dú,
we just integrate over d and /:

total energy escaping : 
Io'" 

or 
lr"'" 

o, ry ff cd,t sínl

/2
(7.e5)cos0 sin9 d,0

The amount of energy that escapes is naturally proportional to the area ,4 of the
hole, and also to the duration dú of the time interval. If we divide by these quantities
we get the power emitted per unit area:

porver per unit area: (7.e6)

Aside from the factor of 7f4, you could have guessed this result using dimensional
analysis: To turn energy/volume into power/area, you have to multipl¡r by some_
thing with units of distance/time, and the only relevant speed in the problem is
the speed of light.

Plugging in formula 7.g1 for the energy density inside the box, we obtain the
more explicit result
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power per unit area : +trI - oT4,

where ø is known as the Stefan-Boltzrnarrt constant,

o: 2r5ka
15¡t.z

w
m2Ka

(7.e7)

(7.e8):5.67 x 10-8

(This number isn't hard to memorize: Just think "5_.6_7_-g," and don't forget the
minus sign.) The dependence of the power radiated on the fourth power of the
temperature is known as stefan's law, and was discovered empirically in 1g29.

Radiation from Other Objects
Although I derived Stefan's law for photons emitted from a hole in a box, it also
applies to photons emitted by any nonreflecting (,black,') surface at temperature ?.
such ¡adiation is therefore called blackbody radiation. The proof that a black
object emits photons exactly as does a hole in a box is amazingly simple.

suppose you have a hole in a box, on one hand, and. a black object, on the other
hand, both at the same temperature, facing each other as in Figure 7.24. Each
object emits photons, some of which are absorbed by the other. If the objects are the
same size, each will absorb the same fraction of the other's radiation. Now suppose
that the blackbody does noú emit the same amount of power as the hole; perùaps

where
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FigureT.24.Athoughtexperimenttodemonstratethataperfectlyblacksurface
emits radiation identiãal to that emitted by a hole in a box of thermal photons'

it emits somew.hat Ìess. Then more energy wiil flow from the hole to the blackbody

than from the blackbody to the hole, and the blackbody will gradually get hotter'

oops! This process would violate the second law of thermodynamics. And if the

blackbody emíls more radiation than the hole, then the blackbody gradually cools

off'çr'hile the box with the hole gets hotter; again' this can't happen'

so the total power emitted by the blackbod¡ per unit area at anl' given temper-

ature, must be the same as that emitted by the hote. But we can say mor'e' Imagine

inserting a filter, which allows only a ceïtain lange of wavelengths to pass through,

between the hole and the blackbody' Again, if one object emits more radiation at

these wavelengths than the other, its temperature will decrease v¡hile the other's

temperature increases, in violation of the second law. Thus the entire spectrum of

radiation emitted by the blackbody must be the same as for the hole'

If an object is z¿oú black, so that it reflects some photons instead of absorbing

them, things get a bit more complicated. Let's say that out of every three photons

(at some gir"r, *.rr"l"ngth) that hit the object, it refl.ects one back and absorbs the

other two. Now, in order to remain in thermal equilibrium with the hole, it only

needs to emit two photons, which join the reflected photon on its way back' I\{ore

generally, if e is the fraction of photons absorbed (at some given wavelength), then

e is also the fraction emitted, in comparison to a perfect blackbody. This number

e is called the emissivity of the material. It equals 1 for a perfect blackbody, and

equals 0 for a perfectly åflective surface. Thus, a good reflector is a poor emitter'

and vice versa. Generutty *fr" emissivity depends upon the wavelength of the light,

so the spectrum of radiaiion emitted will differ from a perfect blackbody spectrum'

If v¡e use a weighted ave1'age of e over all relevant wavelengths' then the total power

radiated by an object can be written

por¡¡er : oeATA, (7'99)

where A is the object's surface area'

Problem?.sl.Thetungstenfi.Iamentofanincandescentlightbulbhasatem-
perature of approximateti SOOO K. The emissivity of tungsten is approximately

If 3, arrd' you may assume that it is independent of waveiength'

,.t
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(a) If the bulb gives ofi a total of 100 watts, what is the surface area of its

filament in square millimeters?

(b) At what value of the photon energy does the peak in the bulb's spectrum

occur? What is the wavelength corresponding to this photon energy?

(c) Sketch (or use a computer to plot) the spectrum of light given off by the

filament. Indicate the region on the graph that corresponds to visible wave-

lengths, between 400 and 700 nm.

(d) caÌculate the fraction of the bulb's energy that comes out as visibie light.

(Do the integral numerically on a calculator or computer.) check your

result qualitatively from the graph of part (c).

(e) To increase the efficiency of an incandescent bulb, would you want to raise

or lower the temperature? (Some incandescent bulbs do attait slightly

higher efficiency by using a different temperature.)

(f) Estimate the maximum possible efficiency (i.e., fraction of energy in the

visible spectrum) of an incandescent bulb, and the corresponding filament

temperature. Neglect the fact that tungsten melts at 3695 K'

Problem 7.52.

(a) Estimate (roughty) the total power radiated by your body, neglecting any

energy that is returned by your clothes and environment. (whatever the

color of your skin, its emissivity at infrared wavelengths is quite close to 1;

almost any nonmetal is a near-perfect blackbody at these wavelengths.)

(b) Compare the total energy radiated by your body in one day (expressed in
kilocalories) to the energy in the food you eat. Why is there such a large

discrepancy?

(c) The sun has a mass of 2 x 1030 kg and radiates energy at à tate of 3.9 x' 
7026 s,atts. \Mhich puts out more power per units mass-the sun or your

body?

Problem 7.53, A black hole is a blackbody if ever there was one) so it should

emit blackbody radiation, called Hawking radiation. A black hole of mass M
has a total energy of Mci, a surface area of l6TG2M2 f c4, and a temperature of

h¿3 lßT2kGM (as shown in Problem 3.7).

(a) Estimate the typical wavelength of the Hawking radiation emitted by a

one-solar-mass (2 x 1030 kg) black hole. Compare your answer to the size

of the black hole.

(b) Catculate the total power radiated by a one-solar-mass black hole'

(c) Imagine a black hole in empty space, where it emits radiation but absorbs

nothing. As it loses energy, its mass must decrease; one could say it "evap-

orates." Derive a differential equation for the mass a.s a function of time,

and solve this equation to obtain an expression for the lifetime of a black

hole in terms of its initial mass'

(d) calculate the lifetime of a one-solar-mass black hole, and co.mpare to the

estimated age of the known universe (1010 years).

(e) Suppose that a black hole that was created early in the history of the

universe finishes evaporating today. what was its initial mass? In what
part of the electromagnetic spectrum would most of its radiation have been

emitted?
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The Sun and the Earth

Flom the amount of solar radiation received by the earth (1370 W/*', known as

the solar constant) and the earth's distance from the sun (150 million kilometers),

it's pretty easy to calculate the sun's total energy output or luminosity: 3.9 x 1026

watts. The sun's radius is a little over 100 times the earth's: 7.0 x 108 m; so its

surface area is 6.1 x 1018 m2. FYom this information, assuming an emissivity of 1

(which is not terribly accurate but good enough for our purposes), we can calculate

the sun's surface temPeratu e:

/ lrrminositv \1/ar:(ä) :b800K. (7.100)

Knowing the temperature, we can predict that the spectrum of sunlight should

peak at a photon energy of

e :2.82kT : 1.47 eY, (7.101)

which corresponds to a wavelength of 880 nm, in the near infrared. This ìs a testable

prediction, and it agrees with experiment: The sun's spectrum is apploximately

liven Uy the Planck formula, with a peak at this energy. Since the peak is so close

to the red end of the visible spectrum, much of the sun's enelgy is emitted as visible

light. (If you've learned elsewhere that the sun's spectrum peaks in the middle of

the visible spectrum at about 500 nm, and you)re worried about the discrepanc¡

go back and work Problem 7.39.)

A tiny fraction of the sun's lad.iation is absorbed by the earth, warming the

earth's sulface to a temperature suitable for life. But the earth doesn't just keep

getting hotter and hotter; it also ern'its radiation into space) at the same rate' on

average. This balance between absorption and emission gives us a way to estimate

the earth's equilibrium surface temperature'
As a first crude estimate, let's pretend that the earth is a perfect blackbody at

all wavelengths. Then the power absorbed is the solar constant times the earth's

cross-sectional area as viewed, from the sun, zrfi2. The power emitted, meanwhile' is

given by stefan's law, with A being the full surface area of the earth, 4trR2, and ?
being the efiective average surface temperature. setting the power absorbed equal

to the power emitted gives

(solar constant)'nR' : 4trÙ2oTa

m2
r/4 (7.r02)

} T: 1370 W
4.5.67x10 Wlmz.Y+

:279 K

This is extremeÌy close to the measured average temperature of 288 K (15"c).

However, the earth is not a perfect blackbody. About 30% of the sunlight

striking the earth is reflected directÌy back into space, mostly by clouds' Taking

reflection into account brings the earth's predicted avelage temperature down to a

frigid 255 K.
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since a poor absorber is also a poor emitter, you might think we could bring
the earth's predicted temperature back up by taking the imperfect emissivity into
account on the right-hand side of equation 7.102. Unfortunately, this doesn't work.
There's no particular rea^son why the earth's emissivity shouid be the same for
the infrared light emitted as for the visible light absorbed, and in fact, the earth,s
surface (like almost any nonmetal) is a very efficient emitter at infrared. wavelengths.
But there's another mechanism that saves us: 'Water vapor and carbon dioxide in
earth's atmosphere make the atmosphere mostly opaque at wavelengths above a
few microns, so if you look at the earth from space with an eye sensitive to infrared
light, what you see is mostly the atmosphere, not the surface. The equilibrium
temperature of 255 K applies (roughly) to the atmosphere, while the surface below
is heated both by the incoming sunlight and by the atmospheric "blanket." If
we model the atmosphere a"s a singie layer that is transparent to visible light but
opaque to infrared, we get the situation shown in Figure 7.2b. Equitibrium requires
that the energy of the incident sunlight (minus what is reflected) be equal to the
energ-y emittied upward by the atmosphere, which in turn is equal to the energy
radiated downward by the atmosphere. Therefore the earth's surface receives twice
as much energy (in this simplified model) as it would from sunlight alone. According
to equation 7.102, this mechanism raises the surface temperature by a factor of
27/4, to 303 K. This is a bit high, but then, the atmosphere isn't just a singre
perfectly opaque layer. By the way, this mechanism is called the greenhouse
effect, even though most greenhouses depend primarily on a different mechanism
(namely, limiting convective cooling).

Sunlight

Atmosphere

Ground

Figure 7.26. E,arth's atmosphere is mostly transparent to incoming sunlight, but
opaque to the infrared light radiated up'ward by earth's surface. If we model the
atmosphere as a single layer, then equilibrium requires that earth's surface receive
as much energy from the atmosphere as from the sun.

Problem 7.54. The sun is the only star whose size $re can easily measure directly;
astronomers therefore estimate the sizes of other stars using Stefan,s law.

(a) The spectrum ofsirius A, plotted as a function ofenergy, peaks at a photon
energy of 2.4 eY, whilé Sirius A is approximateLy 24 times as lurninous as
the sun. How does the radius of Sirius A compare to the sun,s radius?

(b) Sirius B, the companion of Sirius A (see Figure 2.12), is only B% as luminous
as the sun. Its spectrum, plotted as a function of energy, peaks at about
7 eV. How does its radius compare to that of the sun?
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