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problem 3.16. A bit of computer memory is some physical object that can be in

two different states, often int"rp*tJu" 0 åncl 1' A byte is eight bits' a kiloby'te

;JîöÏ:^;i{"u1t"., " 
*.*;;;; ì; ioz+ klobv'""' and a sisabvte is 1024

megabytes.
(a) Suppose that your compüter elases or orerwrites one gigabyte of memory'
t'' 

;"ö;;;;;åota ot tî" information that wæ stored Explain wþ this

process must "'""t" 
u""*iu* *iti*o- amount of entropy' and calculate

how much'

(b) If this entropy is dumped into u:.":":to:T"n: at room temperature' how

much heat must come along with it? Is ihis amount of heat significant?

Figure 3.7. The energy levels of a single
dipole in an ideal two-state paramagnet are

-1tB (1or the "up" state) and +pB (for the
"down" state).
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3.3 Paramagnetism

At the beginning of the previous section I outiined a frve-step procedure for pre-

dicting the thermal p'"p""i;' ;;;aterial' starting from a combinatoric formulâ

for the muitiplicity and "totÄ;* 
defi"it¡"" oi entropv and temperature' I

also carried out this pto"uå*" io' t*o particulaÏ model svstems: a monatomic

ideal gas, and an Einstein totla i" 
't'u 

high-temperature limit (q >> l/)' Both of

these examples, however, ;;;;; simple"mathematicallv' and merely verifled the

equipartition theo¡em Next I would like to work out a more complicated example'

where the equipartition tf'*'""t Jout not apply at all' This example will be more

interesting ma,thematically, a"d al'o rather counterintuitive phl'sically'

The system that I want iã ai""" is the two-state paramagnet' 'introduced

¡ri"ãv lr.'Su"tion 2'1' I'U sia"t by reviewing the basic microscopic physics'

Notation and MicroscoPic PhYsics

The system consists of l[ spin-1/2 particles' immersed in a constant magnetic

field .É pointing in the *z iiit"l"" ('see Figure 3'6)' Each pa'rticle behaves like a

little compass needle, feeinf,u to'tlo"ìftut 
"ì"s 

to align its magnetic dipole moment

¡ruith the field. Because oiit'i' bulutiot I'II refer to the particles as dipoles- For

simplicity I'11 assume th"t 
"th"t;;;; 

r¿o interactions between dipoles-each dipole

feelç oniv the torque fto"ttt'" "*tt"'al 
field' In this case we say that the system is

an ideal Paramagnet'
According to quantum mechanics' the component of a particle's dipole moment

along a given *i, "u"toì^t^u'i"î":"" 
anv value-lnstead it is quantized' that

is, Iimited to certain ¿ir"r"t.-uui"".. For a spin-1/2 particle onry fTr.ro values are

alowed, whichl,il "ril 
såpii:un"-."; "down" (alongthe e axis)' The magnetic

Ét I I t t t I 1111 111 111 I l1 I
ï

Figure 3'6' A two-state paramâgnet' consisting,of ll microscopic magnetic

dipoles, each 
"f 

*Ui"rtìî""it-ft"t "d" "; 
"down" at anv moment The dipoles

tesoond onlv ," tn" 
"tdåi" 

iiìit"äontr *tgnetic fie1d B; thev do not interact

in:n it*tt "'"t*io"rs 
(except to exchange energv)'

fleld, pointing in the *z directìon. gives each dipole a preference for the up state.
To flip a single dipole from up to down we would have to add some energy; the
amount of energ¡'required is 2¡;8, N'here I, is a constant related to the particle,s
magnetic moment (essentiall¡. the "strength" of the effective compass needle). For
the sake of symmetry, I'll say that the energy of a dipole that points up is -pB, so
that the energy of a dipole that points down is +pB (see Figure 3.7).

the toto,l energy of the system is

¡¡ : ¡-tB(N¡ - ¡¿1) : p,B(N -2N¡), (3.25)

(3.27)

where ly'i and ly'1 are the numbers of up and down dipoles, respectively, and I/ :
¡/1 +¡¿t. I'll define the magnetization. M, to be the total magnetic moment of
the whole system. Each "up" dipole has magnetic moment *p and each "down"
dipole has magnetic moment -¡-1, so the magnetization can be written

(3.26)

We would like to know how U and M depend on temperature.
Our first task ìs to write down a formula for the multiplicity. We will keep lr'

flxed, and consider each different vaìue of ¡/r (aod hence [/ and M) to define a
difierent macrostate. Then this system is mathematically equivalent to a collection
of -f{ coins N,ith l/1 heads, and the multiplicity is simpìy

o(¡r1): ¡¿!

¡/n ¡'¡l
¡¿

¡\¡1( )

Numerical Solution

For reasonably small systems, one can just evaluate the multiplicity (3.27) directly,
take the logarithm to find the entropy, and so on. Table 3.2 shows part of a
computer-generated table of numbers for a paramagnet consisting of 100 elementary
dipoles. There is one row in the table for each possible energy value; the rows a¡e

written in order of increasing energy, starting with the macrostâte with all the
dipoles pointing up.
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¡¿1 U lt"B M/N p O

-100
-98
-96
-94

.04

.02

0

-.02
-.04

Slk krlp,B C lNk

.074

Table 3.2. Thermodynmic properties of a two-state paxamagnet consisting of
100 elementary dipoles. Microscopic physics determines the energy [/ and total
magnetization M in terms of the number of dipoles pointing up, N1. The multi-
plicity Q is calculated from the combinatoric formula 3.27, while the entropy ,g is
klnf). The last two columns show the temperâ,ture md the heat capacity, calcu-
Iated by taking derivatives as explained in the text.

The behavior of the entropy a,s â function of energy is particulariy interesting,
as shown in Figure 3.8. The la,rgest multiplicity and largest entropy occur at [/ : 0,
when exactly half of the dipoles point down. As more energy is added to the system,
the multiplicity and entropy actually d,ecrease, since there are fewe¡ v/ays to âtra"lrge
the energy. This behavio¡ is very different from that of a ,,no¡maJ,' system such as
an Einstein solid (a.s discussed in Section 3.L).

Let's look at this behavior in more detail. Suppose the system starts out in its
minimum-energy state, with all the dipoles pointing up. Here the entropy-energy
$aph is very steep, so the system has a strong tendency to abso¡b energy from
its environment. As its energy increases (but is stili negative), the entropy-energy
graph becomes shallower, so the tendency to absorb energy decreases, ìust as for an
Einstein solid or any othe¡ "normal" system. Ho\¡¡ever, as the energy of the param-
agnet goes to zero, so does the slope of its entropy-energ"y graph, so its tendency to
absorb more energy actually disappea,rs. At this point, exactly half of the dipoles
point do¡¡i¡n, and the system "couldn't ca,¡e less" whethe¡ its energy increases a bit
more o¡ not. If we nov¡ add a bit more energy to the system, it behaves in a most
unusual way. The slope of its entropy-energy graph becomes negâtive) so it will
spontâ.neously give up energy to any nearby object whose entropy-energ.y gaph hâs
a positive sþe. (Remember, ilty allowed process that increases lhe total entropy
will happen spontaneously.)

In the preceding paragaph I have intentionally avoided any mention of ,,tem-

perature." But now let's think about the temperature of this system a,s a function
of energy. \ilhen more than half of the dipoles point up, so the tota"l energy is

3.3 Pæamagnetism lO1

s/k

- 100 -50
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Figure 3.8. Entropy æ a function of energy for a two-state paramagnet consisting
of 100 elementary dipoles.

negative, this system behaves "normally": Its temperature (the reciprocal of the
slope of the entropy-energy graph) increases as energy is added. In the analogy of
Section 3.1, the system becomes more "generous" with inc¡easing energy. When
U : 0, however, the temperature is actually inf,nite, meaning that this system will
gladly give up energy to ong other system v¡hose temperature is finite. The pa.ra-

magnet is infinitely generous. At still higher energies, r¡e v/ould like to say that its
generosity is "higher than infinity," but technically, our defrnition of temperature
så,ys that T ís negatiae (since the slope is negative). There's nothing wrong wTth
this conclusion, but we have to remember that negative temperatures behave as if
they are higher than positive temperatures, since a system with negative temper-
ature will give up energy to any system with positive temperature. It would be
better, in this example, ifwe talked about 1/? (analogous to "greediness") instead
of?. At zero energ:y, the system has zero greediness, while at higher energies it has
negative greediness. A graph of temperature vs. energy is shov¡n in Figure 3.9.

Negative temperatures can occur only for a system vihose total energy ís limited,
so that the multiplicity decreases as the maximum allowed energy is approached.
The best examples of such systems are nuclear paramagnets, in which the magnetic
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Figure 3.9. Temperature as a
function of energy for a two-state
paramâgnet. (This graph was plot-
ted from the analytic formulæ de-

rived later in the text; a plot of the
data in Table 3.2 would look similar
but less smooth.)
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dipoles are the atomic nuclei rather than the electroÍrs. In certain crystals the

relaxation time for the nuclear dipoles (exchanging energy with each other) can be

much shorter than the relaxation time for the nuclear dipoles to equilibrate with
the crystal lattice. Therefore, on short time scales, the dipoles behave as an isolated

system with only magnetic energy, no vibrational energy. To give such a system

a negative temperâture, a1l you have to do is start at any positive temperature,
with most of the dipoles parallel to the magnetic field, then suddenly reverse the
field so thev're antiparallel. This experiment was fi¡st performed by Edward M.

Purcell and R. V. Pound in 1951, using the lithiurn nuclei in a lithium fluoride

crystal as the system of dipoles. In their original experiment the nuclear dipoles
câme to the¡mal equilibrium among themselves in only 10-5 seconds, but required
approximately five minutes, after the fleld reversal, to return to equilibrium with
the room-temperature crystal lattice.*

I like the example of the paramagnet, with its negative temperatures and other
unusual behavior, because it forces us to think primarily in terms of entropy ralhet
than temperature. Entropy is the more fundamental quantity, governed by the

second law of thermodynamics. Temperature is less fundamental; it is merely a

characterization of a system's "willingness" to give up energy, that is, of the rela-

tionship between its energy and entropy.

The sixth coiumn of Table 3.2 lists nume¡ical values of the temperature of
this system as a function of energy. I computed each of these using the formula

T : LUILS, taking the i/ and 5 val.ues from neighboring rows. (To be more

precise, I used a "centered-difference" approximation, subtracting the values in
the preceding row from those in the following row. So, for instance, the number

.47 was computed as [(-96) - (-100)]/[8.51 - 0].) In the last column I've taken

another derivative to obtain the heat capacity, C : LUILI:. Figure 3.10 shows

graphs of the heat capacity and the magnetization vs. temperature. Notice that the

heat capacity of this system depends strongly on its temperature, quite unlike the

constant values predicted by the equipartition theorem for more familiar systems.

At zero temperature the heat capacity goes to zero, as required by the third 1aw

of thermodynamics. The heat capacity also goes to zelo as T approaches inflnit¡
slnce at that point only a tiny amount of energy is required to achieve a very large

increase in temperature
The behavior of the magnetization as a function of temperature is also interest-

ing. At zero (positive) temperature the system is "saturated," with all the dlpoles

pointing up and maximum magnetization. As the temperature increases, random

jostling tends to flip more and more dipoles. You might expect that as ? + oa, the

energy would be maximized with all the dipoles pointing down, but this is not the

*For a more detailed description ofthis experiment, see the fifth (1968) or sixth (1981)

edition of Heat and Thermodynamics by Zemansky (with Dittman æ coauthor on the

sixth edition). The original (very short) letter describing the experiment is published

in Physica] Review 81, 279 (1951). For an even more dramatic example of negative

temperature, see Pertti Hakonen and Olli V. Lounæmaa, Science 266,1821-f825 (23

September, 1994).

Figure 3.10. Heat capacity and magnetization of a two-stâte paramagnet (com-

poiud f.o* the analytic fo¡mulas derived later in the text)'

case; instead, ? : co corresponds to the state of maximum "randomness"' with

exactly half the dipotes pointing down. The behavio¡ at negative temperature is

essentially a mirror image of the positive-? behavior, with the magnetization again

saturating, but in the opposite direction, as T * 0 from below'

Problem 3.17. Verify every entry in the third line of Table 3 2 (starting with

Nr = 98)'

Problem 3.18. Use a computer to reproduce Table 3 2 and the æsociated graphs

of entropy, temperature, heat capacity, and magnetization' (The graphs in this

suctiot aie actually drawn from the analytic formulas derived below' so your nu-

merical graphs won't be quite as smooth )
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Analytic Solution

Nov¡ that we have studied most of the physics of this system through numerical

calculations, let us go back and use analytic methods to derive some more general

formulas to describe these phenomena'

I will assume that the number of elementary dipoles is large' and also that at any

given time the numbe¡s of up and down dipoles are separately large' Then we can

ãimpiify the multiplicity funitior, (3 27) using Stirting's approximation' ActuaJly'

it's easiest to just calculate the entropy:

S/k: ìn-rú! - lnlf¡! - ln(¡f - ¡ü1)l

ry l[lnlú * ll * 
-Òú1 lnl{1 + ¡q - (¡r-¡í1)h(n-I() + (N-¡¿1) (3'28)

: lú ln -lü - ¡lr h ¡rr - (,nr-N1) ln(Ir-Ift)'

Fromhereonthecalculationsarefairlystraightforwardbutsomev¡hattedious.I,1l
outline the logic and the results, but let you fllÌ in some of the algebraic steps (see

Problem 3.19).
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To frnd the temperature, v¡e must differentiate S with respect to {/. It is simplest
to first use the chain rule and equation 3.25 to express the derivative in terms of lú1:

ôS
ð¡/1 2¡Lß ôN1

Now just differentiate the last iine of equation 3.28 to obtain

1/
T\

ôs \ a¡\¡,_l
au )N,B- ðu

I k /N-UILB\r: W^\*¡¡n1

LAS
(3.2e)

(3.30)

Notice from this formula that ? and [/ always have opposite signs.
Equation 3.30 can be solved fo¡ [/ to obtain

U: NpB(
) 

: -t ø.u,,^(#), (3.31)
1 - "2øB/k:rTTApETkT

where tanh is the hyperbolic tangent function.* The magnetization is therefore

(3.32)

The hyperbolic tangent function is plotted in Figure 3.11; it rises from the origin
with a slope of 1, then flattens to an asymptotic value of 1 as its argument goes to
infinity. So at very small positive temperatures the system is completely magnetized
(as we saw before), u/hile as 7 + oo, the magnetization goes to zero. To obtain
negative temperåture, all v¡e need to do is give the system a negative magnetization,
as described above.

tanh c

tanhN¡.t,M
)( tt'B

KT

-3 -2 -1 J2

1

Figure 3.11. The hyperbolic tangent function. In the formulas for the energy
and magnetization of â two-state paramagnet, the argument z of the hyperbolic
tangent \s ¡tB / IcT .

*The definitions of the basic hyperbolic functions are sinhr : Lþ" - e-"), coshz :
$çe"+e-"),andtanhr:(sinhr)/(coshr). Flomthesedefinitionsyoucaneasilyshow
that $ sinhr = cosh¿ and S coshr : sinh¡c (with no minus sign).

To calculate the heat capacity of the paramagnet, just differentiate equation 3 31

ra'ith respect to ?:

,--: (aU\ - *0. (pBlkT\z 
(3.33)'u - \ôT/r" - '"" ;ffiçB¡tt7 \ù'úul

This function approaches ze¡o at both lo¡¡'and high 7. as u'e also san- in the

nnmerical solution.
In a real-t'orlcl paramagnet, the individual dipoles can be either electrons or

atomic nuclei. Electronic paramagnetism occurs when there are electrons with

anguÌar momentum (orbital or spin) that is not compensated by other electrons:

the ci¡cular cutrents then give rise to magnetic dipole mornents' The number of

possible states for each dipole is always some small integer' depending on the totai

angular momenturn of all the electrons in an atom or moiecule' The simple case

consiclered here, r'ith just two sta,tes, occurs ¡¡'hen there is just one electron per

atom whose spin is uncompensated. ordinarily this electron would also have orbital

angular momentum, but in some em'ironments the orbital motion is "quenched"

by the neighboring atoms, leaving only the spin angular momentum'

For an eLectronic ts,o-state paramagnet the value of the constant ¡l is the Bohr

magnetorì,

eh
pB = #h:9.274 x 10-24 J lT: 5.?88 x 10-5 ev/T' (3'34)

(Here e is the electron's charge and m" is its mass') If we take B : 1'I (a pretty

strong magnet), then ¡-lB : 5.8 x 10-5 eV But at room temperature, 'b? 
x L I40 eY '

So at ordinary temperatures þnore than a few kelvins), we can assume ¡tB lkT << l'
In this limit. tanhø = ø, so the magnetization becomes

u = 
N {=B (s'hen ¡rB << kr) (3'35)

KT

The fact that M x ! lT was discovered experimentally by Pierre cu¡ie and is known

as Curie's law; it holds in the high-temperature limit for all paramagnets' even

those rvith more than two angular momentum states. In this limit the heat capacity

falls off in proportion to 71T2.

Fig.rre ã.fi shov's experimental values of the magnetization of a real two-state

pararriagnet. an organic free radical kno¡¡'n as DPPH . To minimize interactions

íefueen tine elementary dipoles, the DPPH v¡as diluted with benzene to form a 1:1

crystailine complex. Notice that the magnetization follows curie's law very closely

3.3 Paramagnetism 105

*The full name is c,o/-diphenyl-B-picrylhydrazyl, if you really u'ant to know. This

rather large molecule is pâramagnetic because there is a nitrogen atom in the middle of

it with an unpaired electron.

M
a
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Curie's law
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ümited to strengths of a few teslas, so in practice it takes temperatures in the

ãiilikuluin range to line up essentially all of the dipoles in a nuclea'r paramagnet'

Problem 3.19. Fill in the missing algebraic steps to derive equations 3'30' 3'31'

and 3.33.

problem 3.20. consider an ideaì two-state electlonic palamagnet such as DPPH,

with ¡r = ¡rg. In the experiment described above, the magnetic field strength was

2.06 T and the minimum temperature was 2'2 K' Calculate the energy' magneti.

zation, and. entropy of this system, expressing each quantity as a fraction of its

*u*i-tm possiblå value. What would the experimenters have had to do'to attain

99% of the maximum possible magnetization?

Problem 3.21. In the experiment ofPurcel] and. Pound, the maximum magnetic

field strength was 0.63 T and the initial iemperature wæ 300 K' Pretending that

the lithium nuclei have only two possible spin states (in fact they have fou),

calculate the magnetization per particìe, M lN , for this system' Take the constant

¡r to be 5 x 10-ð eV/T. To detect such a tiny magnetization' the experimenters

used resonant âbsorption and emission ofradio waves. Calculate the energy thât a

radio wave photon should have, in order to flip a single-nucleus from one magnetic

state to the other. What is the wavelength of such a photon?

Problem 3.22. Sketch (or use a computer to plot) a graph of the entropy of-a

two-state paramagnet as a functiot of timpemture' Describe how this graph would

change if you varied the magnetic field strength'

problem 3.23. show that the entropy of a two-state paramagnet, expressed as

afunction of temperature, is s: Neh;(2coshr) -ztanhc], where r : pBlklf .

Check that this formula hæ the expected behavior æ T - 0 md ? * oo'

4**

The foilowing two problems apply the techniques of this section to a different sys-

tum, un Elnitein solid (or oiher collection of identical harmonic oscillators) at

arbitrary temperature' Both the methods ând the results of these problems are

extremely important. Be sure to r¡¡ork at ieast one of them' preferably both'

Problem 3.24. USe a computel to Study the entropy, tempelature, *d }:*
capacity of an Einstein ,o1ìd,^* follot' LLt the solid contain 50 oscillators (ini-

tiatty), ana from 0 to 100 uniis of energy' Make a table' analogous to Table 3'2' in

which each row represents a difierent value for the energy' use separate coÌumns

for the energy, multiplicity, entropy, temperature' and heat capacity To ca'lculate

the temperåture, evaluatã AU/AS for two nearby .rows 
in the table' (Recall that

[/: qe for some constant e..¡ îhe heat capacity-(A.Uþ?) can be comPuted in a

.i-it* -uy. The first fe* to*s of the table should look something like this:
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Figure 3.12. Experimental measurements of the magnetizâtion of the organic

freã radical "DPPH" (in a l:L complex with benzene), taken at B : 2'06 T and

temperatures ranging from 300 K down to 2.2 K. The solid cu¡ve is the prediction

of equation 3.32 (with p : pB), whiÌe the dashed line is the prediction of Curie's

law ior the high-temperature limit. (Because the efiective number of elementary

dipolesinthisexperimentwasuncertainbyafewpercent'theverticalscaleof
tlie theoretical graphs has been adjusted to obtain the best fit.) Adapted from P.

Grobet, L. Van Gewen, and A. Van den Bosch, Joumal of Chemical Påysics 68'

5225 (1978).

down to temperâ,tures of a few kelvins, but then deviates to foilow the prediction of

equâ,tion 3.32 as the total magnetization approaches its maximum possible value'*

For a nuclear paÌama,gnet, a typical value of p can be found by replacing the

electron mass with the proton mâ,ss in expression 3.34 for the Bohr magneton.

since a proton is nearly 2000 times heavier than an electlon, p is typically smaller

for nuclãi by a factor of about 2000. This means that to achieve the same degree

of magnetization you r¡¡ouid need to either make the magnetic freld 2000 times

stronger, or make the temperature 2000 times lower' Laboratory magnets are

*This data is the best I could find for a nearly ideal fuo-state paramagnet' Ideal

paramagnets with moæ thm two states per dipole turn out to be more common' ol åt

least easier to prepaxe. The most extensively studied examples are salts in which the

paramagnetic ions æe either trmsition metals or rare earths, with unfiIled inner electron

shells. To minimize interactions between neighboring ions, they a¡e diluted with large

numbers of magnetically inert atoms. An example is iron ammonium alum, Fez(SO¿)s '

(NHa)2SOa '24HzO, in which there a¡e 23 inert atoms (not counting the very small

hydrogens) for each parmagnetic Fe3* ion' The mâgnetic behavior of this crystal has

been shown to be idea,l at field strengths up to 5 T and temperatues down to 1'3 K' at

which the magnetization is more than 99% complete. See W. E. Henry, P-trysical Review

88, 561 (1952). The theory of ideal multi-state pâramagnets is treated in Problem 6 22'

*12

.45

(In this table I have computed derivatives using a "centered-difierence" approxi-

mation. For example, the temperature '28 is computed as 2l Q '15 - 0) ) Make a

gra.ph of entropy vs. 
"turgy 

,nd a graph of h:al clPa:lty vs temperature' Then

3iãe",h" n rïber of osci[ato,, tolOOo (to "dilute" the system md look at lower
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