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Problem 8.9. Show that the Lennard-Jones potential reaches its minimum value

;;; : ro, and that its value at this minimum is -uo At what value of r does the

potential equal zero?

Problem 8.10. Use a computer to caLculate and plot the second viriaL coefrcient

for a gas of molecules interacting via the Lennæd-Jones potential' for values of

lrãi"Jrr"el"e from 1 to Z. On ihe same graph, plot the data for nitrogen given

io þ.ãUt"- t.iz, choosing the pæameters rs and u¡ so as to obtain a good fit'

Problem 8.11. Consider a gas of "hard spheres," which do not interact at all

unless their separation distance is less than r9, in which case their interaction

;;;t* i. infinite. Sketch the Maver f-function for this gas, and compute the

"."o.d 
ti.iu"l coefficient. Discuss the resuìt briefly'

problem 8.12. consider a gas of molecules whose interaction energy u(r) is

i.nfinite for r ( r9 and negative for r ) rs, with a minimum value of -26' Suppose

further that kT )) uo, so you can approximate the Boltzmann factor for r > rg

oairg "" 
È l. + t. Show that under these conditions the second virial coefticient

irr-ïft" f".* Bg) -- b - (a1til), t'ine same æ what vou found for a van der Wæls

g;, ir e.oltum'r.fZ. Wit" thá van der Waa'ls constants a and b in terms of 16

ánd u(r), and discuss the results briefly'

Problem 8.13. use the cluster expmsion to write the total energy of a monatomic

,onia*f gas in terms of a sum of ãiagrams. Keeping only the first diagram, show

thât the energY is aPProximatelY

r¡ = ? Nttr + Y . ,n [* ," u1r1 e-ßuþ) dr._2vJo

Use a computer to ela^luate this integral numerically, as a function of ?' for the

i"rr"*¿-¡å""t potentiâ"I. Plot the temperâture-dependent part of the correction

Li-, ."¿ e*plåin the shape of the $aph physically Discuss the correction to

the heat câpacity at coûstant volume, and compute this correction numerically for

argon a.t room temperature and atmospheric pressure'

problem 8.14, In this section I',ve formulated the cluster expansion for a gas

*itiî 4""ã;-¡". of particles, using the "canonical" formalism of Chapter 6 A

somewhat cleaner apprãach, ho*et"t, ìs to use the "grand canonjcal" formalism

introduced in section 7.1, inwhich we allow the system to exchange palticles t'ith

a much larger reservoir'

(a) Wriie down a formula for the g¡and partition function (Z) of a weakly

interacting gas in thetmal utd-ditrotit" equilibrium with a restsvoir at

fixed ? and ¡r. Express Z æ a sum over ali possible particle numbers N'

with each term involving the ord'inary partition function Z(ll)'

(b) Use equations 8.6 and 8'20 to express Z(N) as a sum of diagrams' then
' 

carry out the sum ovel N, diagram by diagram' Express the result as â' sum

of similar diagrams, but with a new rule 1 that associates the expression

üir^iî¿ã.t'*ith'each dot, where 
^ 

: eßP' Now' with the awkward

ì.J*iJ åi¡ot¡o I t) "' tuk"t care of, vou should find that the sum of a1I

diagrams organizes itself into exponential form' resulting in the formula

/.
¿:"*p{ \-1t Â + 

^ 
. t'-?'"'i
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Note that the exponent contains all connected diagrams' including those

that can be disconnected by remoml of a single line'

(c) Using the properties of the grand partition functìon (see Problem 7'7)'
' ' 

flnd ãiag.ammatic expressions for the average number of particies and the

pressure of this gas'

(d) Keepins onlv the first diagram in each sum, express N(p) anq f!r) 
.tnt-' 

;"J;';i á"'*tlotr of thJMaver /-tunction' Eliminate ¡' to obtain the

same result for the pressure (atâ tne second virial coefrcient) as derived in

the lext.

(e) Repeat part (d) keeping the threedot diagrams as well' to obtain an ex-
t-' 

prË.riot fo, the third virial coefficient in terms of an integral of /-functíons'

YoushouldfindthattheÀ.shapeddiagramcancels,leavingonlythet¡ian.
gle diagram to contribute to C(T)'
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8.2 The Ising Model of a Ferromagnet

In an ideal paramagr\et1each microscopic magnetic dipole responds oniy to the

""t"t""i 
*"ä""ic nãa (it any); the dipoles have no inherent tendency to point

prtrna t"t antiparallel) ìo tftåít immediate neighbors' In the real world' however'

atomic dipoles are influencJ by their neighbo$: There is always some preference

for neighboring dipoies to alig; eithe' paiallel or. antiparallei' In some materials

;hi.-;;;t.";s due to ordinãry rnugottit forces between the dipoles' In the more

dramatic examples (.o"n ,' ìto"), hå*"t'u'' the alignment of neighboring dipoles

is due to complicated qou"to*-á"tha"ical effects involving the Pauli exclusion

principle. Either wa¡ ttrere is a contribution to the energy that is greater or less'

ã"p""¿t"g on the relative alignment of neighboring. dipoles'

When neighbori"g dip";:;;;" p*unã to each other' even in the absence of

an external freld, we cail tfre matãtial a ferromagnet (in honor of iron'-the most

familiar example). When neighboring dipoles align antiparallel' we call the ma-

terial an antiferromagn"iitiu*pf"ã io"iode Ct' NiO' and FeO)' In this section

I'ì1 discuss ferromagnets, uttìto"gft *ott of the same i<leas can also be applied to

antiferromagnets.
The long-range order of a ferromagnet manifests itself as a net nonzero magneti-

zation. Raising tne temperator", ho-ãt'e'' causes ¡andom fluctuations that decrease

the overall magnetization' Fo' *'y ferromagnet- there is a certain critical temper-

ature, called the Curie t"*pt"tilr"t' at which the net magnetization becomes

zero (when there is no 
"*tu*åi 

field)' Above the Curie temperature a ferromagnet

becomes a paramagnet' il ÑJ temperature of i¡on is 1043 K' considerably

higher than that of most other ferromagnets'

Even below the Curie iemperutu'e] you may not notice that a piece of iron

is magnetized. titi, i' U"tut"" a large clunk of iron ordinarily divides itself into

domains that are *i"ror"ãpi" i"ìiri u* srill contain bitlions of atomic dipoles.

Within each domain the *ui"'iuf is magnetized' but the magnetic freld created by

all the dipoles ir. o,t" ¿o"lJo git'"' n"iittUotl"g domains a tendehcy to magnetize

in the opposite direction' þui t*o o'ái"a'v bar magnets side by side :11 
yo"'11

see why.) Because ttrere are so many domai"s' with about as many pointing one

N
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Chapter 8 Systems of Interæting Particles

wãy as ânother, the material as a whole ha's no net magnetization' However' if you

rrJit u "ft""t 
of iron in the presence of an external magnetic field' this field can

*."o*u the interaction between domains and cause essentially oll the dipoles to

Iirre up parallei. Remove the external field after the material has cooled to room

lu*p"rirrr. and the ferromagnetic inte¡action prevents any significant realigning.

You then have a "permanent" magnet'

In this section I'd like to model the behavior of a ferromagnet, or rather, of a

single domain within a ferromagnet. I'11 account for the tendency of neighboring

dipäes to align paralleì to each other, but I'11 neglect any long-range magnetic

inie¡actions between dipoles. To simplify the problem further, I'li assume that the

materialhasapreferredaxisofmagnetization'andthateachatomicdipolecan
only point paraiel or antiparallel to this axis.* This simpliÂed model of 

.a 
magnet is

.uii"å tfr" ising model, after Ernst Ising, who studied it in the 1920s.1 Figure 8.3

shows one possible state of a two-dimensional Ising model on a 10 x 10 square

lattice.
Notation: Let /ü be the total numbe¡ of atomic dipoles, and let si be the

current state of the ¿th dipole, with the convention that s¿ : 1 when this dipole is

pointing up, and 5¿ = -1 when this dipole is pointing down' The energy due to

ih" iot"".u"tioo of a pair of neighboring dipoles will be -e when they are pa'rallei

and +e when they are antiparallel' Either way' we can write this energy âs -6s¿sj'

Figure 8.3' One of the many possibìe states

of a two-dimensional Ising model on a 10 x 10

squue lattice.

that in many respects this model is ¿o¿ an accurate representâtion

8'2 The Ising Model of a Ferromagnet

assuming that dipoles i and j are neighbors Then the total energy of the system

from ¿ll1he nearest-neighbor interactions is

U : -e I rurr. (8'38)

"îålï:';li'

To predict the thermal behavior of this system' we should try to calculate the

partition function,

ï
I
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where the sum is ove¡ all

z :\- e-þu ,- /-)
{""}

possible sets of diPole

(8.3e)

For ly' diPoles, each

is 2N, usuallY a oerg
alignments

with two Possible alignments, the number of terms in this sum

Iarge number. Adding uP all the terms bY brute force is not going to be Practical'

Problem 8.15. For a twedimensional Ising model on a square lattice, each

dipole (excePt on the edges) has four "neighbors" -above,
below, left, and right'

(Diagonal neighbors are normaþ not included.) What is the totãI energy (in terms

of e) for the particular stateofthe4x4square lattice shown in Figure 8'4?

I'ieure 8.4. One particular state of an Ising model on a 4 x 4

sqria¡e laitice (Problem 8 15)'

*I should Point out

of a rea.I ferromagnet Ðven if there really is a preferred axis of magnetization' and even

if the elementarY diPoles each have only two possíble orientations aLong this direction'

quantum mechanics is more srrbtle than thìs naive model' Because we do not measule

the orientation of each ind.ivid.ual dipoie, it is only the s¿m of their magnetic moments

that is quantized-not the moment of each individual particle' At low temperatures'

for instance, the releva¡t states of a real ferromagnet are long-wavelength "magnons"

(described in Problem ?.64), in which all the dipoles æe nearly paralìel and â' unit of

opposite alignment is sPread ovel many d.ipoì.es. The Ising model therefore does not yield

accurate Predictions for the low-temperature behavior of a ferromagnet' Fortunately' it

Problem 8.16. Conside¡ an Ising model of.100 elementarY dipoles' Suppose you

wish to calculate the partitim fun"ction for this system' using a comPuter that can

compute one bilLion t"'*';i;;;;;tition function per second' How iong must

you wait for the answer'/

Problem8.17'Consideranlsingmodelofjusttwoelementarydipoles,whose
mutuaL interaction energv ;;;:-Ë;;"*e ihe states^of this svstem and wite

down their Boltzmann t""'åJ?tf""f i" if'" p-titio" function' Find the proba-

bitities of frndins ih" dip"l;;-;l;i;;i.'q*"t'u+ and plot these probabilities

as a function of leT I e. ero åut"otrt" and plot the average energy of the system'

At what temperatures *" ,""^ä.r" ,ä"tt to find both dipoles pointing up than

to find one uP and one down?

Exact Solution in One Dimension

So far I haven't specified how our atomic dipoles are to be arranged in space' or how

many nearest neighbors "tth;;;;; 
Ìtus' 

^To 
simulate a-real ferromagnet' I should

arrange them in three dh";;;;;;'u "'v'tut 
lattice' But I'11 start with a much

simpler arrangement' with 
''ft" 

äïc,iã t"""c oul 
.alonc 

a one-dimensional line (see

Figure 8.5). Then each h* ;;;i;; ;aresl neighbors' and we can actuallv carrv

out the Partition sum exactlv'

For a one_dimensionat rs-i'ng model (with no external magnetic fieid), the energy

is
u' : -e(sÉz* szss * 53s4 + " sN-16N)' (8'40)turns out to be much more accurate near the Curie temperature'

if'o, 
" 

good historicai overview of the Ising model see Stephen G' Brush' "History of

the Lenz-Ising Mode1," Reviews ol Modem P'hysics 39' 383-893 (1967)'
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11111 I

8'2 The lsing Model of a Ferromagnet

Soournextstepshouldbetoconsiderlsingmodelsinhisherdimensions'Un-
fortunateiy, though, such models are much harder to 

'olt"' 
ihu two-dimensional

Ising model on a square lattice was first solved in the 1940s by Lars Onsager' On-

sager evaluated the exâct partition function as 'l{ * oo in closed form' and found

that this model does have a' critical temperature' just like a real ferromagnet' Be=

**"il;;Jt solution is extremely difficult mathematically' I will not attempt to

öJffi;*Jook. In any case, nobod,y has ever found an exact solution to the

råree-dimensional Ising modår. The most fruitfur approach from here, therefore, is

ä';ilñ;ct sJutions and relv instead on approximations'

Problems.lS.Startingfromthepartitionfunction,calcuÌatetheavelageenergy
of rhe on*dimensì""rt ß;;;;;"i, to verify equation 8.44 sketch the average

energy as a function of temperature'

The Mean Field APProximation

Next I'd like to present a very crude tpp'iri*utt-o-1¡¡¡hich can be used to "solve"

the Ising model in any dimensionality' t'it approximation v'ron't be very âccu-

rate, but ìt does sive t"*" ä;ilä; iJÑ t"à what's happening and whv the

ttÏïï::T:i"i#"lI 
¡o't u 

'i"gt" 
dipole' somewhere in the middle or the lattice'

I'll tabel this dipole n' t" ;t;;;t"t it t' which can be -1 or 1' Let rz be the

;;;;"i;*est neighbors that this dipole has:

( 2 in one dimension;

I ; in t*o dimensions (square lattice);

^ - ) ^ '",h.Jä;;;;;ì-('*ot" 
cubió bttice); (8'45)

": i : iÏ ffi;;;;;';""' iuodv-centered cubic lattice);

Ii' i,, ti'; ;;;i""' irace-c""te'ud cubic lattice)'

Imagine that the alignments of these neighboring dinoles are temporarily frozen'

but that our dipole ¿ t' t,ä;;;;;;;;' ã'*n' Iiit points up' then the interaction

;;öLJtwe"n this diPoie and its neighbors is

E7 : -e I s'uier'uo, = -en1' (8'46)

I
I

1
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zl :1 2 3 4 5 N

si:l -1 -1 1 1 1

Figure 8.5. A one-dimensional Ising model with 'l{ elementmv dipoles

and the partition function can be written

0es.e-
sN (8.41)

whereeachsumrunsoverthevalues-1and1'Noticethatthefinalsum'oversN'
is

\- "É."r-'"r 
: eP. + e-þ, - 2coshl3e, @. 2)

,t"

regardless of whethe¡ sN-1 is +1 o¡ -1 With this sum done' the sum over s¡r-1

"uln 
oo* be eva.luated in the same way, then the sum over sN-z' and so on down

to s2, yielding -f[ - 1 facto¡s of 2 cosh Be' The remaining sum over 51 gives another

factor of 2, so the partition function is

z : \- \- . . \- 
"ßes,s2 

,atszss- .¿2.¿¿ L)
st s2 sN

Z:2N(coshþe)N-l s (2coshBe)N' (8'43)

where the last approximation is valid when -lf is large'

So we've goi lhe partition function' Now what? WeIl' let's find the average

energy as a fìrnction of temperature' By a straightforward calculation you can

show that
V: -fimz = -.Are tanhBe, (8.44)

which goes to -l{e as ? + 0 and to 0 as ? - oo' The¡efore the dipoles must

Uu ,*näo-fy aligned at high temperature (so that half the neighboring pairs are

p"rrU.f 
""d 

hali are antiparallelf but lined up parallel to each other at ? : 0

iachieving the minimum possible energy)'

If you're getting a sense of d'éjà iu, don't be surprised Yes indeed' bo\h Z

and u for this system are exactly the same as for a two-state paramagnet, if you

replace the magnetic interaction e"ergy ¡'B with the neighbor-neighbor interaction

;;;õ . H"."lho*u.r"r, the dipoles ùk" to lio" up with each other' instead of with

an external fre1d.

Notice that, while this system does become mo¡e ordered (less random) as.its

temperatule d".r.urur, the order sets in gradually' The behavior of [/ as a function

åiC is pert""tty smooth, with no abrupt transition at a nonze¡o critical temper-

ature. Apparently, the one-dimensionai Ising model does nof behave like a real

three-dimensional ferromagnet in this c¡ucial respect' Its tendency to magnetize is

not great enough, because each dipole has only tr^to nearest neighbors'

neighbors

where 3 \s t'he auerage alignment of the neighbors (see Figure 8'6)' Simiiarly' if

Figure 8.6. The four neighbors of this particular

dioole have an average s ratue of (+1 -3) l4 .= -11.2

üff."'îfti;åi""poi"'."p' the enersv due to its

inleractions with its nelgnDors is +2e' while if it

points down, the energY is -2e'

+

t
t
l
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dipole z points down, then the interaction enetgy is

EL: +"3'

The partition function for just this dipole is therefore

Z¿ : ¿Þuns ¡ ¿-?ena : 2 cosh(Ée¿s),

and the â,verage expected value of its spin alignment is

(8.47)

(8.48)

s, : I l111ua,^s+ (-r\.-dcns- - 2sinh(Éens) 
-' z¡- -1)t-o""1:ffi:tanh(pens) (8'49)

Now iook at both sides of this equation. On the left is 3¿, the thermal average
vaÌue of the alignment of any typical dipole (except those on the edge of the lattice.
which we'll neglect). On the right is 5, the average of the actual instantaneous
alignments of this dipole's n neighbors. The idea of the mean field approxima-
tion is to assume (or pretend) that these two quantities are the same: s¿ :5. In
other words, we assume that at every moment, the alignments of all the dipoles

are such that every neighborhood is "typical"-there are no fluctuations that cause

the magnetization in any neighborhood to be more or less than the expected ther-
mal average. (This approximation is simila¡ to the one I used to derive the van

der 'Waals equation in Section 5.3. The¡e it was the densitl', rather than the spin
alignment, whose average value was not allowed to var¡'from place to place within
the system.)

In the mean field approximation, then, we have the relation

s: tanh(Éens), (B.50)

s¡here s is now the average dipole alignment over the entire system. This is a

transcendental equation, so we can't just solve fo¡ s in terms of Ben. The best

approach is to plot both sides of the equation and look for a graphical solution (see

Figure 8.7). Notice that the larger the value of þen, the steeper the slope of the

hlperbolic tangent function near 3: 0. This means that our equation can have

either one solution or tliree, depending on the value of Ben.
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lVhen Ben < l, that is, when kT > ne, the only solution is at B:0; there is no
net magnetization. If a thermal fluctuation Ì¡rere to momentariìy increase the value
of s, then the hyperbolic tangent function, which dictates whatï should be, would
be less than the current value of 3, so 3 would tend to dec¡ease back to ze¡o. The
solution 3: 0 is stable.

When Ben > 1, that is, when IcT < ne, we still have a solution at 3: 0 and we
also have two more solutions, at positive and negative values ofS. But the solution
at s : 0 is unstable: A small positive fluctuation of s would cause the hyperbolic
tangent function to exceed the current value of 3, driving s to even higher values.

The stable solutions are the othe¡ two, which are symmetrically located because

the system has no inhe¡ent tendency toward positive or negative magnetization.
Thus, the system wilì acquire a net nonzero magnetization, which is equally likely
to be positive or negative. When a system has a built-in symmetry such as this, yet
must choose one state or another at low temperatures, we say that the symmetry
is spontaneously broken.

The critical temperature I below which the system becomes magnetized is

(8.51)

proportional to both the neighbor-neighbor interaction energy and to the number
of neighbors. This result is no surprise: The more neighbors each dipole has,

the greater the tendency of the whole system to magnetize. Notice, though, that
even a or¿e-dimensional Ising model should magnetize below a temperature of2elk,
according to this analysis. Yet we already saw from the exact solution that there is
no abrupt t¡ansition in the behavior of a one-dimensional Ising model; it magnetizes

onlv as the temperature goes to zero. Apparently, the mean fieid approximation
is no good at all in one dimension.* Fortunatell', the accuracy improves as the
dimensionality increases.

Problem 8.19. The criticâl temperature of iron is 1043 K. Use this value to make

a rough estimate of the dipole-dipole interaction energy 6, in electron-volts.

Problem 8.20. Use a computer to plot s as a function of. kT /e, as predicted by
mean field theor¡ for a twodimensional Ising model (with a square lattice).

Problem 8.2L. At T : 0, equation 8.50 says that 3: 1. Work out the first
temperature.dependent correction to this value, in the limit Ben )) L Compare
to the low-temperatue behavior of a real ferromagnet, treated in Probìem 7.64.

Problem 8.22. Consider an Ising model in the presence of m external magnetic

field B, which gives each dipole an additional energy of -pgB ifit points up and

*¡rs,B if it points down (where ps is the dipole's magnetic moment). Analyze this
system using the mean field approximation to find the analogue of equation 8'50

Study the solutions of the equation graphically, and discuss the magnetization of
this system as a function of both the external field strength and the temperatue.
Sketch the region in the ?-B plme for which the equation has three solutions.

*The¡e do exist more complicated versions of the mean field approximation that læk

this fatal flaw, predicting correctly that the onedimensional Ising model magnetizes only

at T:0. See, for example, Pathria (1996).

kT.: ne

Ben<l tanh(PenF) Ben>l

Stable

s
Stable Unstable

Stable solution

Figure 8,7, Graphical solution of equation 8.50. The slope of the tmh function
at the origin is pen. When this quantity is less than 1, there is only one solution,
at 3 = 0; when this quantity is greater than 1, the s : 0 solution is unstable but
there ile aJso two nontrivial stable solutions.
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Problem 8.23. The Ising model can be used to simulate other systems besides

ferromagnets; exmples include antiferromagnets, binary alloys, and even fluids.
The Ising model of a fluid is called a lattice gas. Wb imagine that space is divided
into a lattice of sites, eæh of which can be either occupied by a gas molecule or
unoccupied. The system has no kinetic energy, and the only potentia.l energy
comes from interactions of molecules on adjacent sites. Specifically, there is a
contribution of *u9 to the energy for each pair of neighboring sites that are both
occupied.

(a) Write down a formula lor Lhe grand, pãtition function for this system, æ
a function of u¡, ?, and ¡r.

(b) Rearrange you formula to show that it is identical, up to a multiplicative
fâctor that does not depend on the state of the system, to the ord,inary
partition function for an Ising ferromagnet in the presence of an external
magnetic field B, provided that you make the replacements zg + 4e and

¡t + Z¡tsB - 8e. (Note that ¡r is the chemical potential of the gas while ps
is the magnetic moment of a dipoìe in the magnet.)

(c) Discuss the implications. Which states of the mâgnet correspond to low-
density states of the lattice gas? \Mhich states of the magnet correspond
to high-density states in which the gæ hæ condensed into a liquid? What
shape cloes this model predict for the liquid-gas phase boundary in the P-?
plane?

Problem 8.24. In this probìem you will use the mean field approximation to
analyze the behavior of the Ising model nea the criticâ.l Point.

(a) Prove that, when ø ( 1, tanhz = x - !n3.
(b) Use the result ofpart (a) to find m expression for the magnetization ofthe

Ising model, in the mean freid approximation, when T is very close to the
critùal temperature. You should find M ç. (7. - ?)P, where B (not to be

confused with 1/k") is a critical exponent) analogous to the B deÊned

for a fluid in Problem 5.55. Onsager's exact solution shows that ø : t / 8 in
two dimensions, while experiments and more sophisticated approximations
show that þ x Il3 in three dimensions. The mean freld approximation,
however, predicts a larger value.

(c) The magnetic susceptibility x is defined æ y: @M/08)1' The behavior
of this quantity near the critical point is conventionaJly mitten as x ü
(T - f"¡-t, where 'y is another critical exponent. Find the value of 'y

in the mean field approximation, md show that it does not depend on

v¡hether ? is slightly above or slightly below ?". (The exact value of 1 in
two dimensions turns out to be 7 14, while in three dimensions 1 = l-24.)

Monte Carlo Simulation

Consider a medium-sized, two-dimensional Ising model on a square iattice, with
100 or so elementary dipoles (as shov/n in Figure 8.3). Although even the fastest

computer could never compute the probabilities of ¿ll the possible states of this sys-

tem, maybe it isn't necessa.ry to corsider all of them-perhaps â landom sampling

of only å, million or so states v¡ould be enough. This is the idea of Monte Carlo
summation (or integration), a technique named after the famous European gam-

bling center. The procedure is to generate â random sâmpling of as many states as
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possibìe, compute the Boltzmann factors for these states, and then use this random
sample to compute the average energy, magnetization, and other thermodynamic
quantities.

Unfortunately, the procedure just outlined does not wo¡k well for the Ising
model. Even if we conside¡ as many as one billion states, this is only a fing
fraction-about one in 102r-of all the states fo¡ a modest 10 x 10 lattice. And at
low temperatures, when the system wânts to magnetize) line important states (with

nearly all of the dipoles pointing in the same direction) constitute such a small

fraction of the total that we are likeiy to miss them entirely. Sampling the states

purely at random just isn't efrcient enough; fo¡ this reason it's sometimes called

I]ne nai,ue N{onte Carlo method
A bette¡ idea is to use the Boltzmann factors themselves as a guide during the

random generation of a subset of states to sample. A specific algorithm that does

this is as follows: sta¡t with any state whatsoever. Then choose a dipole at landom

and conside¡ the possibility offlipping it. Compute the energy difference, A[/, that

would result from the flip. If aI/ ( 0, so the system's energy r¡¡ould decrease or

remain unchanged, go ahead and flip this dipole to generate the next system state.

If AU > 0, so the system's energy t'ould increase, decide at random whethe¡ to

flip the dipole, with the probability of the flip being e-^u/kr. If the dipole does

not get flipped, then the ner¡v system state will be the same as the previous one.

Either wa1,, continue by choosing another dipole at random and lepeat the process,

over and over again, until every dipole has had many chances to be flipped' This

algorithm is called the Metropolis algorithm, afte¡ Nicholas Metropolis, the fi¡st

author of a 1953 adicle* that presented a càlculation of this type. This technique

is also called NIonte Ca¡lo summation with importance sampling'
The Metropolis algorithm generates a subset of systern states in which iow-

energy states occur more frequently than high-energy stå,tes. To see in mo¡e detail

*hy ttt" algorithm works, consider just two states, 1 and 2, which differ only by the

flipping of a single dipole. Let tl and t/z be the energies of these states, and 1et us

number the states so tha-t t\ < U2. Iî the system is initially in state 2, then the

probability of making a transition to state 1 is 1/1ú, simply the probability that

the correct dipole will be chosen ât random among all the othe¡s. If the system

is initially in state 1, then the probability of making a tlansition to stâ,te 2 is

(7lN)e-(u"-u,)/À", according to the Metropolis algorithm' The ratio of these two

transition p¡obabiiities is therefore

P(L+2) 
-(1'fN)e-(u"-v')/nr :# (8.b2)

Ñ-L)- (1/¡r) e

simply the ratio of the Boltzmann factors of the two states. If these were lhe only

*N. Metropolis, A. W. Rosenbluth, N{. N Rosenbluth, A H' Teller, and E' Teller'

"Equation of State Calculations for Fast Computing Machines"' Joumal of Chemical

physics 2L,1087-1092 (1953). In this article the authors use their algorithm to calculate

the pressure of a two-dimensionaì. gas of. 224 hæð disks. This rather modest calculation

required several days of computing time on what was then a state-of-theârt computer'
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ùwo states available to the system, then the frequencies with which they occur would
be in exactly this ratio, as BoLtzmann statistics demands.*

Next consider two other states, 3 and 4, that differ from I and 2 by the flipping
ofsome other dipole. The system can now go betr¡/een 1 and 2 through the indirect
process 1 e 3 e 4 + 2, whose forwa¡d and backwa¡d rates have the ratio

P(I+3- 4-2) _e-u3/kr e-u,/hr e-u2/kr _e-u2/kr /RÃq.ì
P(r-4-3-r) ;:î;m-;-qtt"r' \o'rÙ/

again as demanded by Boltzmann statistics. The same conclusion applies to transi-
tions invoìving any number of steps, and to transitions between states thât differ by
the flipping of more than one dipole. Thus, the Nfetropoìis algorithm does indeed
generate states with the co¡rect Boltzmann probabilities.

Strictly speaking, though, this conclusion applies only after the algorithm has

been running infinitely long, so that every state has been generated many times.
We want to run the algorithm for a relatively short time, so that most states are
never generated at all! Under these ci¡cumstances we have no guarantee that the
subset of stàtes actuâlly generated will accurately represent the full collection of
all system states. In fact, it's hard to even define what is meant by an "accurate"
representation. In the case of the Ising model, ouI main concerns are that the
randomly generated states give ân accurate picture of the expected energy and
magnetization of the system. The most noticeable exception in practice will be that
at low temperatures, the Nletropoiis algorithm will rapidly push the system into a

"metastable" state in which nearly all ofthe dipoles are parallel to their neighbors.
Although such a state zs quite probable according to Boltzmann statistics, it may
take a very long time for the algorithm to generate other probable states that differ
signiflcantly, such as a state in which every dipole is flipped. (In this way the
Metropolis algorithm is analogous to what happens in the ¡eal world, where a large
system never has time to explore all possibÌe microstates, and the relaxation time
for achieving true thermodynamic equilibrium c¿n sometimes be very long.)

'With this limitation in mind, let's now go on and implement the Metropolis
algorithm. The algorithm can be programmed in almost any traditionai computer
language, and in many nontraditional languages as well. Rather than singling out
one particula,r language, let me ihstead present the algorithm in "pseudocode,"
which you can translate into the language of your choice- A pseudocode program
for a basic two-dimensional Ising simulation is shown in Figure 8.8. This ptogram
produces only graphical output, showing the lattice as an array of colored squares-
one color for dipoles pointing up, another color for dipoles pointing down. Each

time a dipole is flipped the color of a square changes, so you can see exactly whaf
sequence of states is being generated.

The program uses a two-dimensional array called s(í,j) to store the values

of the spin orientations; the indices i and j each go lrom 1 to the value of slze,
which can be changed to simulate lattices of different sizes. The temperature T,

*When the transition rates between two states have the correct ratio, we sây that the
transitions are in detailed balance.

otherwise the Boltzmann factor
gives the probability of flipping

Now go back md start ove¡

subroutj-ne deltaU(i,j,Ediff) Compute ÂU offlipping a dipole
(note periodic boundary conditions)

if i = 1 then top = s(size,j) else top = s(i-l,j)
if i = sÍze then botton = s(l,j) eLse botton = s(í+1,j)
if j = 1 then teft = s(i,size) else left = s(i,j-l)
if j = size then right = s(i,l) else right = s(i,j+l)
Ediff - 2*s(i, j)*(top+botton+Ieft+right)

end subroutine

subroutine initial"ize
fori=ltosize

Initialize to a random æray

for¡=ltosize
if rand < .5 then s(i,j) = 1 else s(i,j) = -1
colorsquare (i, j )

trext j
next i

end subrouti-ne

subroutine cotorsquare (i, j ) Color a square according to s value

(implementation depends on system)

Figure 8.8. A pseudocode program to simulate a two-dimensional Ising model,

using the Metropolis algorithm.

I
progran 1s1ng

size = 10

T = 2.5
initialize
for iteratlon = 1 to 100*size'2 d.o

i = int(rand*size+l)
j = int(rand*size+1)
deltau(i,j,Ediff)
if Edi,ff <= 0 then

s(1,j) = -s(r,j)
colorsquare(i,j)

else
if rand < exp(-Ediff/T) then

s(i,j) = -s(i,j)
colorsquæe(i,j)

end if
end if

next iteration
end progran
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Monte Ca¡lo simulation of a 2D Ising
model using the Metropolis algorithm

Width of square lattice
Temperature in units of e/k

Main iteration loop

Choose a random row number
and a random column number
Compute AI/ of hypothetical flip
If flippins reduces the eners/ . . .

then flip it!
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measured in units of e/È, can also be changed for different runs. After setting these

two constants, the program ca1ls the subroutine initialize to assign the initial
value of each s randomly.*

The heart of the program is the "main iteration loop," which executes the
Metropolis algorithm 100 times per dipole so that eâch dipole will have man¡.
chances to be flipped. The value 100 can be changed as appropriate. (Note that *
represents multiplication, while ^ represents exponentiation.) Within the loop. we
flrst choose a dipole at random; the function rand is assumed to return a ¡andom
reâl number between 0 and 1, while intO returns the largest integer less than
or equal to its argument. The subroutine deltau, defined later in the program,
computes the energy change upon hypothetically flipping the chosen dipole; this
energy change (in units of e) is returned as Ediff. If Ediff is negative or zero, we
flip the dipole, while if Edlf f is positive, v¡e use it to compute a Boltzmann factor
and compare this to a random number to decide whether to flip the dipole. If the
dipole gets flipped, we call the sub¡outine colorsquare to change the color of the
corresponding square on the screen.

The subroutine deltau requires further explanation. There is alv'ays a problem,
when a simulation uses a relatively small lâttice, in deaJing with "edge effects." In
the Ising model, dipoles on the edge of the lattice are less constrained to align with
their neighbors than are dipoles elsewhere. If v¡e're modeling a very small system
whose size is the same as that of our simulated lattice, then we should treat the
edges a,s edges, with fewer neighbors per dipole. But ifwe're really interested in the
behavio¡ of much larger systems, then we should try to minimize edge effects. One
way to do this is to make the lattice "wrap a¡ound," treating the right edge as if it
were immediately left of the left edge and the bottom edge as if it were immediatel)'
above the top edge. Physically this would be like putting the array of dipoles on
the surface of a torus. Another interpretation of this wrapping is to imagine that
the lattice is flat and inflnite in all directions, but that its stâte is always perfectly
periodic, so thåt moving up, down, left, or right by a certain amount (the value of
size) always takes you to an equivalent place where the dipoles have exactly the
same alignments at all times. Based on this iatter interpretation, we say that ìÃ€

are using periodic boundary conditions. Back to the subroutine deltaU, notice
that it correctly identifles all four nea¡est neighbom, whether or not the chosen

dipoie is on an edge. The change in energy upon flipping is then twice the product
of s (i , j ) with s of the neighbor, summed over the four neighbors.

To convert my pseudocode into a real program that runs on a real computer,

)'ou first need to pick a computer system and a progra,mming language" The syntax
for a¡ithmetic operations, variable assignments, if-then constructions, and for-next
loops will vary from language to language, but almost any common programming
language should provide easy ways to do these things. Some languages require that

*In principle, the initial state can by an1'thing. In practice, the choice of initial state can

be important if you don't want to wâit forever for the system to equilibrate to a "typical"
state. A rmdom initial state works well at high temperatures; a completely magnetized

initial stâte would work better at low temperatures.

8'2 The Ising Nlodei of a Ferromagnet

variables be declared and given a type (such as integer or real) at the beginning
of the program. Variables that are accessed both in the main program;nd in
siibroutines may require special treatment. The least standardized eiement of all
is the handling of graphics; the contents of the subroutine colorsquare will varv
wildly from system to system. Nevertheless, I hope that you will have little t¡ouble
implementing this program on )'our favorite computer and getting it to run.

Running the ising program is great fun: You get to watch the squares con-
stantly changing colors as the s1'stem tries to find states with relativeÌy large Boltz-
mann factors. It is tempting, in fact, to imagine that you are watching a sirnulation
of what really happens in a magnet, as the dipoles change their alignments back and
forth with the passage of time. Because of this similarity, a N{onte Carlo program
using importance sampling is usually called a Nfonte Carlo simulation. But please
remember that we have made no attempt to simulate the real time-dependent be-
havior of a magnet. Instead we have implemented a "pseudodynamics," which flips
only one dipole at a time and otherwise ignores the true time-dependent dynamics
of the system. The only realistic property of our pseudodvnamics is that it gener-
ates states with probabilities proportional to their Boltzmann factors, just as the
real dynamics of a magnet presumably does.

Figure 8.9 shows some graphical output from the islng program for a 20 x 20
lattice. The first image shows a random initial state generated by the program,
*'hile the remaining images each shou' the final state at the end of a run of 40,000
iterations (100 per dipole), for various temperatures. Although these snapshots are
no substitute for watching the program in action, they do show what a typical state
at each temperature looks like. At T : 10 the final state is still almost random,
u'ith only a slight tendencl.for dipoles to align with their neighbors. At successively
lower temperatures the dipoles tend to form larger and larger clusters* of positive
and negative magnetization until, at ï : 2.5, the clusters are about as large as

the lattice itself. At T : 2 a single cluster has taken ove¡ the whole lattice, and
rve would say that the system is "magnetized." Small clusters of dipoles will still
occasionally flip, but they don't iast long; we would have to wait a very long time
for the whole lattice to flip to a (just as probable) state of opposite rnagnetization.
The T: 1.5 run happens to have settled into the opposite magnetization, and at
this temperature fluctuations of individual dipoles a,re becoming uncommon. At
T : 1 v¡e might expect the system to magnetize completely and stay that wa¡ and
indeed, sometimes it does. About half the time, however, it instead becomes stuck
in a metastable state with tn'o domains, one positive and the other negative, as

shown in the ûgure.
Based on these results, we can conclude that this system has a critical tem-

perature somewhere bet¡n'een 2.0 and 2.5, in units of e/k. Recall that the mean
freld approxirnation predicts a critical temperature of 4e f lc-not bad qualitatively,
though off by nearly a factor of 2. But a 20 x 20 lattice is really quite small; v/hat

*I'm making no attempt here to precisely define a "clustei"-just look at the pictures
and use your intuition. A careful definition of the "size" of a cÌuster is given in Prob-
ìem 8.29-
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Random initial state

Figure 8.9. Graphical output from eight runs of the ising program' at succes-

sively lower temperatules. Each black square represents an "up" dipole and each

white square represents a "down" dípole. The variable T is the temperature in
units of r/k.

happens in larger, more reâlistic simulations?
The answer isn't ha¡d to guess. As long as the temperature is sufûciently high,

so that the size of a typical cluster is much smaller than the size of the lattice,
the behavior of the system is prettl' much independent of the lattice size. But a
larger lattice allows for la.r:ger clusters, so near the critical temperature v/e should

use as large a iattice as possible. Vy'ith sufficiently long runs with large lattices one

can show that the size of the largest clusters approaches infrnity at a temperature
of 2.27ell<, (see Figure 8.10). This, then, is the true criticai temperature in the
thermodynamic limit. And indeed, this resuit âgrees with Onsager's exact solution
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Figure 8.10. A typical state generated by the ising program after a few billion
iterationsona400x400 latticeatT=2.27 (thecriticaltemperature). Noticethat
there are clusters of all possible sizes, from individual dipoles up to the size of the
lattice itself.

of the two-dimensional Ising model.

Similar simulations have been performed for the fåree-dimensional Ising model,
although this requires much more computer time and the results are harder to dis-
play. For a simple cubic lattice one frnds a critical temperature of approximately
4.5e lk, again somewhat less than the prediction of the mean field approximatiori.
The Monte Carlo method can also be applied to more complicated models of fer¡o-
magnets and to a huge varìety of othe¡ systems including fluids, alloys, interfaces,

nuclei, and subnuclear pa,rticles.

Problem 8,25. In Problem 8.15 you manually computed the energy of a particular
state of a 4 x 4 square lattice. Repeat that computation, but this time apply
periodic boundary conditions.

Problem 8,26. Implement the ising program on your favorite computer, æing
your favorite programming language. Run it for various lattice sizes and temper-
atures and observe the resuÌts. In particular:

Y
t
l
:

T=10

T=3

T=5
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(a) Run the program with a 20 x 20 lattice at T : 10, 5, 4, 3, and 2 5, for at

least 100 iterations per dipoìe per run. At each temperature make a rotgh
estimate of the size of the largest clusters.

(b) Repeat part (a) for a 40 x 40 lattice. Are the cluster sizes any difierent?

Explain.

(c) Run the program with a 20 x 20 ìattice at T = 2, 1'5, aud 1' Estimate

the average magnetization (as a percentage of total saturation) at each of

these temperatures. Disregard runs in whicir the system gets stuck in a

metastable state with two domains.

(d) Run the program with a 10 x 10 lattice at T : 2'S Watch it run for 100,000

iterations or so. Describe and explain the behavior'

(e) Use successively larger lattices to estimate the typicâ'l cluster size at tem-

perâtures from 2.5 down to 2.27 (fhe critical temperature) The closer

you are to the critical temperâture, the larger a lattice you'll need and the

longer the progïam will have to run. Quit when you realize that there are

better ways to spend your time. Is it plausible that the cluster size goes to

infinity as the temperature approaches the critical temperature?

Problem 8.27' I\{odify the ising proglam to compute the average energy of the

system over all iterations. To do this, first add code to the initialize subroutine

tL compute the initial energy of the lattice; then' whenever a dipole is flipped,

change the energ'y variable by the appropriate amount' When computing the

average energy, be sute to average over all iterations, not just those iterations in

which a dipoie is actually flipped (w-hy?). Run the program for a 5 x 5 lattice for T

values from 4 down to 1 in reasonably small intervals, then plot the average energy

as a function of T. Also plot the heat capacity. use at leæt 1000 iterations per

dipole for each run, preferably more. If your computer is fast enough, repeat for a

10 x 10 lattice and for a 20 x 20 lattice. Discuss the results. (Hint: Rather than

starting over at each temperature with a ¡andom initial state, you can save time

by starting with the final state generated at the previous, nearby temperature.

Ftr the larger lattices you may wish to save time by considering only a smaller

temperatue interval, perhaps from 3 down to 1 5 )

Problem 8.28. N{odify the ising proglam to compute the total magnetization

(that is, the sum of all the s values) for each iteration, md to tally how often

àæh possible magnetization value occurs during a run, plotting the results æ a

histog.a*. Run the progïam for a 5 x 5 lattice at a variety of temperatures, and

discu-ss the results. Sketch a graph of'the most likely magnetization value æ a

function of temperature. If your computer is fast enough, repeat for a 10 x 10

lattice.

Problem 8.29' To quantify the clustering of alignments within m Ising magnet'

we define a quantif called the correlation function, c(r)' Take any two dipoles

i md j, separated by a distance r, and compute the product of their states: sisj'
Thisproductislifthedipolesareparalìelmd-lifthedipolesareantiparallel.
Now average this quantity over all pairs that de separated by a fixed distance r' to
obtain a -uu..," of the tendency of dipoles to be ..correlated'' over this distance.

Finalty, to remove the efiect of any overaì,l magnetization of the system' subtract

ofi thà square of the average s. Written as an equation, then, the correlation

function is 
¿1r) = gr3J -.n2.
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rrhere it is understood thât the first term al¡erages over all pairs at the fixed
distance r. Technically, the averages should also be taken ora all possibìe states
of the system, but don't do this yet.

(a) Add a routine to the ising program to compute the correlation function
for the cur¡ent state of the lattice, averaging over all pairs separated either
verticalìy or horizontally (but not diagonalty) by r s¡its of distance, whg¡s

r va¡ies from 1 to half the Ìattice size. Have the program execute this
routine periodically and plot the results as a bar graph.

(b) Run this program at a variety of temperatures, above, belo*-, and near the

critical point. Use a lattice size of at least 20, preferably larger (especially

near the critical point). Describe the behavior of the correlation function
at each temperature.

(c) Now add code to compute the auerage correlation function over the dura-
tion of a run. (HoN'ever. it's best to let the system "equilibra,te" to a typical
state before you begin accumulating averages.) The correlation length is

d.efined as tire distance over which the correlation function decreases b¡'a
factor of e. Estimate the correlation length at each temperature, and plot
a graph of the correlation length vs. T.

Problem 8.30. \Iodifiy the ising p¡ogram to simulate a one-dimensionai Ising

model.

(a) For a lattice size of 100, obsen'e the sequence of stâtes generated at various

temperatures and discuss the results' According to the exæt solution (for

an infinite lattice). we expect this system to magnetize only as the tem-
perature goes to zero; is the behavior of your program consistent with this
prediction? How does the typical cluster size depend on temperature?

(b) Nlodify your program to compute the average energ)' as in Problem 8 27'

Plot the energy and heat capacìt)- vs. temperature a¡d compare to the

exact result for an infinite lattice.

(c) \Iodify J'our program to compute the magnetization as in Problem 8 28'

Determine the most likely magnetization for various temperatures, and

discuss your results.

Protrlem 8.31. Nlodify the isiûg program to simulate a târe€-dimensional Ising

modet s'ith a simple cubic lattice. In t'hatever s'ay you can, try to show that this
system has a critical point at around T : 4.5.

Problem 8.32. Imagine taking a two-dimensional Ising lattice and dividing the

sites into 3 x 3 "blocks," as shown in Figure 8'11. In a block spin transforma-
tion, we replace the nine dipoles in each block rvith a single dipole, whose state

is determined by "majority ¡ule": If more than half of the original dipoles point

up, then the new dipole points up, while if more than half of the original dipoles

point down, then the nev' dipole points down. By applying this transformation

io the entire lattice. r.e ¡educe it to a neÍ' lattice r-hose width is 1/3 the original

width, This transformation is one version of a renormalization group trans-
formation, a pot'erfuì technique for studying the behavior of systems near their

critical points.*

*For more âbout the ¡enormaiization group and its applications, see Kenneth G' Wilson,

',Problems in Physics with Nlany Scales of Length," scientifrc American 24L' 158-779

(August, 1979).
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Y

Figure 8.11. In a block spin transformation. lve repÌace each block
of nine dipoles with a single dipole I'hose orientation is determined by
"majority rule."

(a) Add a ¡outine to the ising progtam i;o apply a block spin transformation to
the current state of the lattice, drawing the transformecl laitice alongside
the original. (Leave the original lattice unchanged.) Have the program
execute this routine periodicallv. so you can observe the evoÌution of both
lattices.

(b) Run your modified program x'ith a 90 r 90 original lattice. àt a variety
of tenìperatures. After the s¡rstem has equilibrated to a "typical" state
at each temperature, compare the t¡ansformed lattice to a typical 30 r i30

piece of the originàl lattice. In general you should flnd that the transformed
ìattice resembles an original lattice at a different temperature. Let us call
this temperature the "transformed temperature." When is the transforured
temperature greater thàn the original temperature, and when is it less?

(c) Imagine starting wìth a very large lattice and applj/ing urnny block spin
transformations in succession. each time taking the system lo a new effec-
tive temperature. Argue that, lo matter what the originàl temperature,
this procedure will eventually tâke you to one of three fìxed points: zero-
infinity, or the c¡itical temperature. For what initiâl temperaturcs n'ill you
end up at each txed point/ lComment: Think about the implications of
the fact that the critical temperature is a fixed point of the block spin
t¡ansforrnation. If averaging over the small-scale state of the system leaves
the dynamics urrchanged. then many àspects of the behavior of this sys-
tem must be indeperrdent of any specific microscopic details. This implies
lhat many different physical systems (magnets, fluids, and so on) should
have essentially the same cr:itìcal behavior. \Iore speciflcallv, the difierent
systems wilì have the same "critical exponents," such as those defined in
Problems 5-55 and 8.24. There are, however, ts'o parameters that can still
aflect the critical behavior. One is the dimensionality of the space that the
system is in (3 for most reaÌ-world systems); the other is the dimensional-
ity of the "vecto¡" tha.t defines the magnetization (or the analogous "orde¡
parameterl') of the system. For the Ising model, the magnetization is one-
dimensional, alwa¡rs along a given axis; for a fluid. the o¡der parameter is
also a one-dimensional quantit¡r, the difference in densit,v between liquid
and gas. Therefore the behavior of a fluid near its criticai point should be
the same æ that of a th¡ee-dimensional Ising model.l


