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Free Energy and

Chemical Thermodynam¡cs

The previous chapter applied the laws of thermodynamics to cyclic processes: the

operation of engines and refrigerators whose energy and entropy are unchanged

over the long term. But many important thermodynamic processes are not cyclic'

Chemical reactions, for example, are constrained by the laws of thermodynamics

but do not end with the system in the same state where it started'
The purpose of the present chapter is to apply the laws of thermodynamics to

chemical reactions and other transformations of matter. One complication that

arises immediately is that these transformations most often occur in systems that

are not isolated but are interacting with their surroundings, thermally and often

mechanically. The energy of the system itself is usually not fi,xed; rather its temper-

ature is held flxed, through interaction with a constant-temperature environment'

Similarly, in many cases it is not the volume of the system that is fixed but rather

the pressure. Our first task, then, is to develop the conceptual tools needed to

understand constant-temperature and constant-pressure processes'

5.1 Fbee Energy as Available Work

In Section 1.6 I defined the enthalpy of a system as its energy plus the rvork needed

to make room for it, in an environment with constant pressure P:

H:U+PV. (5.1)

This is the total enelgy you would need, to create the system out of nothing and

put it in such an environment. (Since the initial volume of the system is zero,

LV : V.) Or, if you could completely annihilate the system, 11 is the enelgy you

could recover: the system's energy plus the work done by the collapsing atmosphere.

Ofben, however, v¡e're not interested in the total energy needed or the total

energy that can be recovered. If ihe environment is one of constant temperature,
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r-50 Chapter 5 Flee Energy and Chemical Thermodynamics

the system can extract heat from this environment for free, so aIl we need to
provide, to create the system from nothing, is any additionar trork needed.. And if
we annihilate the system, we generally can't recover ali its energy as work, because
we have to dispose of its entropy by dumping some heat into the environment.

so I'd like to introduce two more usef'l qua'tities that are rerated to energy
and anaiogous to fI. One is the Helmholtz free energy,

F:U-TS. $.2)

TS
G \\

This is the total energy needed to create the system, minus the heat you can get
for free from an environment at temperature ?. This heat is given by ?a,s - TS,
where 

^9 is the system's (finar) entropy; the more entropy a system has, the more ofits energy can enter as heat. Thus F is the energy that must be provided as work,if you're creating the system out of nothing.* or if you annihilate the system, the
energy that comes out as u'ork is ,t', since you have to dump some heat, equal to z,s,into the environment in order to get rid of the system,s Jntropy. The aaø,ilable, orttfree,tt energy is ,t'.

The word "work" in the previous paragraph means ail work, incruding anythat is done automaticaily by the system's surroundings. If the system is in an
environment with constant pressure p and constant temperature ?, then the workyou need to do to create it, or the work you can recover when you destroy it, is
given by the Gibbs free energy,

G: U -TS + pV. (5.3)
This is just the system's energy, minus the heat term that's in F, prus the atmo-
spheric work term that,s in ff (see Figure 5.1).

(, p
)

Ir
Figure 5.L' To create a rabbit out of nothing and'place it on the tabre, themagician need not summon up the entire enthalpy, H : U + pV. Some energy,
equal to TS, can flow in spontaneousry as heat; túe magician must provide onrythe difference, G : H - ?^9, as work.

*In the context of creating a system, the term free energy is a misnomer. The energy
that comes for free is ?,9, the term we subtracted, to get .F. In this context, F shourd be
called the costly energy. The peopre who named ,F' were instead thinking of the reverse
process, where you annihilate the system and recover .F. as work.

i
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Figure 5.2. To get -Ff from U or G from -Ë',

add PVi to get ,t. from U or G from fI, sub-
tract ?S. +PV

U F

H G

The four functions U, H, .t., and G are coilectively called thermodynamic
potentials. Figure 5.2 shows a diagram that I use to remember the definitions.

Usualll', of course, we deal with processes that are much less dramatic than the
creation or annihilation of an entire system. Then instead of .F' and G themselves,
we want to look at the changes in these quantities.

For any change in the system that takes place at constant temperature 7, the
change in F is 

a.F: Lu - Tas: g +w -T LS, (5.4)

where Q is the heat added and IrZ is the work done on the system. If to new entropy
is created during the process, then Q : 7 A,S, so the change in .t' is precisely equal
to the work done on the system. If new entropy ,is created, then ? AS will be
greater than Q, so Âf' will be less than W.In general, therefore,

<W at constant ? (5.5)

This I4l includes øll work done on the system, including any work done automati-
cally by its expanding or collapsing environment.

If the environment is one of constant pressure, and if we're not interested in
keeping track of the work that the environment does automatically, then we should
think about G instead of f'. For any change that takes place at constant T and P,
the change in G is

LG : LU - TAS + P AV : Q +W - TA,S + PAY. (5.6)

Again, the difference Q -:f A,S is always zero or negative. Meanwhile, I,7'includes
the work done by the environment, -PAV, plus any "other" work (such as elec-
trical work) done on the system:

W : -P LV *Wo*,u, (5.7)

This PAIl cancels the one in equation 5.6, leaving

AG < Wo¡her at constant 7, P. (5.8)

Because free energy is such a useful quantity, values of AG for an enormous
l'ariety of chemical reactions and other processes have been measured and tabulated.
There are many ways to measure AG. The easiest conceptually is to frrst measure
Afl for the reaction, by measuring the heat absorbed when the reaction takes
place at constant pressure and no "other" work is done. Then calculate 4,5 from

A¡'



L62 Chapter 5 Flee Energy and Chemical Thermodynamics

the entropies of the initial and final states of the system, determined separateÌy

from heat capacity data as described in Sections 3.2 and 3.4. Finally, compute

A,G: L.H -:r LS. (5.9)

Values of LG for the formation of selected compounds and solutions (ai 7 : 298 K
and P : 1 bar) are given in the table at the back of this book. You can compute

ÂG vaiues for other reactions by imagining flrst that each reactant is converted to
elemental form and then that these elements are converted into the products.

As v¡ith U and I1, the actual aalue of F or G is unambiguous only if we include
all the energy of the system, including the rest energy (mc2) of every particie. In
everyday situations this r¡¡ould be ridiculous, so instead 1ve meaßure [/ from some

other convenient but arbitrary reference point, and this arbitrary choice also fixes

the zero points for H , l¡, and G. Changes in these quantities are unaffected by our
choice of reference point, and changes are ali we usually talk about anyway, so in
practice we can often avoid choosing a reference point.

Problem 5.1. Let the system be one mole of argon gas at room temperature and

atmospheric pressure. Compute the total energy (kinetic only, neglecting atomic
rest energies), entropy, enthalpy, Helmholtz free energy, and Gibbs free energy.
Express all answers in SI units.

Problem 5.2. Consider the production of ammonia from nitrogen and hydrogen,

Nz*3Hz+2NHs,
at 298 K and 1 bar. Fïom the values of ÀfI and ,S tabulated at the back of this
book, compute AG for this reaction and check that it is consistent with thre value
given in the table.

Electrolysis, F\rel Cells, and Batteries

As an example of using AG, consider the chemical reaction

H2O*Hz+TOz, (5.10)

the electrolysis of liquid water into hydrogen and oxygen gas (see Figure 5.3).
Assume that we start with one mole of water, so we end with a mole of hydrogen

and half a mole of oxygen.
According to standard reference tables, All for this reaction (at room temper-

ature and atmospheric pressure) is 286 kJ. This is the amount of heat you would
get out if you burned a mole of hydrogen, running the reaction in teverse. When
we form hydrogen and oxygen out of water, we need to put 286 kJ of energy into
the system in some way or other. Of the 286 kJ, a small amount goes into push-

ing the atmosphere away to make room for the gases produced; this amount is

P LV :4 kJ. The other 282 kJ remains in the system itself (see Figure 5.4). But
of the 286 kJ needed, must we supply all as work, or can some enter as heat?

To answer this question we must determine the change in the system's entropy.
The measured and tabulated entropy values for one mole of each species are

SH,o:70 JIK ^9H,: ISL JIK; ,9o2:205 JlK. (5.11)
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Figure 5'3' To separate water into hydrogen and oxygen, iust run an erectriccu.rent through it. In this tto-" 
"*puri*"rriih" "l""tro¿ä, ;."";J;;cat pencilteads (graphiie). Bubbtes. or hydrJgen iìäå io.,r, ,o ,;;) ;;;;;;il negariveelectrode (lefr) n''hiie bubbres 

"f;;;äf;; r't tt 
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poritirre elecrrode (right).

P AV :4 kJ (pushing
atmosphere away)

AG :237 7*¡
(electrical work)

-- A{./ = 2ål? kJ
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Figure 5.4. Energy-flow diagram for erectroiysis of one more of water. under idealconditions, 49 kJ of energ)¡ .it". * ¡*i äns), ,o tr," utu"ti"*'rïru required isonly 2BT kJ: AG : AHl f¿S. irc ä,A!...r"" bet'ræen A.Fl and A{/ is pAZ:4 kJ, the vvork done to make room for iir" gur", produced.

Subtract Z0 from (131 + ! ZOS¡ and you gei +16g J/K_the system,s entropy?'ncreases by this amo,nt. fhe maximuå amount of heat that can enter the systemis therefo¡e TA': (298 t()(16g J/K)':än,.r. rn" u*o'rri oîu.,".r, rhat mustenter as electricar *'ork is ttre ¿ie"rená" buì*""r 4g and 2g6, that is, 2BZ kJ.This number,237,kJ,-is the 
"rrurrg"-; the system,s Ciuu, rr"" energy; it is

:hililiff "otheï" u'ork requireã *-*1r." *ru r*u"iiã., gã]"ro ,r**arize rhe

AG: AH- T A^9,
237 kJ: 286 kJ - (298 K)(162 J/K). (5.12)

For convenience, standard tables (like the one at the back of this book) generallyinclude aG values, saving you f.";;;t*g"to do this kind of arithmetic.

::ff;:î åTJ,:155*:,:iiJ::åi?eaction If vou can combine hvdrogen
237kJoiereã,.i"urî.,rforever;.*",#;;;i:i;îi:JJtri,riJli:ii";,.",î:,,;;j
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I

Hz+ Oz
Figure 5.5. In a hydrogen fuel
cell, hydrogen and oxygen gas
pass through porous electrodes
and react to form lvater, remor,-
ing electrons from one electrode
and depositing electrons on the
other.

--"> HzO

*see sivan Kartha and patrick Grimes, ,,F\rel cells: Energy conversion for the Next
Century," Physics Today 47,54-61 (November, 1g94).

of the fuel cell (see Figure 5.5), a device that might replace the internal combustion
engine in future automobiles.* In the process of producing this electrical work, the
fuel cell will also expel 4g kJ of waste heat, in order to geirid of the excess entropy
that was in the gases. But this waste heat is only rr% of the 2g6 kJ of heat that
would be produced ifyou burned the hydrogen and tried to run a heat engine fromit. so an ideal hydrogen fuel cell ha¡ an "efficiency,, of g}vo, much better than any
practical heat engine. (In practice, the waste heat will be more and the efficiency
less, but a typical fuel cell still beats almost any engine.)

A similar analysis can tel you the electricar energy output of a battery, which
is like a fuel cell but has a fixed internal supply of fuer (usually not gaseous). For
example, the familiar lead-acid cell used in car batteries runs on the reaction

pb + pbo2 + 4H+ + 2SO?- ____+ 2pbso¿ _t 2HzO. (5.13)

According to thermodynamic tables, aG for this reaction is -Bg4 kJ/mol, at stan_
dard pressure, temperature, and concentration of the solution. so the electrical
work produced under these conditions, per mole of metallic lead, is Bg4 kJ. I\,Iean_
while, a,l1 for this reaction is -316 kJ/mol, so the energy that comes out of the
chemicals is actually less than the work done, by 7g kJ. ihis extra energy comes
from heat, absorbed from the environment. Along with this heat comes some en_
tropy, but that's fine, since the entropy of the products is greater than the entropy
of the reactants, by (78 kJ)lQgS K) : 260 J/K (per mole), These energy flows are
shown in Figure 5.6. when you charge the battery, the reaction runs in reverse,
taking the system back to its initial state. Then you have to put the zg kJ of heat
back into the environment, to get rid of the excess entropy.

You can also calculate the uoltage of a battery or fuel cell, provid.ed that you
know how many electrons it pushes around the circuit for each molecule that reacts.
To determine this mrmber, it helps to look at the chemistry in more detail. For a
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<._-- Ài'..= ;¡1¡; ¡.¡

394 kJ
(electrical work)

+--
78 kJ
(heat)

Figure 5.6. Energy-flow diagram for a read-acid cet operating ideary. For eachmole that reacts, the system's energy decreases by 816 ki arra rtã".rt.opy increasesby 260 J/K. Because of the entrop!"increase, the system 
"u' ubroru zg kJ of heatfrom the environment; the maximum work perform"a i, tt 
".uro." 

¡b¿ t"l. (Becauseno gases are invorved in this reaction, volume changes *" 
""srigi¡," so au = alland AF = AG.)

lead-acid cell, the reaction (5.13) takes place in three steps:

in solution: 2SO?- + 2H+ __-___+ 2HSO* ;

at - electrode: Pb + HSO; ----- pbSO¿ + H+ + 2e-; (5.14)
at * elect¡ode: pbOz * HSO4 + 3H+ I 2e_ _+ pbSO+ + 2HzO.

Thus' tn'o electrons are pushed around the circuit each time ihe full reaction occurs.The electrical u,ork produced per electron is

394 kJ
tt.ittlõrã :3.27 x 10-1s J : 2.04 eV. (5.1b)

But 1 voit is just the v.oltage needed to give each eiectron 1 ev of ènergy, so the cellhas a voltage of 2.04 V. In practice the"voltage may be slightl¡, different, becausethe concentrations used are difierent from the standard 
"orr"ãrrt*tion (one more perkilogram of water) assurned in thermodynamic tabres. (By the *,uy, ucar batterycontains six lead-acicl cells, giving a total of about 12 V.)

Protrlem 5.8. use the data at the back of this book to verify the varues of a,Hand AG quoted above for the lead_acid reaction b.18.

Problem 5'4. In a hydrogen fuel cell, the steps of the chemical reaction are
at _ electrode: Hz I2OH_ n 2HzO * 2e_;
at f electrode: TOr+UrOl2e- +2OH_.

calcuiate the vortage of the ceil. what is the minimum vortage required for erec_trolysis of water? trxplain briefly.

Prot¡lem 5.5, Conside'a fuel cell that uses methane (,,natural gas,,) as fuel. Thereaction is

CH¿+2O2-_2HzO*COz.
(a) use the data at the back of this book to determine the varues of aIJ andaG for this reaction, for one mole of methane. Assume that the reactiontakes place at room temperature and atmospheric pressure.
(b) '^'ssuming idear.performânce, how much electricar work can you get out ofthe cell, for each moie of methane fuel?
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(c) How much u.'aste heat is produced, for each mole of methane fuel?
(d) The steps of this reaction are

at - electrode: CH¿ + 2HzO 
- 

COz + gH+ + ge-;

at -.1- electrode: 2Oz f gH+ * ge- + 4H2O.

What is the voltage of the cell?

Problem 5.6' A muscle can be trrought of as a fuel cer, producing work from the
metabolism of glucose:

C6H12O6 * 602 + 6COz * 6HzO.

(a) use the data at the back of this book to cletermine the values of arl andaG for this reaction, for one more of glucose. Assume that the reaction
takes place at room temperature and atrnospheric pressure.

(tr) \\rhat is the maximum amount of ¡¡.ork that a muscre can perform, for each
mole of glucose consumed, assuming ideal operation?

(c) stiu assuming idear operation, how much heat is absorbed or expeted by
the chemicals during the metaborism of a more of grucose? (Be sure to say
¡r'hich direction the heat flows.)

(d) use the concept of entropy to exprain why the rreat flows in the directionit does.

(e) Horv would your alswers to parts (b) and (c) change, if the operation of
the muscle is not ideal?

Problem 5'7' The metabolism of a grucose morecure (see previous probtem)
occurs in many steps, resulting in the synthesis of 3g molecules àr arp (adenosiná
triphosphate) out of ADp (adenosine diphosphate) and phosphate ions. when the
ATP splits back into ADp and phosphate, it riberates energy that is used in a host
of important processes incruding protein synthesis, actiræ lransport of morecules
across cell mernbranes, and muscle contraction. In a muscre, the reaction ATp
- ADP * phosphate is cataryzed by an enzyme cailed myosin that is attachedto a muscle fllame't. As the reaction takes prace, the myosin morecure pnÌrs on
an adjace't filament, causing the muscle to contract. The force it exerts averages
about 4 piconewtons and acts over a distance of about 11 nm. From this data
and the results of the previous problem, compute the ,,efficiency,, of a muscle,that is, the ratio of the actuar u,ork done to thl maximum work that the laws of
thermodynamics would allorv.

Thermodynamic Identities
If you're given the enthalpy or free energy of a substance under one set of con-
ditions, but need to know its value under some other conditions, there are some
handy formulas that are often useful. These formulas resembie the thermodynamic
identity,

dU:Td,S - pdv Í p,d,N, (b.16)

but are written for H or F or G instead of [/.
I'11 start by deriving the formula for the change ín H. H we imagine changing
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H, U , P, and y by infinitesimal amounts, then the definition H : U lpV tells usthat 
d,H : 

^u 
+ p dv +v dp. g.r7)

The last two terms give the change in the produ ct pv , accord.ing to the productrule for derivatives. Now use the thermodynamic identity 5.16 to eliminate d,u, and.cancel the P d,V terms to obtain

d,H : T d,S + V d,p -t t"t dN. (5.18)

This "thermodynamic identity for H" teils you how .H changes as you change the
entropy,, pressure, andfor number of particles.*

similar logic can be applied to f' or G. Flom the definition of the Hermhortzfree energy (F : U - f^g), we have

d,F: d,U -TdS - SdT. (b.19)

Plugging in equatÍon 5.16 for d,U and canceling theT d,S terms gives

d,F : -g ¿7 - p dV * p,d,N. (5.20)

I'll call this resurt the "thermodynamic identity for .t .,, From it one can derivea variety of formulas for partial derivatives. For instance, holding v and N fixedyields the identity

,s--lg)P - -\ffi )r,*' (5'21)

Similarly, holding ? and either .ð[ or V fixed. gives

D- (aF\ /ôF\¿ - -\ñ )r,*' r: \ñ )r,r' (5'22)

Finally', you can derive the thermodynamic identity for G,

d,G: -S d,T +V dp I p,d,N, (b.zg)

and from it the following partial derivative formulas:
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These formulas are especialry usefur for computing Gibbs free energies at nonstan-dard temperatures and pressures. For exarnpre, since the volume of a mole of
*Because of the thermodynamic identity for [J, itis most natural to think of (J as afunction of the variables ,s, v, and r{. similarry, it is most natural to think of f/ as afunction of ,9, P, and N. Adding the pv term to [/ is therefore a kind of change ofvariables, from 7 to p. similarry, subtracting ?^g changes variables from ,g to ?. Thetechnical name for such a change is Legendre transformation.
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graphite is 5.3 x 10-6 m3, its Gibbs free energy increases by 5.3 x 10-6 J for each
pascal (N/*t) of additional pressure.

In all of these formulas I have implicitly assumed that the system contains only
one type of particles. If it is a mixture of several types, then you need to replace
pdlú with Ðp' dN in every thermodynamic identity. In the partial-derivative
formulas with 1t/ frxed, all the ly''s must be held fixed. And eÀch formula with
ô/ô-ô/ becomes several formulas; so for a mixture of two types of particles,

AG AG
þt and þz:

ôNz
(5.25)

T,P,N1
ô¡û T,P,N2

Problem 5.8. Derive the thermodynamic identity for G (equation b.2B), and from
it the three partial derivative relations 5.24.

Problem 5.9' sketch a quatitatively accurate graph of G vs. T for a pure sub-
stance as it changes from solid to liquid to gas at fixed pressure. Think carefully
about the slope of the graph. Mark the points of the phase transformations and
discuss the features of the graph briefly.

Problem 5'l-0. suppose you have a mole of water at 25oc and atmospheric
pressure. use the data at the back of this book to determine what happens to its
Gibbs free energy if you raise the temperature to B0oc. To compensate for this
change, you could increase the pressure on the water. How much pressure would
be required?

Problem 5.11. suppose that a hydrogen fuel cell, as described in the text, is to
be operated at 75oc and atmospheric pressure. we wish to estimate the maximum
electricai work done by the cell, using only the room-temperature data at the back
of this book. It is convenient to first establish a zero-point for each of the three
substances, H2, 02, and H2o. Let us take G for both H2 and 02 to be zero at
25oC, so that G for a mole of H2O is -2JT kJ at 25oC.

(a) using these conventions, estimate the Gibbs free energy of a mole of H2 at
75oC. Repeat for 02 and H2O.

(b) using the results of part (a), calculate the maximum electricai work done
by the cell at 75oc, for one more of hydrogen fuel. compare to the ideal
performance of the ceil at 2boC.

Problem 5.L2. F\rnctions encountered in physics are generally well enough be-
haved that their mixed partial derivatives do not depend on which derivative is
taken first. Therefore, for instance,

a (au\ _ a (au\
ñ\as-s ): æ(atri,

where each õ/õv \s taken with s fixed, each 0/ðs is taken with v fixed, and ry'
is always held fixed. Flom the thermodynamic identity (for u) you can evaluate
the partial derivatives in parentheses to obtain

/ aT\ / aP\
\aui": -[æ/,,'

a nontrivial identity called a Maxwell relation. Go through the derivation of
this relation step by step. Then derive an analogous Maxwell relation from each of
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the other three thermodynamic identities discussed in the text (for H,-F, and G).Hold r/ fixed in at thepartiar derivatives;îr,1. M**"¡ rerations cøa be derivedby considering partiar derivatives *_iih .;-.;;;o -ð{, but after you,ve done four of
:l;ä:i""ïï:i}fiîiï*: wear off' p"' ãppii*,.,'s or these Maxieìr rerations,

Problem 5'r"8. use a Maxwe'reration from the previous probrem and the third
*î:iJåïï:å"ffi ïJi:ï fi ilñ;;*u å*pa.*ioil;#*; (denneJ

Problem 5.14. The partiar-derivative rerations d.erived in probrems 1.46, B.Bg,and 5'12, plus a bit more partial-derivative tricker¡ can be used to derive a com_pletely general relation bei*een C, 
^;; C;'*'

(a) with the heat capacity expressions from probrem 3.33 in mind, first con_sider '9 to be a function oi ? and l. 
-Ëìp*"¿ 

d^9 in terms of ihe partialderivatives ('s/arv a\d @s/ài)r. 
-ñot" 

rhar one of these derivarivesis related to Cy.
(b) To bring in cp' consider v to be a function of ? and p and expan d d,v interms of partiar derivatives in a similãr 

-way. 
plug this expression for .vinto the result of part (a), then ,"t Jp : b and note that you have deriveda nontriviai expression'for faitai¡.. rht.derivative t, ,"uråã," Cp, soyou now have a formula for the ¿ifi".urrc" Cp _ Cv.(c) write the remaining partial derivatives in terms of measurable quantities
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cp = cv +TVP2
ñT,

(d) check that this formula gives the correct varue of cp - cv for au ideargas.

(e) Use this formula to argue that Cp cannot be less than Cy.(f) use the data in probrem 1.46 to evaruate cp-cvfor water and for mercuryat room temperature. By what p".""ntuguão the two uã"i 
"ãpä"i'"s differ?(g) Figure 1'r4 shows measured varues of cp f.orthree elemental solids, com_pared to predicted values,of Cy. It turns out that a graph of B vs. ? fora sorid has same generar *pp"u."n"u as a g.uptr of heat capacity. use thisfact ro explain W .?f "a C, u["J u, fo* temperarureå n,ri airrurg" inthe way they do at higher t.*iu.o:t.,r"r.

Problem 5.15. The folm.yla l3r^C, _", derived in the previous problem can alsobe derived starting with the ¿efiniiions;f ,ü quantities in terms of u and -r{.Do so' Most of the derivation is very ri*rùr,'¡"t at one point you need to use therelation P: -@F/AV)7.
Problem 5'16' A for^}I? anarogous to that for cp- cv relates the isothermarand isentropic compressibilities oia *J";i;J; -

ET: 
^s 

-ryf
: -(L/V)(AV/ðp)s is the reciprocal of the adiabatic bulk modulusin Probrem 1'3g') Derive this formura. el* 

"nã.t that it is true for an

(Here rcs
considered
ideal gas.
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Problem 5.17. The enthalpy and Gibbs free energy, as defined in this section, give
special treatment to mechanical (compression-expansion) work, -p rlv. Analogous
quantities can be defined for other kinds of work, for instance, magnetic work.*
consider the situation shown in Figure 5.2, where a long solenoid (.Òy' turns, total
Iength,L) surrounds a magnetic specimen (perhaps a paramagnetic solid). If the
magnetic field inside the specimen is B and its total magnetic moment is iZ, then
we define an auxilliary fieid d (often called simply the magnetic fleid) bv the
reiation

n=!ø-ú.
tro V'

where pg is the "pe'meability of free space," 4rxr0-7 N/42. Assuming cylindrical
symmetr¡ all vectors must point either left or right, so we can drop the - symbols
and agree that rightward is positive, Ieftward negative. Fyom Ampere's law, one
can also show that when the current in the wire is 1, the ft fietd inside the solenoid
is NIf L, whether or not the specimen is present.

(a) Imagine making an infinitesimal change in the current in the wire, resulting
in infinitesimal changes ín B, M, and'11. use Faraday's law to show that
the qrcrk required (from the power supply) to accomplish this change is
Wtoør : VTldB. (Neglect the resistance of the u,ire.)

(b) Rewrite the result of pa't (a) in terms of '11 and. lrzr, then subtract ofi the
work that would be required even if the specimen were not present. If
we define W,the *'ork done on the sgstem,I to be what's left, show that
ltr: ¡l671d,M.

(c) what is the thermodynamic identity for this system? (Incrude magnetic
work but not mechanical work or particle flow.)

(d) How would you define analogues of the enthalpy and Gibbs free energy for
a magnetic system? (The Helmholtz free energy is defined in the same way
as for a mechanical system.) Derive the thermodynamic identities for each
of these quantities, and discuss their interpretations,

Figure 5.7, A long solenoid, surrounding a magnetic specimen, connected
to a power suppiy that can change the current, performing magnetic work.

*This problem requires some famiiiarity with the theory of magnetism in matter. See,
for instance, David J. Griffiths, Introduction to Electrodynamics, third edition (Prentice-
Hall, Englewood Cliffs, NJ, 1999), Chapter 6.

tThir ir not the oniy possible definition of the ,,system.,, Different d.eflnitions are
suitable for different physical situations, unfortunately leading to much confusion in ter-
minology. For a more complete discussion of the thermodynamics of magnetism see llfandl
(1988), Carrington (1994), and/or pippard (19b2).
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5.2 Fbee Energy as a Force toward Equilibrium

äJ#rï3::iJJî:"*'-'n" 
entropv tends to increase; rhe sysrem,s entropy is wharsuppo..,,,";;,"1îihlËlî:iï,ii:îi_T**î1ff 

.îïlff i:ï*,..,.ïr:ï
Íiï,T:ïi'å iì",in:X*l**î:;'-"* the svsrem a,,å,r," environmenr,

;iî.'J;ïff l:å;ì*"n,,i.o.,",ã,,'t:",;il,:".::;f f ¡Jî,äi::Hî:',ï,

:i"Jti äï.# ii"#::ffiil,åï',ï a "reservoir" or energ¡ rarge enough
r emp erar ure rhe r or ar enrropv ;i il; 

-;,i.::': 
1it ;Jïür rii' ï ï ;T;:îil'.r:a subscript A indicates u proi".ty oi tïä .".".rroir, while a quantity without asubscript refers to the system ulone. The r""a"-""i*ir#'; înrïrn" totar entropyof the unive¡se rends to in*ease, ," t"tlrìorir,au, ..rrrrti 

"ir"îräìîroe torar entropy:
dStor,r = d,S I d,Sn. 

$.26)I wourd iike to write this quantity entirery,in terms of system variabres. To doso, I'll apply the thermodyna_i" ia""rirr,'lo ,n" ,o.*
dS:7dlr-rP.

i¡"lFîî'J;;'î,ï#'Jlt*tt*ir,T1.;,,.eservoir","**1'.:;can be written 
vr u'c ulsÌl€nrì' I'hen dSR : d'Up/Tp, so equation b.26

dStot.r : d,S I *ou* (5.28)But the temperature of the ¡eservoir is the s

;ï:ï::#.îïïiï,1g;;;:"*'J:i"åiî,i,::îï:.,"ffi i,):;ï,:il
dstotar.: or _ 

+du: _+@l _Tds): _*or. (5.2s)Aha! under these conditions (fixed T,v, and,ly'), an increase in the totar entropyof the universe is the same thing * u ¿l""nire in the ua*rr"ltr-rree energy of the

L6L

ï9r". 5r!. For a system that can exchangeenergy ¡'ith its environment, the total ei_tropy of both tends to i¡rcrease.

Iìl¡ r,iro¡l l¡rtnt (reservoir)

Systcm

I
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system. So we can forget about the reservoir, and just remember that the system
will do whatever it can to mi,nim'ize its Helmhoitz free energy. By the way, we could
have guessed this result from equation 5.b, ÀF < w. rf no work is done on the
system, f' can only decrease.

If insiead we let the volume of the system change but keep it at the same
constant pressure as the reservoir, then the same line of reasoning gives

1Pi
ds'o,.r : d.s - iou - ion : -|øu _ Tds + pd.v) : -lor, (5.30)

so it is the Gi'bbs free energy that tends to decrease. Again, we could have guessed
this from equation 5.8, AG 1Woth",.

Let me summarize these points, just for emphasis:

¡ At constant energy and volume, ,S tends to increase.

¡ At constant temperature and volume, tr. tends to decrease.

¡ At constant temperatrire and pressure, G tends to decrease.

All three statements assume that no particles are allowed to enter or leave the
system (but see Problem 5.23). .:

We can understand these tendencies intuitively by looking again at the defini-
tions of the Helmholtz and Gibbs free energies. Recall that

F:U-TS. (5.31)

So in a constant-temperature environment, saying that f'tends to decrease is the
same as saying that U tends to decrease while ,g tends to increase. Well, we already
know that ,5 tends to increase. But does a system's energy tend to spontaneousiy
decrease? Your int'ition probably says yes, and this is correct, but only because
when the system loses energ¡ its environment gains that energy, and therefore the
entropy of the environment i¡rcreases. At low temperature, this effect tends to be
more important, since the entropy transferred to the environment for a given energy
transfer is large, proportionalto llT. But at high temperature, the environment
doesn't gain as much entrop¡ so the entropy of the system becomes more important
in determining the behavior of -F'.

Similar considerations apply to the Gibbs free en€rgy,

G:U+PV-TS. (b.32)

Now, however, the entropy of the environment can increase in two ways: It can
acquire energ"y from the system, or it can acquire volume from the system. So
the system's u and v "want" to decrease, while ^9 "warts" to increase, all in the
interest of maximizing the total entropy of the universe.

Problem õ.18. Imagine that you drop a brick on the ground and it lands with
a thud. Apparently the energy of this system tends to spontaneously decrease.
Explain why.
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Problem 5.19. In the previous section I derived the formula @F/A}T_ _.P.Explain why this formula makes intuitive sense, by discussing graphs of .F. vs. vwith different slopes. ---' -r g'vvquu¡¡¡õ 6rr

Problem 5.20. The first excited energy lever of a hydrogen atom has an energy ofL0'2 ev, if we take. the ground-stat" eiä.g"y to be zero. However, thé first excitedlevel is really four independent states, ailïith the same energ.J¿ we can thereforeassign it an entropy of ,s : ft rn 4, since for this gr'en uar,rä of the energy, themultiplicity is 4. euestion: For what temperatures is the Helmhortz free energy ofa hydrogen atom in the first excited levi'positive, and for what temperatures isit negatiye? (comment: when f' for the r,evel is ,rugutirr", ,rr" ut"* w'l sponta_neously go from the ground state into that revel, sinJe r: o rã. irr" ground stateand F always tends.to decrease. However, ro, u'ry.t"* thir"r;;i; the concrusionis onlv a probabilisric srarement; random fluctuations ;ix;" ;;;;rignificant.)

Extensive and fntensive euantities
The number of potentialy interesting thermodynamic variables has been growinglately. We now have [J, V, N, S, T, p, þ, H, F,and G, u*oog otn.rs. One wayto organize all these 

-quantities is to pick out the ones that aoi¡te if you simprydouble the amount of stuff, adding thå nev¡ arongside v¡hat yor:-iad originaily (seeFigure 5.9). u'der this hypothetical operatioo, yo, end up"with twice the energ"yand twice the vorume, but, not twice ihe temperature. Those quantities tlnt dodouble a¡e calred extensive quantities. Those quantities thåt arc unchøngedwhen the amount of stuff doubies are caJled intensive q,r.ntitius. Here,s a rist,divided according to this classification:

Extensive: V, N, S, (J, H, F, G, mass
fntensive: T, p, þ, density

If you multiply a,n extensive quantity by an intensive quantit¡ you end up withan extensive quantity; for example, volume x density : t*r. IiV tfr" same token,if you divide one extensive q,ruotiiy by another, you get an intensive quantity. Ifyou multiply two extensive quantities iogether, you get something that is neither;if you're confronted with such u prodnit in oo" of your calculations, there,s agood chance you did something *.orrg. Adding two quantitiu, ol.trr" same type

5.2 Flee Energy as a Force toward Equilibrium L63

2V,2U,25, P,TV,U, S, P,T
Figure 5'g' Two rabbits have twice as much vorume, energ"y, and entropy as onerabbit, but not twice a.s much pressure or temperature.
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yields another quantity of that type; for instance, H : U + PV. Adding an

extensive quantity to an intensive one isn't allowed at all, so (for instance) you'll

never encounter the sum G + lt, even though G and ¡-l have the same units' There's

nothing v/rong with exponentiating an extensive quantity, however; then you get a

quantity that is rnultipli,cati,ue, Iike Ít : es/k.

It's a good exercise to go back over the various equations invoiving F and G

and show that they make sense in terms of extensiveness and intensiveness. For

instance, in the thermodynamic identity for G,

d,G : -S dT +V dP + >l þ¿dN¡, (5.33)

each term is extensive, because each product in rotrr"* one extensive and one inten-

sive quantity.

Problem 5.21. Is heat capacity (c) extensive or intensive? what about specific

heat (c)? Explain brieflY.

Gibbs FYee Energy and Chemical Potential

Using the idea of extensive and intensive quantities) we can now derive another

useful relation involving the Gibbs free energy. First recall the partial-derivative

relation /ôcl (5.34)

': \a* )r,o
This equation says that if you add one particle to a system, holding the temper-

ature and pressure fixed, the Gibbs free energy of the system increases by p (see

Figure 5.10) . If you keep adding more particles, each one again adds ¡-i to the Gibbs

free energy. Now 1,ou might think that during this procedure the value of ¡; could

gradualiy change, so that by the time you've doubled the number of particles, p has

a very different value from when you started. But in fact, if? and P are held fixed,

this can't happen: Each additional particle must add exactly the same amount

to G, because G is an extensive quantity that must simply grow in proportion to

the number of particles. The constant of proportionality, according to equation

5.34, is simply ¡^r:

G:Np. (5.35)

This amazingly simple equation gives us a new interpretation of the chemicai po-

tential, at least for a pure system with onl¡. one type of particle: p is just the Gibbs

free energy per particle.

Figure 5.10. When you add a particle
to a system, holding the temperature and

pressure fixed, the system's Gibbs free

energy increases by p.
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5.2 Flee Energy as a Force torvard Equilibrium

The preceding argument is subtre, so please think it through carefulry. perhaps
the best way to understand it is to think about why the same logic can,t be apphåd
to the Helmholtz free energy, starting with the true relation

/ ðF\
r : \* )r,, (5.86)

The problem here is that to increase F b;, ¿¡¡ amount þ, youhave to add a particle
while holding the temperature and, uorume fixed. Now, a,s you add more and more
particles, p, does gradually change, because the system is beloming more dense. It,s
true that -F'is an extensive quantity, but this does not imply that,F doubles when
you double the density of the system, holding its r.rolumà fixed. In the previous
paragraph it was crucial that the two variables being held fixed in equation 5.84, T
and P, were both intensive, so that all extensive quantities could grow in proportion
io l/.

For a system containing more than one type of particre, equation 5.J5 generarizes
in a natural way:

G: Ntpt* NzL¿z+.,.- )--¡r,¡ro. (b.32)

The proof is the same as before, except that we irrrugi;" building up the system in in-
finitesimal increments keeping the proportions of tle various siecies fixåd through-
out the process. This resurt does noú imply, however, that G for a mixture is simpry
equal to the sum of the G's for the pure components. The p,s in equation b.BZ are
generally different from their values for the corresponding pure substances.

As a first application of equation 5.35, ret me now derive a very general formula
for the chemical potential of an ideal gas. consider a fixed amount of gas at a fixed
temperature, as .\¡¡e vary the pressure. By equations b.3b and 5.24,

0¡.t I AG V
ôp: ñ ap: ñ' (5.38)

!1, ¡t the ideal gas law this quantity is just krlp.Integrating both sides from
Po up to P therefore gíves

p(7:, P) - p(T,Po) : krh(plp"). (5.g9)
Here Po can be any convenient reference pressure. usually we take po to beatmospheric pressure (1 bar, to be precise). The standard symbor for p for a gasat atmospheric pressure is po, so *" 

"u., 
*rit"

tt(T,P) : p'(T) + kTtn(p/p.). (5.40)
Value¡ of.¡'r' (at least at room temperature) can be gotten from tables of Gibbs free
fnelsils 

(t-¿: GIN). Equation 5.40 then tårs you io* ¡"varies as the pressure (orequivalently', the density) changes. And in a rni,rture of ideal gases, equation b.40applies to each species separatel¡ if you take p to be the par-ti,at pressure of that
.ll]T-.t This r'ç'orks because ideal gases are mostly empty space: How an ideal gasexchanges particles with its environment isn,t going to ue anected by the presenceof another ideal gas.
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Problem 5'22. show that equation 5.40 is in agreement with the.explicit formula
for the chemical potential of a monatomic ideal gas derived in section 8.5. show
how to calculate ¡lo for a rnonatomic ideal gas.

Problem 5.23. By subtracting ¡rly' fi'om LI , H, F, or G, one can obtain four new
thermodynamic potentials. of the four, the most useful is the grand free energy
(or grand potential),

A:U -TS - ¡1,N.

(a) Derive the thermodynamic identity for Õ, and the related formulas for the
partial derivatives of @ with respect to T, V, and ¡.t .

(tr) Prove that, for a system in thermal and diffusive equilibrium (with a reser-
voir that can supply both energy and particles), e tends to decrease.

(c) Prove that Õ : -PV,
(d) As a simple application, let the system be a single proton, u4rich can be

"occupied" eithet by a single electron (making a hydrogen atom, with en-
ergy -13.6 eV) or by none (with energy zero). Neglect the excited states
of the atom and the two spin states of the electron, so that both the oc-
cupied and unoccupied states of the proton have zero entropy. Suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-
perature of 5800 K and an electron concentration of about 2 x 1019 per
cubic rneter. calculate Õ for both the occupied and unoccupied states, to
determine which is more stable under these conditions. To compute the
chemical potential of the electrons, treat them as an ideal gas. At about
what temperatu.e would the occupied and unoccupied states be equally
stable, for this value of the electron concentration? (As in problem 5.20,
the prediction for such a small system is only a probabilistic one.)

5.3 Phase Tbansformations of Pure Substances

A phase transformation is a discontinuous change in the properties of a sub-
stance, as its environment is changed only infinitesimaliy. Familiar examples in-
clude melting ice and boiling water, either of which can be accomplished with only
a very small change in temperature. The different forms of the substance-in this
case ice, water, and steam-are called phases.

Often there is more than one variable that can affect the phase of a substance.
For instance, you can condense steam either by lowering the temperature or by
raising the pressure. A graph showing the equilibrium phases as a function of
temperature and pressure is called a phase diagram.

Figure 5.11 shows a qualitative phase diagram for H2o, along with some quanti-
tative data on its phase transformations. The diagram is divided into three regions,
indicating the conditions under which ice, water, or steam is the most stable phase.
It's important to realize, though, that "metastable" phases can stiil exist; for in-
stance) Iiquid water can be "supercooled" below the freezing point yet remain a
liquid for some time. At high pressures there are actually several different phases
of ice, with cliffeling crystal structures and other physical properties.

The lines on a phase diagtam represent conditions rinder which two different
phases can coexist in equilibrium; for instance, ice and water can coexist stabl¡, ¿¿

d,
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404 Reference Data

Substance (form)

Thermodynamic Properties of Selected Substances

Allofthevaluesinthistableareforonemoleofmaterialat2gSKandlbar.Following
the chemical formula i* it"-i"i* of the substarrce' either solid (s),.liquid (l)' gas (g)' or

aqueous solution ('q)' \Ml;;ït'u" i' moru tttu" one commolr iolid form' the mineral

name or crystal 't"'"tot" 
l' indicated' Data for aqueous solutions"are at a standard

concentration of 1 mole per kilogram- water' itt" å"'ittW and Gibbs free energy of

formation, A¡Il and A;ä, ;;Ënt the change-s i; t t"d b opott forming one mole of

the material starring *i;'"ìä;;;s in their *"t, tlr¡f" pure s[ates (e'g', C (graphite)'

Oz (e), etc'). To.bb;;";;ì"" of AI/ or AG for another reaction' subtract A¡ of the

reactants from À¡ 
"r 

tir" pr"Jrr"ts. For ions in solution there is an ambiguity in dividing

thermodynamic quaotitilr-u",*."n the positivJáJ ,regutirr" ions; by.convention, H+ is

assigned the value ,"ro urJ all others are chosen to belonsistent with this value' Data

from Atkins (1998), l'i¿" lùS¿)' and Anderson ifSSO)' Please note'that' while these data

are sufficiently u."urutJuïá"",í"Jr"* for the à-*u*pr". and problems in this textbook'

nor all of rhe digits ,h;;;;" necessarily rie"iL"ti; for resèarch prlrposes vou should

always consult o.igit'tf ìit"'uiure to determine experimental uncertainties'

Al (s)

AIzSiOs (kYanite)

AlzSiOs (andalusite)

AlzSiOs (sillimanite)

Ar (e)

C (graPhite)
C (diamond)
CH¿ (e)
CzHo (e)

CgHs (g)
C2H5OH (1)

CoHrzOo (glucose)

co (e)
Coz (e)
tt2COa (ao)

HCot (eq)

cu2+ (uq)

CaCOs (calcite)

CaCO3 (aragonite)

CaCl2 (s)

clz (e)
Cl- (uq)

Cu (s)

Fe (s)

arr{ (kJ)

0

-2594.29
-2590.27
-2587.76

afc (kJ)

0

-2443.88
-2442.66
-2440.99

s (J/K)

0 154.84 20.79

Cp Q|K) V (cm3)

9.99
44.09

51.53
49,90

5.30
3.42

28.33
83.81
93.22
96.11

-53.1
92.9
88.7

104.6

24.35
r21.7L
t22.72
124.62

0

0

1.895

-74.8L
-84.68

-103.85
-277.69

-L273
-110.53
-393.51
-699.65
-691.99

0

2.900

-50.72
-32.82
-23.49

-t74.78
-910

-t37.17
-394.36
-623.08
-586.77

5.74
2.38

186.26
229.60
269.91

160.7
212

t97.67
2t3.74

187.4
91.2

8.53
6.11

35.31
52.63

73.5
rrt.46

1L5

29.74
37.11-

58.4

36.93
34.15

51.6

-542.83
-1206.9
-1207.L
-795.8

0

-167.16

0

0

-553.58
-1128.8
-rr27.8
-748.t

0

-tïr.23
223.07

56.5

0 33.150

0 27.28

81.88
81.25
72.59

33.91

-t36.4
24.44

25.10

17.3

, 1.1

7.1r

,i



Hz (s)
H (s)
H+ (rq)
HzO (t)
Hzo (s)

Hu (e)

He (l)

Nz (e)
NHs (e)

Na+ (aq)
NaCl (s)
NaAlSi3Os (atbire)
NaAlSi2O6 fiadeite)

N" (e)

oz (g)
oz (aq)
oH- (aq)

Pb (s)
PbO2 (s)
PbSOa (s)

so!- (aq)
HSO. (aq)

SiO2 (o quartz)
HaSiOa (aq)

Substance (form) Arc (kr) s (J/K) cP (r/K)

28.82
20.78

0
75.29
33.58

20.79

27.98 14.81

29.t2
35.06

Reference Data 406

v (cm3)

18.068

a/-rJ (kJ)

0
2r7.97

0

-285.83
-24t.82

0

203.25

0

-237.L3
-228.57

0

0

0

-16.45

130.68
t1.4.71

0
69.91

188.83

126.L5

76.02

191.61

L92.45

59.0
72.1.3

207.40
133.5

0

0

0

-46.11

-240.t2
-411.15
-3935.1
-3030.9

-267.91
-384.14
-3711.5
-2852.r

0
16.4

-L57.24

46.4

50.50
205.L0

160.0

-L.2
27.01.

100.07
60.40

18.3

0 0 146.33 20.79

205.74
1 10.9

-10.75

29.38

64.81
68.6

148.5

0

-IL.7
-229.99

0

-277.4
-920.0

-909.27
-887.34

-910.94
-t449.36

0

-2t7.33
-813.0

-744.53
-755.91

-856.64
-7307.67

20.1

131.8

4t.84
215.13

-148.5

26.44
64.64
703.2

-293
-84

44.43
468.98

22.69


