
1 Fundamentals of Statistical Physics

“I know nothing ... nothing” - John Banner

1.1 Ignorance, Entropy and the Ergodic Theorem
Consider a large number of systems Ns ! 1, each of which can be in some state specific quantum
state. Let ni be the number of systems that are in the state i. We will define the ignorance I as a
measure of the number of ways to arrange the systems given n

0

, n
1

· · · .

I =
Ns!

n
0

!n
1

! · · · , (1.1)

with the constraint that n
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+ · · · = Ns. Our immediate goal is to find ni that maximizes
ignorance while satisfying the constraint. However, before doing so, we will define S as:
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which will be maximized when I is maximized, but by defining it as the log of the ignorance, the
entropy will have some convenient properties which we will see below. The quantity S is the entropy,
the most fundamental quantity of statistical mechanics. It is divided by the number of systems so
that one can speak of the entropy in an individual system. Using Stirling’s expansion,

lim
N!1

lnN ! = N lnN �N + (1/2) lnN + (1/2) ln(2⇡) + 1/(12N) + · · · , (1.3)

we keep the first two terms to see that
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where pi ⌘ ni/Ns is the probability a given system is in state i. As Ns ! 1, all terms beyond the
four expressed in the first line of Eq. (1.4) above vanish. Note that if all the probability is confined
to one state, the entropy will be zero. Furthermore, since for each probability, 0 < pi  1, the
entropy is always positive.

Our goal is to maximize S. Maximizing a multi-dimensional function (in this case a function of
n
0

, n
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· · · ) with a constraint is often done with Lagrange multipliers. In that case, one maximizes
the quantity, S � �C(~n), with respect to all variables and with respect to �. Here, the constraint
C must be some function of the variables constrained to zero, in our case C =

P

i pi � 1. The
coe�cient � is called the Lagrange multiplier. Stating the minimization,
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The second expression leads directly to the constraint
P

j pj = 1, while the first expression leads to
the following value for pi,

ln pi = ��� 1, or pi = e���1. (1.6)

The parameter � is then chosen to normalize the distribution, e���1 multiplied by the number of
states is unity. The important result here is that all states are equally probable. This is the result
of stating that you know nothing about which states are populated, i.e., maximizing ignorance is
equivalent to stating that all states are equally populated. This can be considered as a fundamental
principle – Disorder (or entropy) is maximized. All statistical mechanics derives from this
principle.

ASIDE: REVIEW OF LAGRANGE MULTIPLIERS
Imagine a function F (x

1

· · · xn) which one minimizes w.r.t. a constraint C(x
1

· · · xn) = 0. The
gradient of F projected along the hyper-surface of the constraint must vanish, or equivalently, rF
must be parallel to rC. The constant of proportionality is the Lagrange multiplier �,

rF = �rC.

The two gradients are parallel if,
r(F � �C) = 0.

However, this condition on its own merely enforces that C(x
1

· · · xn) is equal to some constant, not
necessarily zero. If one fixes � to an arbitrary value, then solves for ~x by solving the parallel-gradients
constraint, one will find a solution to the minimization constraint with C(~x) = some constant, but
not zero. Fixing C = 0 can be accomplished by additionally requiring the condition,
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Thus, the n-dimensional minimization problem with a constraint is translated into an (n + 1)-
dimensional minimization problem with no constraint, where � plays the role as the extra dimension.

The principle of maximizing entropy is related to the Ergodic theorem, which provides the way
to understand why all states are equally populated from the perspective of dynamics. The Ergodic
theorem assumes the symmetry of time-reversal, i.e., the rate at which one changes from state i to
state j is the same as the rate at which one changes from state j to state i. If a state is particularly
di�cult to enter, it is equivalently di�cult to exit. Thus, a time average of a given system will cycle
through all states and, if one waits long enough, the system will spend equal amounts of net time
in each state.

Satisfaction of time reversal is sometimes rather subtle. As an example, consider two large
identical rooms, a left room and a right room, separated by a door manned by a security guard. If
the rooms are populated by 1000 randomly oscillating patrons, and if the security guard grants and
denies access with equal probability when going right-to-left vs. left-to-right, the population of the
two rooms will, on average, be equal. However, if the security guard denies access to the left room
while granting exit of the left room, the population will ultimately skew towards the right room.
This explicit violation of the principle of maximized entropy derives from the fact that moving
left-to-right and right-to-left, i.e. the time reversed motions, are not treated equivalently.
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The same security guard could, in principle, police the traversal of gas molecules between two
partitions of a box. Such paradoxes were discussed by Maxwell, and the security guard is referred
to as Maxwell’s demon. As described by Maxwell,

... if we conceive of a being whose faculties are so sharpened that he can follow every molecule

in its course, such a being, whose attributes are as essentially finite as our own, would be able

to do what is impossible to us. For we have seen that molecules in a vessel full of air at uniform

temperature are moving with velocities by no means uniform, though the mean velocity of any

great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that

such a vessel is divided into two portions, A and B, by a division in which there is a small

hole, and that a being, who can see the individual molecules, opens and closes this hole, so as

to allow only the swifter molecules to pass from A to B, and only the slower molecules to pass

from B to A. He will thus, without expenditure of work, raise the temperature of B and lower

that of A, in contradiction to the second law of thermodynamics.

This apparent violation of the second law of thermodynamics was explained by Leó Szilárd in 1929,
who showed that the demon would have to expend energy to measure the speed of the molecules,
and thus increase entropy somewhere, perhaps in his brain, thus ensuring that the entropy of the
entire system (gas + demon) increased. Check out http://en.wikipedia.org/wiki/Maxwell’s demon.

We have defined the entropy with logarithms in such a way that it is additive for two uncorrelated
systems. For instance, we consider a set of Na systems of type a which can be arranged Ia ways, and
a second independent set of Nb systems of type b which can be arranged Ib ways. The combined
systems can be arranged I = IaIb number of ways, and the entropy of the combined systems is
S = ln I = Sa + Sb.

1.2 Statistical Ensembles

The previous section discussed the manifestations of maximizing ignorance, or equivalently entropy,
without regard to any constraints aside from the normalization constraint. In this section, we
discuss the e↵ects of fixing energy and/or particle number. These other constraints can be easily
incorporated by applying additional Lagrange multipliers. For instance, conserving the average
energy can be enforced by adding an extra Lagrange multiplier � related to fixing the average
energy per system. Minimizing the entropy per system with respect to the probability pi for being
in state i,
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gives
pi = exp(�1� �� �✏i). (1.8)

Thus, the states are populated proportional to the factor e��✏
i , which is the Boltzmann distribution,

with � being identified as the inverse temperature. Again, the parameter � is chosen to normalize
the probability. However, again the Lagrange multipliers for a given � only enforce the constraint
that the average energy is some constant, not the particular energy one might wish. Thus, one must
adjust � to find the desired energy, a sometimes time-consuming process.
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