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Chapter 3 Interactions and Implications

Problem 3.16. A bit of computer memory is some physical object that can be in
two different states, often interpreted as 0 and 1. A byte is eight bits, a kilobyte
is 1024 (= 219 bytes, a megabyte is 1024 kilobytes, and a gigabyte is 1024
megabytes.

(a) Suppose that your computer erases or overwrites one gigabyte of memory,
keeping no record of the information that was stored. Explain why this
process must create a certain minimum amount of entropy, and calculate
how much.

(b) If this entropy is dumped into an environment at room temperature, how
much heat must come along with it? Is this amount of heat significant?

3.3 Paramagnetism

At the beginning of the previous section I outlined a five-step procedure for pre-
dicting the thermal properties of a material, starting from a combinatoric formula
for the multiplicity and applying the definitions of entropy and temperature. 1
also carried out this procedure for two particular model systems: 2a monatomic
ideal gas, and an Einstein solid in the high-temperature limit (g > N). Both of
these examples, however, were very simple mathematically, and merely verified the
equipartition theorem. Next I would like to work out a more complicated example,
where the equipartition theorem does not apply at all. This example will be more
interesting mathematically, and also rather counterintuitive physically.

The system that I want to discuss is the two-state paramagnet, introduced
briefly in Section 2.1. I'll start by reviewing the basic microscopic physics.

Notation and Microscopic Physics

The system consists of N spin-1/2 particles, immersed in a constant magnetic
feld B pointing in the +2z direction (see Figure 3.6). Each particle behaves like a
little compass needle, feeling a torque that tries to align its magnetic dipole moment
with the field. Because of this behavior T'll refer to the particles as dipoles. For
simplicity I'll assume that there are no interactions between dipoles—each dipole
feels only the torque from the external field. In this case we say that the system is
an ideal paramagnet.

According to quantum mechanics, the component of a particle’s dipole moment
along a given axis cannot take on just any value—instead it is quantized, that
is, limited to certain discrete values. For a spin-1 /2 particle only two values are
allowed, which T'll call simply “yp” and “down” (along the z axis). The magnetic
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Figure 3.6. A two-state paramagnet, consisting of N microscopic magnetic
dipoles, each of which is either “up” or “down” at any moment. The dipoles
respond only to the influence of the external magnetic field B; they do not interact
with their neighbors (except to exchange energy).
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Ny U/uB  M/Nu Q S/k  kT/uB  C/Nk
100  —100 1.00 1 0 0 —
99 —98 .98 100 4.61 AT 074
98 —-96 .96 4950 8.51 .54 .310
97 —94 94 1.6x10° 11.99 .60 .365
52 —4 04 93x10%  66.70 25.2 .001
51 -2 .02  9.9x10*® 66.76 50.5 -
50 0 0 1.0x10* 66.78 00 —
49 2 —.02 9.9x10%® 66.76 -50.5 —
48 4 —.04 93x10%® 66.70 —25.2 .001
1 98 —.98 100 4.61 —47 .074
0 100 —1.00 1 0 0 —

Table 3.2. Thermodynamic properties of a two-state paramagnet consisting of
100 elementary dipoles. Microscopic physics determines the energy U and total
magnetization M in terms of the number of dipoles pointing up, N;. The multi-
plicity € is calculated from the combinatoric formula 3.27, while the entropy S is
kInQ. The last two columns show the temperature and the heat capacity, calcu-
lated by taking derivatives as explained in the text.

The behavior of the entropy as a function of energy is particularly interesting,
as shown in Figure 3.8. The largest multiplicity and largest entropy occur at U = 0,
when exactly half of the dipoles point down. As more energy is added to the system,
the multiplicity and entropy actually decrease, since there are fewer ways to arrange
the energy. This behavior is very different from that of a “normal” system such as
an Einstein solid (as discussed in Section 3.1).

Let’s look at this behavior in more detail. Suppose the system starts out in its
minimum-energy state, with all the dipoles pointing up. Here the entropy-energy
graph is very steep, so the system has a strong tendency to absorb energy from
its environment. As its energy increases (but is still negative), the entropy-energy
graph becomes shallower, so the tendency to absorb energy decreases, just as for an
Einstein solid or any other “normal” system. However, as the energy of the param-
agnet goes to zero, so does the slope of its entropy-energy graph, so its tendency to
absorb more energy actually disappears. At this point, exactly half of the dipoles
point down, and the system “couldn’t care less” whether its energy increases a bit
more or not. If we now add a bit more energy to the system, it behaves in a most
unusual way. The slope of its entropy-energy graph becomes negative, so it will
spontaneously give up energy to any nearby object whose entropy-energy graph has
a positive slope. (Remember, any allowed process that increases the total entropy
will happen spontaneously.)

In the preceding paragraph I have intentionally avoided any mention of “tem-
perature.” But now let’s think about the temperature of this system as a function
of energy. When more than half of the dipoles point up, so the total energy is

3.3 Paramagnetism

J J 1 > U/uB
—100 —50 100

Figure 3.8. Entropy as a function of energy for a two-state paramagnet consisting
of 100 elementary dipoles.

negative, this system behaves “normally”: Its temperature (the reciprocal of the
slope of the entropy-energy graph) increases as energy is added. In the analogy of
Section 3.1, the system becomes more “generous” with increasing energy. When
U = 0, however, the temperature is actually infinite, meaning that this system will
gladly give up energy to any other system whose temperature is finite. The para-
magnet is infinitely generous. At still higher energies, we would like to say that its
generosity is “higher than infinity,” but technically, our definition of temperature
says that T is negative (since the slope is negative). There’s nothing wrong with
this conclusion, but we have to remember that negative temperatures behave as if
they are higher than positive temperatures, since a system with negative temper-
ature will give up energy to any system with positive temperature. It would be
better, in this example, if we talked about 1/T (analogous to “greediness”) instead
of T. At zero energy, the system has zero greediness, while at higher energies it has
negative greediness. A graph of temperature vs. energy is shown in Figure 3.9.
Negative temperatures can occur only for a system whose total energy is limited,
so that the multiplicity decreases as the maximum allowed energy is approached.
The best examples of such systems are nuclear paramagnets, in which the magnetic
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Figure 3.9. Temperature as a 110
function of energy for a two-state
paramagnet. (This graph was plot- U/NuB—
ted from the analytic formulas de- .
rived later in the text; a plot of the —1 1
data in Table 3.2 would look similar
but less smooth.)
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dipoles are the atomic nuclei rather than the electrons. In certain crystals the
relaxation time for the nuclear dipoles (exchanging energy with each other) can be
much shorter than the relaxation time for the nuclear dipoles to equilibrate with
the crystal lattice. Therefore, on short time scales, the dipoles behave as an isolated
system with only magnetic energy, no vibrational energy. To give such a system
a negative temperature, all you have to do is start at any positive temperature,
with most of the dipoles parallel to the magnetic field, then suddenly reverse the
field so they’re antiparallel. This experiment was first performed by Edward M.
Purcell and R. V. Pound in 1951, using the lithium nuclei in a lithium fluoride
crystal as the system of dipoles. In their original experiment the nuclear dipoles
came to thermal equilibrium among themselves in only 10~° seconds, but required
approximately five minutes, after the field reversal, to return to equilibrium with
the room-temperature crystal lattice.*

I like the example of the paramagnet, with its negative temperatures and other
unusual behavior, because it forces us to think primarily in terms of entropy rather
than temperature. Entropy is the more fundamental quantity, governed by the
second law of thermodynamics. Temperature is less fundamental; it is merely a
characterization of a system’s “willingness” to give up energy, that is, of the rela-
tionship between its energy and entropy.

The sixth column of Table 3.2 lists numerical values of the temperature of
this system as a function of energy. I computed each of these using the formula
T = AU/AS, taking the U and S values from neighboring rows. (To be more
precise, I used a “centered-difference” approximation, subtracting the values in
the preceding row from those in the following row. So, for instance, the number
A7 was computed as [(—96) — (—100)]/(8.51 — 0].) In the last column I've taken
another derivative to obtain the heat capacity, C = AU/AT. Figure 3.10 shows
graphs of the heat capacity and the magnetization vs. temperature. Notice that the
heat capacity of this system depends strongly on its temperature, quite unlike the
constant values predicted by the equipartition theorem for more familiar systems.
At zero temperature the heat capacity goes to zero, as required by the third law
of thermodynamics. The heat capacity also goes to zero as T approaches infinity,
since at that point only a tiny amount of energy is required to achieve a very large
increase in temperature. ,

The behavior of the magnetization as a function of temperature is also interest-
ing. At zero (positive) temperature the system is “saturated,” with all the dipoles
pointing up and maximum magnetization. As the temperature increases, random
jostling tends to flip more and more dipoles. You might expect that as T' — oo, the
energy would be maximized with all the dipoles pointing down, but this is not the

*For a more detailed description of this experiment, see the fifth (1968) or sixth (1981)
edition of Heat and Thermodynamics by Zemansky (with Dittman as coauthor on the
sixth edition). The original (very short) letter describing the experiment is published
in Physical Review 81, 279 (1951). For an even more dramatic example of negative
temperature, see Pertti Hakonen and Olli V. Lounasmaa, Science 265, 1821-1825 (23
September, 1994).
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Figure 3.10. Heat capacity and magnetization of a two-state paramagnet (com-
puted from the analytic formulas derived later in the text).

case; instead, T = oo corresponds to the state of maximum “randomness,” with
exactly half the dipoles pointing down. The behavior at negative temperature is
essentially a mirror image of the positive-T' behavior, with the magnetization again
saturating, but in the opposite direction, as T — 0 from below.

Problem 3.17. Verify every entry in the third line of Table 3.2 (starting with
N; = 98).

Problem 3.18. Use a computer to reproduce Table 3.2 and the associated graphs
of entropy, temperature, heat capacity, and magnetization. (The graphs in this
section are actually drawn from the analytic formulas derived below, so your nu-
merical graphs won’t be quite as smooth.)

Analytic Solution

Now that we have studied most of the physics of this system through numerical
calculations, let us go back and use analytic methods to derive some more general
formulas to describe these phenomena.

T will assume that the number of elementary dipoles is large, and also that at any
given time the numbers of up and down dipoles are separately large. Then we can
simplify the multiplicity function (3.27) using Stirling’s approximation. Actually,
it’s easiest to just calculate the entropy:

S/k =1lnN! —thT! - h’l(N — NT)'
~NInN-N - NT In Ny + Ny — (N‘NT)ln(N—NT) + (N—NT) (3.28)
=NInN - Nt lnN; — (N-DNy) In(N—Ny).
From here on the calculations are fairly straightforward but somewhat tedious. rn

outline the logic and the results, but let you fill in some of the algebraic steps (see
Problem 3.19).
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To find the tem-perature, we must differentiate S with respect to U. It is simplest
to first use the chain rule and equation 3.25 to express the derivative in terms of Ny:

l:(a_s> _oN o5 1 95
T \oU/)yp 8U &N,  2uBON; (8:29)

Now just differentiate the last line of equation 3.28 to obtain

1 _ k In N -U/uB
T 2uB \N+U/uB)" (8.50)
Notice from this formula that T and U always have opposite signs.
Equation 3.30 can be solved for U to obtain
T eZpB/lcT B
_ _ M
U NMB<41 - emB/m) = B tanh(ﬁ>, (3.31)

where tanh is the hyperbolic tangent function.* The magnetization is therefore

M= Nptanh(%). (3.32)

The hyperbolic tangent function is plotted in Figure 3.11; it rises from the origin
with a slope of 1, then flattens to an asymptotic value of 1 as its argument goes to
infinity. So at very small positive temperatures the system is completely magnetized
(as we saw before), while as T — oo, the magnetization goes to zero. To obtain

negative temperature, all we need to do is give the system a negative magnetization,
as described above.

tanh

n

t

Figure 3.11. The hyperbolic tangent function. In the formulas for the energy

and magnetization of a two-state paramagnet, the argument x of the hyperbolic
tangent is uB/kT.

*The definitions of the basic hyperbolic functions are sinhx = 1(e® — e™®), coshz =

1 - .
5(e” -g €™ %), and tanhz = (sinhz)/(coshz). From these definitions you can easily show
that = sinhz = coshz and d% coshz = sinhz (with no minus sign).

r
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To calculate the heat capacity of the paramagnet, just differentiate equation 3.31

with respect to T
CB = @‘ = ka
T [

This function approaches zero at both low and high T, as we also saw in the
numerical solution.

In a real-world paramagnet, the individual dipoles can be either electrons or
atomic nuclei. Electronic paramagnetism occurs when there are electrons with
angular momentum (orbital or spin) that is not compensated by other electrons;
the circular currents then give rise to magnetic dipole moments. The number of
possible states for each dipole is always some small integer, depending on the total
angular momentum of all the electrons in an atom or molecule. The simple case
considered here, with just two states, occurs when there is just one electron per
atom whose spin is uncompensated. Ordinarily this electron would also have orbital
angular momentum, but in some environments the orbital motion is “quenched”
by the neighboring atoms, leaving only the spin angular momentum.

For an electronic two-state paramagnet the value of the constant p is the Bohr
magneton,

(uB/kT)?

" cosh? (uB/kT)’ (3.33)

h
- 4—6— = 9.274 x 10724 J/T = 5.788 x 1075 &V/T. (3.34)

TTMe

(Here e is the electron’s charge and me is its mass.) If we take B =1 T (a pretty
strong magnet), then uB = 5.8x 105 V. But at room temperature, kT ~ 1/40 eV.
So at ordinary temperatures (more than a few kelvins), we can assume uB/ET < 1.
In this limit, tanhz =~ , so the magnetization becomes

Nu?B
kT

M~ (when puB < kT). (3.35)

The fact that M o 1/T was discovered experimentally by Pierre Curie and is known
as Curie’s law: it holds in the high-temperature limit for all paramagnets, even
those with more than two angular momentum states. In this limit the heat capacity
falls off in proportion to 1/ T2,

Figure 3.12 shows experimental values of the magnetization of a real two-state
paramagnet, an organic free radical known as DPPH.* To minimize interactions
between the elementary dipoles, the DPPH was diluted with benzene to form a 1:1
crystalline complex. Notice that the magnetization follows Curie’s law very closely

*The full name is o, a-diphenyl-3-picrylhydrazyl, if you really want to know. This
rather large molecule is paramagnetic because there is a nitrogen atom in the middle of

it with an unpaired electron.
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Figure 3.12. Experimental measurements of the magnetization of the organic
free radical “DPPH” (in a 1:1 complex with benzene), taken at B =2.06T and
temperatures ranging from 300 K down to 2.2 K. The solid curve is the prediction
of equation 3.32 (with p = up), while the dashed line is the prediction of Curie’s
law for the high-temperature limit. (Because the effective number of elementary
dipoles in this experiment was uncertain by a few percent, the vertical scale of
the theoretical graphs has been adjusted to obtain the best fit.) Adapted from P.
Grobet, L. Van Gerven, and A. Van den Bosch, Journal of Chemical Physics 68,
5225 (1978).

down to temperatures of a few kelvins, but then deviates to follow the prediction of
equation 3.32 as the total magnetization approaches its maximum possible value.”

For a nuclear paramagnet, a typical value of p can be found by replacing the
electron mass with the proton mass in expression 3.34 for the Bohr magneton.
Since a proton is nearly 2000 times heavier than an electron, p is typically smaller
for nuclei by a factor of about 2000. This means that to achieve the same degree
of magnetization you would need to either make the magnetic field 2000 times
stronger, or make the temperature 2000 times lower. Laboratory magnets are

*This data is the best I could find for a nearly ideal two-state paramagnet. Ideal
paramagnets with more than two states per dipole turn out to be more common, or at
least easier to prepare. The most extensively studied examples are salts in which the
paramagnetic ions are either transition metals or rare earths, with unfilled inner electron
shells. To minimize interactions between neighboring ions, they are diluted with large
numbers of magnetically inert atoms. An example is iron ammonium alum, Fep(SO4)3 -
(NH4)2S04 - 24H20, in which there are 23 inert atoms (not counting the very small
hydrogens) for each paramagnetic Fe3* jon. The magnetic behavior of this crystal has
been shown to be ideal at field strengths up to 5 T and temperatures down to 1.3 K, at
which the magnetization is more than 99% complete. See W. E. Henry, Physical Review
88, 561 (1952). The theory of ideal multi-state paramagnets is treated in Problem 6.22.
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Jimited to strengths of a few teslas, so in practice it takes temperatures in the
millikelvin range to line up essentially all of the dipoles in a nuclear paramagnet.

Problem 3.19. Fill in the missing algebraic steps to derive equations 3.30, 3.31,
and 3.33.

Problem 3.20. Consider an ideal two-state electronic paramagnet such as DPPH,
with 4 = pp. In the experiment described above, the magnetic field strength was
2.06 T and the minimum temperature was 2.2 K. Calculate the energy, magneti-
zation, and entropy of this system, expressing each quantity as a fraction of its
maximum possible value. What would the experimenters have had to do'to attain
99% of the maximum possible magnetization?

Problem 3.21. In the experiment of Purcell and Pound, the maximum magnetic
field strength was 0.63 T and the initial temperature was 300 K. Pretending that
the lithium nuclei have only two possible spin states (in fact they have four),
calculate the magnetization per particle, M /NN, for this system. Take the constant
u to be 5 X 1078 eV/T. To detect such a tiny magnetization, the experimenters
used resonant absorption and emission of radio waves. Calculate the energy that a
radio wave photon should have, in order to flip a single nucleus from one magnetic
state to the other. What is the wavelength of such a photon?

Problem 3.22. Sketch (or use a computer to plot) a graph of the entropy of a
two-state paramagnet as a function of temperature. Describe how this graph would
change if you varied the magnetic field strength.

Problem 3.23. Show that the entropy of a two-state paramagnet, expressed as
a function of temperature, is S = Nk[In(2 cosh z) — z tanh z], where z = uB/kT.
Check that this formula has the expected behavior as T —0and T — oo.

* * *

The following two problems apply the techniques of this section to a different sys-
tem, an Binstein solid (or other collection of identical harmonic oscillators) at
arbitrary temperature. Both the methods and the results of these problems are
extremely important. Be sure to work at least one of them, preferably both.

Problem 3.24. Use a computer to study the entropy, temperature, and heat
capacity of an Einstein solid, as follows. Let the solid contain 50 oscillators (ini-
tially), and from 0 to 100 units of energy. Make a table, analogous to Table 3.2, in
which each row represents a different value for the energy. Use separate columns
for the energy, multiplicity, entropy, temperature, and heat capacity. To calculate
the temperature, evaluate AU/AS for two nearby rows in the table. (Recall that
U = ge for some constant €.) The heat capacity (AU/AT) can be computed in a
similar way. The first few rows of the table should look something like this:

¢ @ S/t kT/e C/Nk
0o 1 0 0 =
1 50 391 28 .12
9 1275 715 .33 45

(In this table I have computed derivatives using a “centered-difference” approxi-
mation. For example, the temperature .28 is computed as 2/(7.15 — 0).) Make a
graph of entropy vs. energy and a graph of heat capacity vs. temperature. Then
change the number of oscillators to 5000 (to “dilute” the system and look at lower
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