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Chapter 8  Systems of Interacting Particles
Problem 8.9. Show that the Lennard-Jones potential reaches its minimum value

at 7 = 70, and that its value at this minimum is —ug. At what value of 7 does the
potential equal zero?

Problem 8.10. Use a computer to calculate and plot the second virial coefficient
for a gas of molecules interacting via the Lennard-Jones potential, for values of
kT /uo ranging from 1 to 7. On the same graph, plot the data for nitrogen given
in Problem 1.17, choosing the parameters 7o and ug so as to obtain a good fit.

Problem 8.11. Consider a gas of “hard spheres,” which do not interact at all
unless their separation distance is less than rg, in which case their interaction
energy is infinite. Sketch the Mayer f-function for this gas, and compute the
second virial coefficient. Discuss the result briefly.

Problem 8.12. Consider a gas of molecules whose interaction energy u(r) is
infinite for 7 < ¢ and negative for r > 7o, with a minimum value of —ug. Suppose
further that kT > ug, so you can approximate the Boltzmann factor for » > ro
using € =~ 1+ z. Show that under these conditions the second virial coefficient
has the form B(T) = b— (a/kT), the same as what you found for a van der Waals
gas in Problem 1.17. Write the van der Waals constants a and b in terms of ro
and u(r), and discuss the results briefly.

Problem 8.13. Use the cluster expansion to write the total energy of a monatomic
nonideal gas in terms of a sum of diagrams. Keeping only the first diagram, show
that the energy is approximately

3 N? o
UnSnkr+ Y on [ rPu(r)e P dr.
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Use a computer to evaluate this integral numerically, as a function of T, for the
Lennard-Jones potential. Plot the temperature-dependent part of the correction
term, and explain the shape of the graph physically. Discuss the correction to
the heat capacity at constant volume, and compute this correction numerically for
argon at room temperature and atmospheric pressure.

Problem 8.14. In this section I've formulated the cluster expansion for a gas
with a fixed number of particles, using the “canonical” formalism of Chapter 6. A
somewhat cleaner approach, however, is to use the “grand canonical” formalism
introduced in Section 7.1, in which we allow the system to exchange particles with
a much larger reservoir.

(a) Write down a formula for the grand partition function (Z) of a weakly
interacting gas in thermal and diffusive equilibrium with a resérvoir at
fixed T and p. Express Z as a sum over all possible particle numbers N,
with each term involving the ordinary partition function Z (N).

(b) Use equations 8.6 and 8.20 to express Z(N) as a sum of diagrams, then
carry out the sum over N, diagram by diagram. Express the result as a sum
of similar diagrams, but with a new rule 1 that associates the expression
(/\/vQ)de'ri with each dot, where A = ePH. Now, with the awkward
factors of N(N — 1) --- taken care of, you should find that the sum of all
diagrams organizes itself into exponential form, resulting in the formula

zzexp(%+I+A+A+Ij+...>.
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8.2 The Ising Model of a Ferromagnet

Note that the exponent contains all connected diagrams, including those
that can be disconnected by removal of a single line.

(c

g

Using the properties of the grand partition function (see Problem 7.7),
find diagrammatic expressions for the average number of particles and the
pressure of this gas.

(d) Keeping only the first diagram in each sum, express N(p) and P(u) in
terms of an integral of the Mayer f-function. Eliminate p to obtain the
same result for the pressure (and the second virial coefficient) as derived in
the text.

(e) Repeat part (d) keeping the three-dot diagrams as well, to obtain an ex-

pression for the third virial coefficient in terms of an integral of f-functions.

You should find that the A-shaped diagram cancels, leaving only the trian-

gle diagram to contribute to o).

8.2 The Ising Model of a Ferromagnet

In an ideal paramagnet, each microscopic magnetic dipole responds only to the
external magnetic field (if any); the dipoles have no inherent tendency to point
parallel (or antiparallel) to their immediate neighbors. In the real world, however,
atomic dipoles are influenced by their neighbors: There is always some preference
for neighboring dipoles to align either parallel or antiparallel. In some materials
this preference is due to ordinary magnetic forces between the dipoles. In the more
dramatic examples (such as iron), however, the alignment of neighboring dipoles
is due to complicated quantum-mechanical effects involving the Pauli exclusion
principle. Either way, there is a contribution to the energy that is greater or less,
depending on the relative alignment of neighboring dipoles.

When neighboring dipoles align parallel to each other, even in the absence of
an external field, we call the material a ferromagnet (in honor of iron, the most
familiar example). When neighboring dipoles align antiparallel, we call the ma-
terial an antiferromagnet (examples include Cr, NiO, and FeO). In this section
T'll discuss ferromagnets, although most of the same ideas can also be applied to
antiferromagnets.

The long-range order of a ferromagnet manifests itself as a net nonzero magneti-
zation. Raising the temperature, however, causes random fluctuations that decrease
the overall magnetization. For every ferromagnet there is a certain critical temper-
ature, called the Curie temperature, at which the net magnetization becomes
zero (when there is no external field). Above the Curie temperature a ferromagnet
becomes a paramagnet. The Curie temperature of iron is 1043 K, considerably
higher than that of most other ferromagnets.

Even below the Curie temperature, you may not notice that a piece of iron
is magnetized. This is because a large chunk of iron ordinarily divides itself into
domains that are microscopic in size but still contain billions of atomic dipoles.
Within each domain the material is magnetized, but the magnetic field created by
all the dipoles in one domain gives neighboring domains 2 tendency to magnetize
in the opposite direction. (Put two ordinary bar magnets side by side and you’ll
see why.) Because there are so many domains, with about as many pointing one
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way as another, the material as a whole has no net magnetization. However, if you
heat a chunk of iron in the presence of an external magnetic field, this field can
overcome the interaction between domains and cause essentially all the dipoles to
line up parallel. Remove the external field after the material has cooled to room
temperature and the ferromagnetic interaction prevents any significant realigning.
You then have a “permanent” magnet.

In this section I'd like to model the behavior of a ferromagnet, or rather, of a
single domain within a ferromagnet. I'll account for the tendency of neighboring
dipoles to align parallel to each other, but I'll neglect any long-range magnetic
interactions between dipoles. To simplify the problem further, Tll assume that the
material has a preferred axis of magnetization, and that each atomic dipole can
only point parallel or antiparallel to this axis.* This simplified model of a magnet is
called the Ising model, after Ernst Ising, who studied it in the 1920s.t Figure 8.3
shows one possible state of a two-dimensional Ising model on a 10 x 10 square
lattice.

Notation: Let N be the total number of atomic dipoles, and let s; be the
current state of the ith dipole, with the convention that s; = 1 when this dipole is
pointing up, and s; = —1 when this dipole is pointing down. The energy due to
the interaction of a pair of neighboring dipoles will be —e when they are parallel
and -+¢ when they are antiparallel. Either way, we can write this energy as —€s;s;,
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Figure 8.3. One of the many possible states
of a two-dimensional Ising model on a 10 x 10
square lattice.
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*1 should point out that in many respects this model is not an accurate representation
of a real ferromagnet. Even if there really is a preferred axis of magnetization, and even
if the elementary dipoles each have only two possible orientations along this direction,
quantum mechanics is more subtle than this naive model. Because we do not measure
the orientation of each individual dipole, it is only the sum of their magnetic moments
that is quantized—not the moment of each individual particle. At low temperatures,
for instance, the relevant states of a real ferromagnet are long-wavelength “magnons”
(described in Problem 7.64), in which all the dipoles are nearly parallel and a unit of
opposite alignment is spread over many dipoles. The Ising model therefore does not yield
accurate predictions for the low-temperature behavior of a ferromagnet. Fortunately, it
turns out to be much more accurate near the Curie temperature.

TFor a good historical overview of the Ising model see Stephen G. Brush, “History of
the Lenz-Ising Model,” Reviews of Modern Physics 39, 883-893 (1967).

8.2 The Ising Model of a Ferromagnet

assuming that dipoles i and j are neighbors. Then the total energy of the system
from all the nearest-neighbor interactions is

U=—¢ Z 8i8;5- (8.38)

neighboring
pairs 1,j
To predict the thermal behavior of this system, we should try to calculate the
partition function,
z=Y P, (8.39)
{s:}
where the sum is over all possible sets of dipole alignments. For N dipoles, each
with two possible alignments, the number of terms in this sum is 2N usually a very
large number. Adding up all the terms by brute force is not going to be practical.

Problem 8.15. For a two-dimensional Ising model on a square lattice, each
dipole (except on the edges) has four “neighbors”—above, below, left, ar%d right.
(Diagonal neighbors are normally not included.) What is the total energy (in terms
of ¢) for the particular state of the 4 x 4 square lattice shown in Figure 8.47

Figure 8.4. One particular state of an Ising model on a 4 X 4
square lattice (Problem 8.15).

Problem 8.16. Consider an Ising model of 100 elementary dipoles. Suppose you
wish to calculate the partition function for this system, using a computer that can
compute one billion terms of the partition function per second. How long must
you wait for the answer?

Problem 8.17. Consider an Ising model of just two elementary dipoles, whose
mutual interaction energy is ke Enumerate the states of this system and write
down their Boltzmann factors. Calculate the partition function. Find the proba-
bilities of finding the dipoles parallel and antiparallel, and plot these probabilities
as a function of kT'/e. Also calculate and plot the average energy of the system.
At what temperatures are you more likely to find both dipoles pointing up than
to find one up and one down?

Exact Solution in One Dimension

So far I haven’t specified how our atomic dipoles are to be arranged in space, or how
many nearest neighbors each of them has. To simulate a real ferromagne.zt, I should
arrange them in three dimensions on a crystal lattice. But I'll start with a much
simpler arrangement, with the dipoles strung out along a one-dimensional line (see
Figure 8.5). Then each has only two nearest neighbors, and we can actually carry
out the partition sum exactly.

For a one-dimensional Ising model (with no external magnetic field), the energy

U = —e(s152 + 5253 T 8382+ SN—15N )5 (8.40)

341




342

Chapter 8 Systems of Interacting Particles
1 2 3 4 5 -

=1 -1 -1 1 1 1

=

Figure 8.5. A one-dimensional Ising model with IV elementary dipoles.

and the partition function can be written

I S o ot
SN

5y Sy

where each sum runs over the values —1 and 1. Notice that the final sum, over sy,
is

Z ey _ e 4 o0 = 2 cosh Be, (8.42)
SN
regardless of whether sy—1 is +1 or —1. With this sum done, the sum over sy—1
can now be evaluated in the same way, then the sum over Sy_s2, and so on down

to 82, yielding N — 1 factors of 2 cosh Be. The remaining sum over sy gives another
factor of 2, so the partition function is

Z = 2V (cosh Be)V ! & (2 cosh Be)™, (8.43)

where the last approximation is valid when N is large.
So we've got the partition function. Now what? Well, let’s find the average

energy as a function of temperature. By a straightforward calculation you can
show that
a

U =—==InZ =—Netanh !
8 n e tanh Be, (8.44)

which goes to —Neas T — 0 and to 0 as T — oo. Therefore the dipoles must
be randomly aligned at high temperature (so that half the neighboring pairs are
parallel and half are antiparallel), but lined up parallel to each other at =10
(achieving the minimum possible energy).

If you're getting a sense of déja vu, don’t be surprised. Yes indeed, both Z
and U for this system are exactly the same as for a two-state paramaguet, if you
replace the magnetic interaction energy uB with the neighbor-neighbor interaction
energy €. Here, however, the dipoles like to line up with each other, instead of with
an external field.

Notice that, while this system does become more ordered (less random) as its
temperature decreases, the order sets in gradually. The behavior of U as a function
of T is perfectly smooth, with no abrupt transition at a nonzero critical temper-
ature. Apparently, the one-dimensional Ising model does not behave like a real
three-dimensional ferromagnet in this crucial respect. Tts tendency to magnetize is
not great enough, because each dipole has only two nearest neighbors.

8.2 The Ising Model of a Ferromagnet

So our next step should be to consider Ising models in higher dimensions. Un-
fortunately, though, such models are much harder to solve. The two-dimensional
Ising model on a square lattice was first solved in the 1940s by Lars Onsager- On-
sager evaluated the exact partition function as N — oo in closed form, and found
that this model does have a critical temperature, just like a real ferromagnet. Be-
cause Onsager’s solution is extremely difficult mathematically, 1 will not attempt to
present it in this book. In any case, nobody has ever found an exact solution to the
three-dimensional Ising model. The most fruitful approach from here, therefore, is
to give up on exact solutions and rely instead on approximations.

Problem 8.18. Starting from the partition function, calculate the average energy
of the one-dimensional Ising model, to verify equation 8.44. Sketch the average
energy as a function of temperature.

The Mean Field Approximation

Next I'd like to present a very crude approximation, which can be used to “solve”
the Ising model in any dimensionality. This approximation won’t be very accu-
rate, but it does give some qualitative insight into what’s happening and why the
dimensionality matters. .

Let’s concentrate on just a single dipole, somewhere in the middle of the lattice.
1l label this dipole 4, so its alignment is s; which can be —1 or 1. Let n be the
number of nearest neighbors that this dipole has:

in one dimension;
in two dimensions (square lattice);
in three dimensions (simple cubic lattice); (8.45)
in three dimensions (body-centered cubic lattice);
9 in three dimensions (face-centered cubic lattice).

S
|
= 00 O B N

Imagine that the alignments of these neighboring dipoles are temporarily frOme7
but that our dipole 4 is free to point up or down. If it points up, then the interaction
energy between this dipole and its neighbors is

E; =—¢ Z Sneighbor = —€M3, (8.46)

neighbors

where § is the average alignment of the neighbors (see Figure 8.6). Similarly, if

Figure 8.6. The four neighbors of this particular
dipole have an average $ value of (+1—3)/4 = —1/2.
1f the central dipole points up, the energy due to its
interactions with its neighbors is +2€, while if it
points down, the energy is —2e€.
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dipole ¢ points down, then the interaction energy is
E| = 4en3. (8.47)
The partition function for just this dipole is therefore
Z; = ePnS 1 e7PnS — 9 cosh(Bens), (8.48)

and the average expected value of its spin alignment is
= 5 —Bens 2sinh(Bens) _

e 1 Bens —1e ,Bene.:l == =y 2 !
B = — [( e’ 4+ (—1)e 2 cosh(Gens) tanh(Bens) (8.49)

Now look at both sides of this equation. On the left is 5;, the thermal average
value of the alignment of any typical dipole (except those on the edge of the lattice,
which we’ll neglect). On the right is 5, the average of the actual instantaneous
alignments of this dipole’s n neighbors. The idea of the mean field approxima-
tion is to assume (or pretend) that these two quantities are the same: 5; = 3. In
other words, we assume that at every moment, the alignments of all the dipoles
are such that every neighborhood is “typical”’—there are no fluctuations that cause
the magnetization in any neighborhood to be more or less than the expected ther-
mal average. (This approximation is similar to the one I used to derive the van
der Waals equation in Section 5.3. There it was the density, rather than the spin
alignment, whose average value was not allowed to vary from place to place within
the system.)

In the mean field approximation, then, we have the relation

3 = tanh(Ben3), (8.50)

where 3 is now the average dipole alignment over the entire system. This is a
transcendental equation, so we can’t just solve for 5 in terms of Jen. The best
approach is to plot both sides of the equation and look for a graphical solution (see
Figure 8.7). Notice that the larger the value of fBen, the steeper the slope of the
hyperbolic tangent function near 5 = 0. This means that our equation can have
either one solution or three, depending on the value of Sen.

Ben < 1 Wﬂms) Ben > 1 %
| N
Stable
\\ s \ s

Stable
Stable solution e

Unstable
|

Figure 8.7. Graphical solution of equation 8.50. The slope of the tanh function
at the origin is Ben. When this quantity is less than 1, there is only one solution,
at 5 = 0; when this quantity is greater than 1, the 5 = 0 solution is unstable but
there are also two nontrivial stable solutions.

8.2 The Ising Model of a Ferromagnet

When fen < 1, that is, when kT > ne, the only solution is at § = 0; there is no
net magnetization. If a thermal fluctuation were to momentarily increase the value
of 5, then the hyperbolic tangent function, which dictates what 5 should be, would
be less than the current value of 3, so § would tend to decrease back to zero. The
solution 5 = 0 is stable.

When fBen > 1, that is, when kT < ne, we still have a solution at § = 0 and we
also have two more solutions, at positive and negative values of 5. But the solution
at § = 0 is unstable: A small positive fluctuation of 3 would cause the hyperbolic
tangent function to exceed the current value of 5, driving § to even higher values.
The stable solutions are the other two, which are symmetrically located because
the system has no inherent tendency toward positive or negative magnetization.
Thus, the system will acquire a net nonzero magnetization, which is equally likely
to be positive or negative. When a system has a built-in symmetry such as this, yet
must choose one state or another at low temperatures, we say that the symmetry
is spontaneously broken.

The critical temperature T, below which the system becomes magnetized is

kT, = ne, (8.51)

proportional to both the neighbor-neighbor interaction energy and to the number
of neighbors. This result is no surprise: The more neighbors each dipole has,
the greater the tendency of the whole system to magnetize. Notice, though, that
even a one-dimensional Ising model should magnetize below a temperature of 2¢/k,
according to this analysis. Yet we already saw from the exact solution that there is
no abrupt transition in the behavior of a one-dimensional Ising model; it magnetizes
only as the temperature goes to zero. Apparently, the mean field approximation
is no good at all in one dimension.* Fortunately, the accuracy improves as the
dimensionality increases.

Problem 8.19. The critical temperature of iron is 1043 K. Use this value to make
a rough estimate of the dipole-dipole interaction energy ¢, in electron-volts.

Problem 8.20. Use a computer to plot 3 as a function of kT'/¢, as predicted by
mean field theory, for a two-dimensional Ising model (with a square lattice).

Problem 8.21. At T = 0, equation 8.50 says that 3 = 1. Work out the first
temperature-dependent correction to this value, in the limit Ben > 1. Compare
to the low-temperature behavior of a real ferromagnet, treated in Problem 7.64.

Problem 8.22. Consider an Ising model in the presence of an external magnetic
field B, which gives each dipole an additional energy of —ugB if it points up and
+up B if it points down (where pp is the dipole’s magnetic moment). Analyze this
system using the mean field approximation to find the analogue of equation 8.50.
Study the solutions of the equation graphically, and discuss the magnetization of
this system as a function of both the external field strength and the temperature.
Sketch the region in the T-B plane for which the equation has three solutions.

*There do exist more complicated versions of the mean field approximation that lack
this fatal flaw, predicting correctly that the one-dimensional Ising model magnetizes only
at T = 0. See, for example, Pathria (1996).
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Problem 8.23. The Ising model can be used to simulate other systems besides
ferromagnets; examples include antiferromagnets, binary alloys, and even fluids.
The Ising model of a fluid is called a lattice gas. We imagine that space is divided
into a lattice of sites, each of which can be either occupied by a gas molecule or
unoccupied. The system has no kinetic energy, and the only potential energy
comes from interactions of molecules on adjacent sites. Specifically, there is a

contribution of —ug to the energy for each pair of neighboring sites that are both
occupied.

(a) Write down a formula for the grand partition function for this system, as
a function of ug, T, and u.

(b) Rearrange your formula to show that it is identical, up to a multiplicative
factor that does not depend on the state of the system, to the ordinary
partition function for an Ising ferromagnet in the presence of an external
magnetic field B, provided that you make the replacements ug — 4¢ and
wu— 2upB —8e. (Note that u is the chemical potential of the gas while ug
is the magnetic moment of a dipole in the magnet.)

(c) Discuss the implications. Which states of the magnet correspond to low-
density states of the lattice gas? Which states of the magnet correspond
to high-density states in which the gas has condensed into a liquid? What
shape does this model predict for the liquid-gas phase boundary in the P-T'
plane?

Problem 8.24. In this problem you will use the mean field approximation to
analyze the behavior of the Ising model near the critical point.

(a) Prove that, when z < 1, tanhz ~ z — %zs

(b) Use the result of part (a) to find an expression for the magnetization of the
Ising model, in the mean field approximation, when T is very close to the
critical temperature. You should find M « (T: — T)ﬁ , where 3 (not to be
confused with 1/kT) is a critical exponent, analogous to the 3 defined
for a fluid in Problem 5.55. Onsager’s exact solution shows that 8 = 1/8 in
two dimensions, while experiments and more sophisticated approximations
show that 3 =~ 1/3 in three dimensions. The mean field approximation,
however, predicts a larger value.

(c) The magnetic susceptibility x is defined as x = (0M/dB)r. The behavior
of this quantity near the critical point is conventionally written as x
(T — Tc)™", where v is another critical exponent. Find the value of v
in the mean field approximation, and show that it does not depend on
whether T is slightly above or slightly below Tc. (The exact value of v in
two dimensions turns out to be 7/4, while in three dimensions v ~ 1.24.)

Monte Carlo Simulation

Consider a medium-sized, two-dimensional Ising model on a square lattice, with
100 or so elementary dipoles (as shown in Figure 8.3). Although even the fastest
computer could never compute the probabilities of all the possible states of this sys-
tem, maybe it isn’t necessary to consider all of them—perhaps a random sampling
of only a million or so states would be enough. This is the idea of Monte Carlo
summation (or integration), a technique named after the famous European gam-
bling center. The procedure is to generate a random sampling of as many states as

8.2 The Ising Model of a Ferromagnet

possible, compute the Boltzmann factors for these states, and then use this random
sample to compute the average energy, magnetization, and other thermodynamic
quantities.

Unfortunately, the procedure just outlined does not work well for the Ising
model. Even if we consider as many as one billion states, this is only a tiny
fraction—about one in 102'—of all the states for a modest 10 x 10 lattice. And at
low temperatures, when the system wants to magnetize, the smportant states (with
nearly all of the dipoles pointing in the same direction) constitute such a small
fraction of the total that we are likely to miss them entirely. Sampling the states
purely at random just isn’t efficient enough; for this reason it’s sometimes called
the naive Monte Carlo method.

A better idea is to use the Boltzmann factors themselves as a guide during the
random generation of a subset of states to sample. A specific algorithm that does
this is as follows: Start with any state whatsoever. Then choose a dipole at random
and consider the possibility of flipping it. Compute the energy difference, AU, that
would result from the flip. If AU < 0, so the system’s energy would decrease or
remain unchanged, go ahead and flip this dipole to generate the next system state.
If AU > 0, so the system’s energy would increase, decide at random whether to
flip the dipole, with the probability of the flip being e~AU/KT  If the dipole does
not get flipped, then the new system state will be the same as the previous one.
Either way, continue by choosing another dipole at random and repeat the process,
over and over again, until every dipole has had many chances to be flipped. This
algorithm is called the Metropolis algorithm, after Nicholas Metropolis, the first
author of a 1953 article* that presented a calculation of this type. This technique
is also called Monte Carlo summation with importance sampling.

The Metropolis algorithm generates a subset of system states in which low-
energy states occur more frequently than high-energy states. To see in more detail
why the algorithm works, consider just two states, 1 and 2, which differ only by the
flipping of a single dipole. Let Uy and Uz be the energies of these states, and let us
number the states so that Uy < Us. If the system is initially in state 2, then the
probability of making a transition to state 1 is 1 /N, simply the probability that
the correct dipole will be chosen at random among all the others. If the system
is initially in state 1, then the probability of making a transition to state 2 is
(1/N)e~(U2=U1/ET according to the Metropolis algorithm. The ratio of these two
transition probabilities is therefore

P(l—2) (l/N)e_(UrU‘)/’“T g~ U2/kT

P2—1) 1/ T Ui/

(8.52)

simply the ratio of the Boltzmann factors of the two states. If these were the only

*N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of State Calculations for Fast Computing Machines,” Journal of Chemical
Physics 21, 1087-1092 (1953). In this article the authors use their algorithm to calculate
the pressure of a two-dimensional gas of 224 hard disks. This rather modest calculation
required several days of computing time on what was then a state-of-the-art computer.
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two states available to the system, then the frequencies with which they occur would
be in exactly this ratio, as Boltzmann statistics demands.*

Next consider two other states, 3 and 4, that differ from 1 and 2 by the flipping
of some other dipole. The system can now go between 1 and 2 through the indirect
process 1 «» 3 < 4 «— 2, whose forward and backward rates have the ratio

P(l—3—4—2) e Us/KT g~Us/kT o=Us/KT  g=Ua/kT
PE—4d—3—1) e UI/kT -Us/kT g-Us/RT  g=Ui/RT’ (8.53)

again as demanded by Boltzmann statistics. The same conclusion applies to transi-
tions involving any number of steps, and to transitions between states that differ by
the flipping of more than one dipole. Thus, the Metropolis algorithm does indeed
generate states with the correct Boltzmann probabilities.

Strictly speaking, though, this conclusion applies only after the algorithm has
been running infinitely long, so that every state has been generated many times.
We want to run the algorithm for a relatively short time, so that most states are
never generated at alll Under these circumstances we have no guarantee that the
subset of states actually generated will accurately represent the full collection of
all system states. In fact, it’s hard to even define what is meant by an “accurate”
representation. In the case of the Ising model, our main concerns are that the
randomly generated states give an accurate picture of the expected energy and
magnetization of the system. The most noticeable exception in practice will be that
at low temperatures, the Metropolis algorithm will rapidly push the system into a
“metastable” state in which nearly all of the dipoles are parallel to their neighbors.
Although such a state is quite probable according to Boltzmann statistics, it may
take a very long time for the algorithm to generate other probable states that differ
significantly, such as a state in which every dipole is flipped. (In this way the
Metropolis algorithm is analogous to what happens in the real world, where a large
system never has time to explore all possible microstates, and the relaxation time
for achieving true thermodynamic equilibrium can sometimes be very long.)

‘With this limitation in mind, let’s now go on and implement the Metropolis
algorithm. The algorithm can be programmed in almost any traditional computer
language, and in many nontraditional languages as well. Rather than singling out
one particular language, let me instead present the algorithm in “pseudocode,”
which you can translate into the language of your choice. A pseudocode program
for a basic two-dimensional Ising simulation is shown in Figure 8.8. This program
produces only graphical output, showing the lattice as an array of colored squares—
one color for dipoles pointing up, another color for dipoles pointing down. Each
time a dipole is flipped the color of a square changes, so you can see exactly what
sequence of states is being generated.

The program uses a two-dimensional array called s(i,j) to store the values
of the spin orientations; the indices i and j each go from 1 to the value of size,
which can be changed to simulate lattices of different sizes. The temperature T,

*When the transition rates between two states have the correct ratio, we say that the
transitions are in detailed balance.

program ising

size = 10
T=2.5
initialize
for iteration = 1 to 100%size”2 do
i = int(rand*size+1)
j = int(rand*size+1)
deltaUl(i,j,Ediff)
if Ediff <= O then
s(i,j) = -s(i,])
colorsquare(i,j)
else
if rand < exp(-Ediff/T) then
s(i,j) = -s(i,)
colorsquare(i,j)
end if
end if
next iteration
end program

subroutine deltaU(i,j,Ediff)

8.2  The Ising Model of a Ferromagnet 349

Monte Carlo simulation of a 2D Ising
model using the Metropolis algorithm

Width of square lattice
Temperature in units of ¢/k

Main iteration loop

Choose a random row number
and a random column number
Compute AU of hypothetical flip
If flipping reduces the energy ...
then flip it!

otherwise the Boltzmann factor
gives the probability of flipping

Now go back and start over ...

Compute AU of flipping a dipole
(note periodic boundary conditions)

if 1 = 1 then top = s(size,j) else top = s(i-1,j)

aE

if j

size then bottom = s(1,j) else bottom = s(i+1,j)
1 then left = s(i,size) else left = s(i,j-1)

if j = size then right = s(i,1) else right = s(i,j+1)
Ediff = 2#s(i,j)*(top+bottom+left+right)

end subroutine

subroutine initialize
for i = 1 to size
for j = 1 to size

Initialize to a random array

if rand < .5 then s(i,j) = 1 else s(i,j) = -1

colorsquare(i,j)
next j
next i
end subroutine

subroutine colorsquare(i,j)

Color a square according to s value
(implementation depends on system)

Figure 8.8. A pseudocode program to simulate a two-dimensional Ising model,

using the Metropolis algorithm.
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measured in units of €/, can also be changed for different runs. After setting these
two constants, the program calls the subroutine initialize to assign the initial
value of each s randomly.*

The heart of the program is the “main iteration loop,” which executes the
Metropolis algorithm 100 times per dipole so that each dipole will have many
chances to be flipped. The value 100 can be changed as appropriate. (Note that *
represents multiplication, while ~ represents exponentiation.) Within the loop, we
first choose a dipole at random; the function rand is assumed to return a random
real number between 0 and 1, while int () returns the largest integer less than
or equal to its argument. The subroutine deltaU, defined later in the program,
computes the energy change upon hypothetically flipping the chosen dipole; this
energy change (in units of ) is returned as Ediff. If Ediff is negative or zero, we
flip the dipole, while if Ediff is positive, we use it to compute a Boltzmann factor
and compare this to a random number to decide whether to flip the dipole. If the
dipole gets flipped, we call the subroutine colorsquare to change the color of the
corresponding square on the screen.

The subroutine deltaU requires further explanation. There is always a problem,
when a simulation uses a relatively small lattice, in dealing with “edge effects.” In
the Ising model, dipoles on the edge of the lattice are less constrained to align with
their neighbors than are dipoles elsewhere. If we’re modeling a very small system
whose size is the same as that of our simulated lattice, then we should treat the
edges as edges, with fewer neighbors per dipole. But if we're really interested in the
behavior of much larger systems, then we should try to minimize edge effects. One
way to do this is to make the lattice “wrap around,” treating the right edge as if it
were immediately left of the left edge and the bottom edge as if it were immediately
above the top edge. Physically this would be like putting the array of dipoles on
the surface of a torus. Another interpretation of this wrapping is to imagine that
the lattice is flat and infinite in all directions, but that its state is always perfectly
periodic, so that moving up, down, left, or right by a certain amount (the value of
size) always takes you to an equivalent place where the dipoles have exactly the
same alignments at all times. Based on this latter interpretation, we say that we
are using periodic boundary conditions. Back to the subroutine deltaU, notice
that it correctly identifies all four nearest neighbors, whether or not the chosen
dipole is on an edge. The change in energy upon flipping is then twice the product
of s(i,j) with s of the neighbor, summed over the four neighbors.

To convert my pseudocode into a real program that runs on a real computer,
you first need to pick a computer system and a programming language. The syntax
for arithmetic operations, variable assignments, if-then constructions, and for-next
loops will vary from language to language, but almost any common programming
language should provide easy ways to do these things. Some languages require that

*In principle, the initial state can by anything. In practice, the choice of initial state can
be important if you don’t want to wait forever for the system to equilibrate to a “typical”
state. A random initial state works well at high temperatures; a completely magnetized

initial state would work better at low temperatures.
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variables be declared and given a type (such as integer or real) at the beginning
of the program. Variables that are accessed both in the majn program and in
subroutines may require special treatment. The least standardized element of all
is the handling of graphics; the contents of the subroutine colorsquare will vary
wildly from system to system. Nevertheless, I hope that you will have little trouble
implementing this program on your favorite computer and getting it to run.

Running the ising program is great fun: You get to watch the squares con-
stantly changing colors as the system tries to find states with relatively large Boltz-
mann factors. It is tempting, in fact, to imagine that you are watching a simulation
of what really happens in a magnet, as the dipoles change their alignments back and
forth with the passage of time. Because of this similarity, a Monte Carlo program
using importance sampling is usually called a Monte Carlo simulation. But please
remember that we have made no attempt to simulate the real time-dependent be-
havior of a magnet. Instead we have implemented a “pseudodynamics,” which flips
only one dipole at a time and otherwise ignores the true time-dependent dynamics
of the system. The only realistic property of our pseudodynamics is that it gener-
ates states with probabilities proportional to their Boltzmann factors, just as the
real dynamics of & magnet presumably does.

Figure 8.9 shows some graphical output from the ising program for a 20 x 20
lattice. The first image shows a random initial state generated by the program,
while the remaining images each show the final state at the end of a run of 40,000
iterations (100 per dipole), for various temperatures. Although these snapshots are
no substitute for watching the program in action, they do show what a typical state
at each temperature looks like. At T = 10 the final state is still almost random,
with only a slight tendency for dipoles to align with their neighbors. At successively
lower temperatures the dipoles tend to form larger and larger clusters* of positive
and negative magnetization until, at T = 2.5, the clusters are about as large as
the lattice itself. At T = 2 a single cluster has taken over the whole lattice, and
we would say that the system is “magnetized.” Small clusters of dipoles will still
occasionally flip, but they don’t last long; we would have to wait a very long time
for the whole lattice to flip to a (just as probable) state of opposite magnetization.
The T = 1.5 run happens to have settled into the opposite magnetization, and at
this temperature fluctuations of individual dipoles are becoming uncommon. At
T = 1 we might expect the system to magnetize completely and stay that way, and
indeed, sometimes it does. About half the time, however, it instead becomes stuck
in a metastable state with two domains, one positive and the other negative, as
shown in the figure.

Based on these results, we can conclude that this system has a critical tem-
perature somewhere between 2.0 and 2.5, in units of ¢/k. Recall that the mean
field approximation predicts a critical temperature of 4¢/k—not bad qualitatively,
though off by nearly a factor of 2. But a 20 x 20 lattice is really quite small; what

*I'm making no attempt here to precisely define a “cluster”—just look at the pictures
and use your intuition. A careful definition of the “size” of a cluster is given in Prob-
lem 8.29.
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Figure 8.9. Graphical output from eight runs of the ising program, at succes-
sively lower temperatures. Each black square represents an “up” dipole and each
white square represents a “down” dipole. The variable T is the temperature in
units of €/k.

happens in larger, more realistic simulations?

The answer isn’t hard to guess. As long as the temperature is sufficiently high,
so that the size of a typical cluster is much smaller than the size of the lattice,
the behavior of the system is pretty much independent of the lattice size. But a
larger lattice allows for larger clusters, so near the critical temperature we should
use as large a lattice as possible. With sufficiently long runs with large lattices one
can show that the size of the largest clusters approaches infinity at a temperature
of 2.27¢/k (see Figure 8.10). This, then, is the true critical temperature in the
thermodynamic limit. And indeed, this result agrees with Onsager’s exact solution

8.2 The Ising Model of a Ferromagnet

A

Figure 8.10. A typical state generated by the ising program after a few billion
iterations on a 400 x 400 lattice at T = 2.27 (the critical temperature). Notice that
there are clusters of all possible sizes, from individual dipoles up to the size of the
lattice itself.

of the two-dimensional Ising model.

Similar simulations have been performed for the three-dimensional Ising model,
although this requires much more computer time and the results are harder to dis-
play. For a simple cubic lattice one finds a critical temperature of approximately
4.5¢/k, again somewhat less than the prediction of the mean field approximation.
The Monte Carlo method can also be applied to more complicated models of ferro-
magnets and to a huge variety of other systems including fluids, alloys, interfaces,
nuclei, and subnuclear particles.

Problem 8.25. In Problem 8.15 you manually computed the energy of a particular
state of a 4 x 4 square lattice. Repeat that computation, but this time apply
periodic boundary conditions.

Problem 8.26. Implement the ising program on your favorite computer, using
your favorite programming language. Run it for various lattice sizes and temper-
atures and observe the results. In particular:
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(a) Run the program with a 20 x 20 lattice at T = 10, 5, 4, 3, and 2.5, for at
least 100 iterations per dipole per run. At each temperature make a rough
estimate of the size of the largest clusters.

(b) Repeat part (a) for a 40 x 40 lattice. Are the cluster sizes any different?
Explain.

(c) Run the program with a 20 x 20 lattice at T = 2, 1.5, and 1. Estimate
the average magnetization (as a percentage of total saturation) at each of
these temperatures. Disregard runs in which the system gets stuck in a
metastable state with two domains.

Run the program with a 10 x 10 lattice at T = 2.5. Watch it run for 100,000
iterations or so. Describe and explain the behavior.

(d

~

(e) Use successively larger lattices to estimate the typical cluster size at tem-
peratures from 2.5 down to 2.27 (the critical temperature). The closer
you are to the critical temperature, the larger a lattice youll need and the
longer the program will have to run. Quit when you realize that there are
better ways to spend your time. Is it plausible that the cluster size goes to
infinity as the temperature approaches the critical temperature?

Problem 8.27. Modify the ising program to compute the average energy of the
system over all iterations. To do this, first add code to the initialize subroutine
to compute the initial energy of the lattice; then, whenever a dipole is flipped,
change the energy variable by the appropriate amount. When computing the
average energy, be sure to average over all iterations, not just those iterations in
which a dipole is actually flipped (why?). Run the program for a 5 x 5 lattice for T
values from 4 down to 1 in reasonably small intervals, then plot the average energy
as a function of T. Also plot the heat capacity. Use at least 1000 iterations per
dipole for each run, preferably more. If your computer is fast enough, repeat for a
10 x 10 lattice and for a 20 x 20 lattice. Discuss the results. (Hint: Rather than
starting over at each temperature with a random initial state, you can save time
by starting with the final state generated at the previous, nearby temperature.
For the larger lattices you may wish to save time by considering only a smaller
temperature interval, perhaps from 3 down to 1.5.)

Problem 8.28. Modify the ising program to compute the total magnetization
(that is, the sum of all the s values) for each iteration, and to tally how often
each possible magnetization value occurs during a run, plotting the results as a
histogram. Run the program for a 5 x 5 lattice at a variety of temperatures, and
discuss the results. Sketch a graph of ‘the most likely magnetization value as a
function of temperature. If your computer is fast enough, repeat for a 10 x 10
lattice.

Problem 8.29. To quantify the clustering of alignments within an Ising magnet,
we define a quantity called the correlation function, c(r). Take any two dipoles
i and 7, separated by a distance 7, and compute the product of their states: s;s;.
This product is 1 if the dipoles are parallel and —1 if the dipoles are antiparallel.
Now average this quantity over all pairs that are separated by a fixed distance r, to
obtain a measure of the tendency of dipoles to be “correlated” over this distance.
Finally, to remove the effect of any overall magnetization of the system, subtract
off the square of the average s. Written as an equation, then, the correlation
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where it is understood that the first term averages over all pairs at the fixed
distance r. Technically, the averages should also be taken over all possible states
of the system, but don’t do this yet.

(a) Add a routine to the ising program to compute the correlation function
for the current state of the lattice, averaging over all pairs separated either
vertically or horizontally (but not diagonally) by r units of distance, where
r varies from 1 to half the lattice size. Have the program execute this
routine periodically and plot the results as a bar graph.

(b) Run this program at a variety of temperatures, above, below, and near the
critical point. Use a lattice size of at least 20, preferably larger (especially
near the critical point). Describe the behavior of the correlation function
at each temperature.

(c) Now add code to compute the average correlation function over the dura-
tion of a run. (However, it’s best to let the system “equilibrate” to a typical
state before you begin accumulating averages.) The correlation length is
defined as the distance over which the correlation function decreases by a
factor of e. Estimate the correlation length at each temperature, and plot
a graph of the correlation length vs. T.

Problem 8.30. Modifiy the ising program to simulate a one-dimensional Ising
model.

(a) For alattice size of 100, observe the sequence of states generated at various
temperatures and discuss the results. According to the exact solution (for
an infinite lattice), we expect this system to magnetize only as the tem-
perature goes to zero; is the behavior of your program consistent with this
prediction? How does the typical cluster size depend on temperature?

(b) Modify your program to compute the average energy as in Problem 8.27.
Plot the energy and heat capacity vs. temperature and compare to the
exact result for an infinite lattice.

(¢) Modify your program to compute the magnetization as in Problem 8.28.
Determine the most likely magnetization for various temperatures, and
discuss your results.

Problem 8.31. Modify the ising program to simulate a three-dimensional Ising
model with a simple cubic lattice. In whatever way you can, try to show that this
system has a critical point at around T = 4.5.

Problem 8.32. Imagine taking a two-dimensional Ising lattice and dividing the
sites into 3 x 3 “blocks,” as shown in Figure 8.11. In a block spin transforma-
tion, we replace the nine dipoles in each block with a single dipole, whose state
is determined by “majority rule”: If more than half of the original dipoles point
up, then the new dipole points up, while if more than half of the original dipoles
point down, then the new dipole points down. By applying this transformation
to the entire lattice, we reduce it to a new lattice whose width is 1/3 the original
width. This transformation is one version of a renormalization group trans-
formation, a powerful technique for studying the behavior of systems near their
critical points.”
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*For more about the renormalization group and its applications, see Kenneth G. Wilson,
function is “Problems in Physics with Many Scales of Length,” Scientific American 241, 158-179
(August, 1979).
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Figure 8.11. In a block spin transformation, we replace each block
of nine dipoles with a single dipole whose orientation is determined by
“majority rule.”

(a) Add aroutine to the ising program to apply a block spin transformation to
the current state of the lattice, drawing the transformed lattice alongside
the original. (Leave the original lattice unchanged.) Have the program
execute this routine periodically, so you can observe the evolution of both
lattices.

(b) Run your modified program with a 90 x 90 original lattice, at a variety
of temperatures. After the system has equilibrated to a “typical” state
at each temperature, compare the transformed lattice to a typical 30 x 30
piece of the original lattice. In general you should find that the transformed
lattice resembles an original lattice at a different temperature. Let us call
this temperature the “transformed temperature.” When is the transformed
temperature greater than the original temperature, and when is it less?

(c) Imagine starting with a very large lattice and applying many block spin

transformations in succession, each time taking the system to a new effec-

tive temperature. Argue that, no matter what the original temperature,

this procedure will eventually take you to one of three fixed points: zero,
infinity, or the critical temperature. For what initial temperatures will you '
end up at each fixed point? [Comment: Think about the implications of
the fact that the critical temperature is a fixed point of the block spin
! transformation. If averaging over the small-scale state of the system leaves
the dynamics unchanged, then many aspects of the behavior of this sys-
tem must be independent of any specific microscopic details. This implies
that many different physical systems (magnets, fluids, and so on) should
have essentially the same critical behavior. More specifically, the different
systems will have the same “critical exponents,” such as those defined in
Problems 5.55 and 8.24. There are, however, two parameters that can still
affect the critical behavior. One is the dimensionality of the space that the
system is in (3 for most real-world systems); the other is the dimensional-
ity of the “vector” that defines the magnetization (or the analogous “order
parameter”) of the system. For the Ising model, the magnetization is one-
dimensional, always along a given axis; for a fluid, the order parameter is
also a one-dimensional quantity, the difference in density between liquid -

and gas. Therefore the behavior of a fluid near its critical point should be
the same as that of a three-dimensional Ising model.]



