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7 Quantum Statistics

7.L The Gibbs Factor

In deriving the Boltzmann factor in Section 6.1, I allowed the small system and

the reservoir to exchange enelgy, but not particles. Often, however, it is useful to

consider a sysfçrn tinat can exchange particles with its environment (see Figure 7.1).

Let me now modify the previous derivation to allow for this possibility.

As in Section 6.1, we can write the ratio of probabilities for two different mi-

crostates as
P\trl : !"!"rl : å."',",'r',!, - "[sa(sz)-s 

n(")]/k. (2.1)PGi o"GJ - es'lst)/k - "
The exponent now contains the change in the entropy of the reservoir as the system

goes from state 1 to state 2. This is an infi.niåesimal change from the reservoit's

viewpoint, so we can invoke the thermodynamic identity:
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Figure 7.1. A system in thermal and difiusive contact with a much larger reser-

voir, whose temperature and chemical potential a,re effectively consta¡t.
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258 Chapter 7 Quantum Statistics

Since any energy, volume, or particles gained by the reservoir must be lost by the
system, each of the changes on the right-hand side can be written as minus the
same change for the system.

As in section 6-1, I'll throw away the P d,v term; this term is often zero, or at
lea"st very small compared to the others. This time, however, I'll keep the p,d,N
term. Then the change in entropy can be written

,Sn(sz) - Sn(sr) : -+lnþr)- E("r) - iø¡r(.e2) + prú(s1)]. (z.s)

On the right-hand side both .Ð and Iy' refer to the small system, hence the overall
minus sign. Plugging this expression into equation 2.1 gives

P('z)
P("r)

s-lø(sz)- t"N (s2)ll kT

- s-[æ(s¡]trc;t7fr" (7.4)

As before, the ratio of probabilities is a ratio of simple exponential factors, each
of which is a function of the temperature of the reservoir and the energy of the
corresponding microstate. Now, however, the factor depends also on the number of
particles in the system for state s. This new exponential factor is called a Gibbs
factor:

Gibbs factor _ ¿_lø(s)_uN(s)l/xr. (2.5)

If we want an absolute probability instead of a ratio of probabilities, again we
have to slip a constant of proportionality in front of the exponential:

P(s): )"-w<"1-*N(s)t/e". (7.6)

The quantity z is called the grand partition function* or the Gíbbs sum. By
requiring that the sum of the probabilities of all states equal 1, you can easily show
that

u :Ð"-lÐ(s)-rN(s)1/kr, g.7)

where the sum runs over all possible states (including all possible values of r/).
If more than one type of particle can be present in the system, then the ¡^r dlf

term in equation 7.2 becomes a sum over species or p,¿dN¿, and each subsequent
equation is modified in a similar way. For instance, if there are two types of particles,
the Gibbs factor becomes

Gibbs factor _ u_[E(s)_ueN¿(s)_¡t6Ns(s)]/kr: (two species). (Z.g)

*In analogy with the terms ttmicrocanonical" and "canonicaltt used to describe the
methods of Chapters 2-3 and 6, the approach used here is called grand canonical. A
hypothetical set of systems with probabilities assigned according to equation 7.6 is called
a grand canonical ensemble.
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An Example: Carbon Monoxide Poisoning

A good example of a systern to illustrate the use of Gibbs factors is an adsorp-

tion site on a hemogiobin molecule, rnhich carries oxygen in the blood' A single

hemoglobin molecule has four adsorption sites, each consisting of an Fe2+ ion sur-

roundedbyr,ariousotheratoms.Eachsitecancarlyone02molectrle.Forsim-
plicityl'lltakethesystemtobejustoneofthefoursites'andpretendthatitis
io*pi*t"ty independent of the other three.* Then if oxygen is the only molecule

that can occupy the site, the system has just trn'o possible states: unoccupied and

occupie<l (se" Figrrre Z'Z¡' t'ttìake the energies of these two states to be 0 and e'

rvithe:-0.7eV.Ì
The grand partition function for this single-site system has just two terms:

Z-t+"-(e-ùlkr. (7.9)

The chemical potential ¡.r is relatively high in the lungs, rvhere oxygen is abundant,

butismuchlowerinthecellswheretheoxygenisused.Let'sconsiderthesituation
nearthelungs.Therethebloodisinapproximatediffusiveequilibriumr'i'iththe
atmosphere,anidealgasinwhichthepartialpressureofoxygenisabout0'2atm'
The chemical potentiJl can therefore be calculated from equation 6.93:
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(7.11)

(7.12)

E: -0.85 eV

'e

(7.10)

atbodytemperature,slOK'PlugginginthesenumbersgivesforthesecondGibbs

¡t: -krtn(Kt) * -0 6 ev

factor 
¿-(e-Ð/kr x 

"QteY)/kr 
- 4g.

The probabilit¡¡ of any given site being occupied is therefore

P(occupied by Oz) : å 
:s8%'

It,l 1'
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E: -0.7 eY

Figure 7.2. A.single heme site can be unoccupied, occupied by oxygen' or occu-

;;-aî ;;;;* *oäo*i¿u' (The energv values are onlv approximate')

*The assumption of independent sites is quite accurate for myoglobin, a related protein

that binds oxygen in muscles, which has only one adsorption site per molecule' A morer

accurate model of hemoglobin is presented in Problem 7.2

lBiochemists r¿euer express energies in electron-volts' In fact, they rarely talk about

individual bond energies at all (perhaps because these energies can vary so much under

difierent conditions)' I've chosen the e values in this section to yield results that are in

rough agreement with experimental rneasurements'

i



260 Chapter 7 Quantum Statistics

Suppose, horvever, that there is also some carbon monoxide present, ¡n'hich can
also be adsorbed into the heme site. Nos'there are three states a'r.ailable to the site:
unoccupied, occupied by Oz, and occupied by CO. The grancl partition function is

Z : I I 
"-G- 

ù/kT ¡ u-G' -u')/kT, (7.13)

where e/ is the negatile energ¡' of a bound CO molecule and É¿l is the chemical
potential of CO in the environment. On the one hand, CO v¡ill never be as abundant
as oxygen. If it is 100 times less abundant, then its chemical potential is lower by
roughly fr?1n100 : A.l2 eV, so ¡.r' is roughly -0.72 eY, On the other hand, CO is
more tightly bound to the site. than oxJ¡gen, with e/ È -0.85 eV. Plugging in these
numbers gives for the third Gibbs factor

u-k'-u')/kr = r(0.13ev)/kr x I20. (7.I4)

Tlre probability of the site being occupied by aî onygen molecule therefore drops
to

P(occupied by Oz) : , * ¿åI rzo 
:25Ta. (2.15)

Problem 7.1. Near the cells where oxygen is used, its chemical potential is sig-
nificantly lower th¿n near the Lungs. Even though there is no gaseous oxygen near
these cells, it is cristomary to express the abundance of oxygen in terms of the
partial pressure of gaseous oxygen that would, be in equilibrium with the blood.
Using the independent-site model just presented, r*-ith only oxygen present, cal-
culate and plot the ffaction of occupied heme sites as a function of the partial
pressure of oxygen. This curve is called the Langmuir adsorption isotherm
("isotherm" because it's for a fixed temperature). Experiments show that adsorp-
tion by mgoglobin follows the shape of this curve quite accurately.

Problem 7.2. In a real hemoglobin molecule, the tendency of oxygen to bind to
a heme site increases as the other three heme sites become oicupied. To model
this effect in a simple wa¡ imagine that a hemoglobin molecule has just t.lvo sites,
either or both of which can be occupied. This system has four possible states
(with only oxygen present). Take the energy of the unoccupied state to be zero,
the energies of the tn'o singly occupied states to be -0.55 eV. and the energl' sf
the doubly occupied state to be -1.3 e\¡ (so the change in energy upon binding
the second, oxygen is -0.75 eV). As in the previous problem, calculate and plot the
fraction of occupied sites as a function of the effective partial pressure of oxygen.
Compare to the graph from the previous problem (for independent sites). Can you
think of why this behavior is preferable for the function of hemoglobin?

Problem 7.3. Consider a system consisting of a single hydrogen atom/ion, u.hich
has two possible states: unoccupied (i.e., no electron present) and occupied (i.e.,
one electron present, in the ground state). Calculate the ratio of the probabiiities
of these two states, to obtain the Saha equation, already derived in Section 5.6.
Tieat the electrons as a monatomic ideal gas, for the purpose of determining ¡"r.

Neglect the fact that an electron has two independent spin states.
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Problem 7.4. Repeat the previous problem, taking into account the two inde-pendent spin states of the electron. Now the system has two ,,occupied,, states,one with the electron in each spin configuration. However, tt" ct"J"al potential
ol the elecrron gas is also srighrry differenr. show rhat rh"'.;¿i. ;i;;obabitities isthe same as before: The spin degeneracy cancers out ofthe srt. àõ"rti"".
Problem 2.6. consider a system consisting of a siugle impurity atom/ion in asemiconductor. suppose that the impurity atom has onã ,,extÅ" 

"lå"tÀr, 
compared

to the neighboring atoms, as would a phosphorus atom occupying a lattice site ina silicon crystal. The extra erectron is then easily removeå, Ëurring behind apositively charged ion. The ionized erectron is called a conáuction electron,
because it is free to move through the material; the impurity atom is called adonor, because it can "donate" a conduction electron. tiis system t ;"d;;";to the hydrogen atom considered in the previous two probleÅs except that theionization energy is much less, maiury due to the screening of the ionic charge by
the dielectric behavior of the medium.

(a) write down a formula for the probability of a single donor atom being' ionized. Do not neglect the factihat the électron, if-present, can have two
independent spin states. Express your formula in terms of the temperature,
the ionization energy 1, and the chemical potential of the ,,gas" of ionized
electrons.

(b) Assuming that the conduction electrons behave like an ordinary ideal gas
(with two spin states per particle), write their chemical potential in terms
of the number of conduction electrons per unit rlolume, iV"/Z.

(c) Now assume that every.conduction electron comes from an ionized donor
atom. In this case the number of conduction electrons is equal to the
number of donors that are ionized. use this condition to derive a quadratic
equation for -ðy'. in terms of the number of donor atoms (N¿), eriminàting ¡.r.solve for ly'" using the quadratic formula. (Hint: It's helpîul to introduce
some abbreviations for dimensionless quantities. fli ø : ñ" / N ¿, t : kT / I,and so on.) I

(d) For phosphorus in silicon, the ionization energ"y is 0.044 ev. suppose that
there are 10u P atoms per cubic centimeter. îsing th"re o,rroú"rs, careu-
late and plot the fraction of ionized donors as a function of temperature.
Discuss the results.

Problem 7.6. show that v¡hen a system is in thermal and diffusive equilibrium
with a reservoir, the average number of particles in the system is

ñ:ryy,
.L Op

where the partial derivative is taken at fixed temperature and volume. show also
that the mea,n square number of particles is

Ni2 - &r)2 a2z- z ôF'
Use these results to show that the standard deviation of.ð{ is

CN: k:r@ñ/ap,),
in analogy with Problem 6.18. Finatly, apply this formula to an ideal gas, to obtain
a simple expression for ø;y in terms of F. Discuss your result brieflyl
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262 Chapter 7 Quantum Statistics

Problem 7.7, ln Section 6.5 I derived the useful relation F : -lcTlnZ between
the Helmholtz free energy and the ordinary partition function. Use an analogous

argument to prove that

Q: -kTlnZ,

where Z is the grand partition function and Q is the grand free energy introduced
in Problem 5.23.

7.2 Bosbns and Fermions

The most important application of Gibbs factors is to quantum statistics, the
study of dense systems in which two or more identical particles have a reasonable
chance of wanting to occupy the same single-particle state. In this situation, my
derivation (in Section 6.6) of the partition function for a system of N indistinguish-
able, noninteracting particles,

1t : Ãr{, (2.16)

breaks down. The problem is that the counting factor of N!, the number of ways of
interchanging the particles among their va¡ioud states, is correct only ifihe particles
are always in d,i,fferent states. (In this section I'Il use the word "state" to mean a
single-particle state. For the state of the system as a whole I'll alu'ays say "system
state.t')

To better understand'this issue, let's consider a very simple example: a system
containing two noninteracting particles, either ofwhich can occupy any offrve states
(see Figure 7.3). Imagine that all five of these states have energy zero) so every
Boltzmann factor equals 1 (and therefore Z is the same as O).

If the two particles arc dist'ingu'ishable, then each has five available states and
the total number of. system states is Z : 5 x 5 : 25. If the two particles are

i,nd,istingui,shøöle, equation 7.16 would predict Z : 52 12 : 12.5, and this can't be
right, since Z must (for this system) be an integer.

So let's count the system states more carefully. Since the particles are indis-
tinguishable, all that matters is the number of particles in any given state. I can
therefore represent any system state by a sequence offrve integers, each representing
the number of particles in a particular state. For instance, 01100 would represent
the system state in which the second and third states each contain one particle,

oo
Figure 7.3. A simple model of five
single-particle states, with two particles
that can occupy these states.


