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5 Free Energy and

Chemical Thermodynamics

The previous chapter applied the laws of thermodynamics to cyclic processes: the

op"rutio., of engines and refrigerators whose energy and entropy are unchanged

over the long term. But many important thermodynamic processes are not cyclic'

chemical reactions, for example, are constrained by the laws of thermodynamics

but do not end with the system in the same state where it started.

The purpose of the present chapter is to apply the laws of thermodynamics to

chemical reactions and other transformations of matter. One complication that

arises immediately is that these transformations most ofben occur in systems that

are not isolated but are interacting with their surroundings, thermally and ofben

mechanically. The energy of the system itself is usually not fixed; rather its temper-

ature is heid fixed, through interaction with a constant-temperature environment'

Similarly, in màny cases it is not the volume of the system that is fixed but rather

the pressure. our first task, then, is to develop the conceptual tools needed to

understand constant-temperature and constant-plessule pIoceSSeS.

5.1 FYee Energy as Available.Work

In Section 1.6 I defined the enthalpy of a system as its energy plus the work needed

to make room for it, in an environment with constant pressure P:

H:U+PV. (5.1)

This is the total energy you would need, to create the system out of nothing and

put it in such an environment. (sìnce the initial volume of the system is zeto,

LV : V.) Or, if you could completely annihilate the system, Il is the enelgy yoll

could recover: the system's energy plus the work done by the collapsing atmosphere'

ofben, however, we're not interested in the total energy needed or the total

energy that can be recovered. If the environment is one of constant temperature,

t4s



150 Chapter 5 Flee Energy and Chenical Thermodynamics

the system can extract heat from this environment for free, so al| we neecl to
provide, to create the system from nothing, is any additional øork need.ecl. And if
we annihilate the system, we generaily can,t recover all its energy as work, because
we have to dispose of its entropy by dumping some heat into the environment.

So I'd like to introduce two tnore useful quantities that are related to energy
and analogous to fI. One is the ffelmholtz free energy,

F-u_TS. Ø.2)
This is the total energy needed to create the system, minus the heat you can get
for free from an environment at temperature z. This heat is given by TLS:TS,
where 5 is the system's (final) entropy; the more entropy a system has, the more of
its energy can enter as heat. Thus F is the energy that must be provided as work,
if you're creating the system out of nothing.* or if you annihiiate the system, the
energy that comes out as .¿'ork is F, since you have to dump some heat, equal to ?,g,
into the environment in order to get rid of the systern's entropy. The aua,ilable, orttfree," energy is tr..

The word "work" in the previous paragraph means o,ll work, including any
that is done automatically by the system's surroundings. If the system is in an
environment with constant pressure P and constant temperature ?, then the work
you need to do to create it, or the work you can recover when you destroy it, is
given by the Gibbs free energy,

G:U-TS+PV. (b.s)

This is just the system's eneïg)., minus the heat term that's in ,F, plus the atmo-
spheric work term that's in f{ (see Figure 5.1).

TS
G \\

( p(
)

Ir
Figure 5'1' To create a rabbit out of nothing and'place it on trre tabre, the
magician need not summon up the entire entharpy, H : u + pv. some energy,
equal to ?,s, can flow in spontaneousry as heat; the magician must provide only
the difference, G : H - ?,5, as work.

*In the context of creating a system, the term free energy is a misnomer. The energy
that comes for free is 7.9, the term we subtracted to get F. In this context, É. should be
called tlre costly energy. The people who named F were instead thinking of the reverse
process, where you annihilate the system and recover _F as work.
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_____->
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H G
+PV

The four functions u, H, -t', and G are collectively called thermodynamic
potentials. Figure 5.2 shows a diagram that I use to remember the definitions.

usually, of course, we deal with processes that are much less dramatic than the
creation or annihilation of an entire system. Then instead of F and G themselves,
we want to look at the changes in these quantities.

For any change in the system that takes place at constant temperature ?, the
change in F is 

a,F. : au -T LS : g +w -T as, (5.4)

where Q is the heat added and IzZ is the work done on the system. If no new entropy
is created during the process, then Q : ? A^9, so the change in f is precisely equal
to the work done on the system. If new entropy zs created, then ? AS will be
greater than Q, so A-t' will be less than W. In general, therefore,

LF < W at constant ? (5.5)

This Irtr¡ includes øll work done on the system, including any work done automati-
cally by its expanding or collapsing environment.

If the environment is one of constant pressure, and if we're not interested in
keeping track of the work that the environment does automatically, then we should
think about G instead of f'. For any change that takes place at constant T and P,
the change in G is

AG: LU -r LS +P LV :Q+W -T AS + P LV. (5.6)

Again, the difierence Q -T L,S is always zeto ot negative. Meanwhile, I/ includes
the work done by the environment, -PAV, plus any "other" work (such as elec-
trical work) done on the system:

W : -P LV *Wo1¡",. (5.7)

This PAtr¡ cancels the one in equation 5.6, Ieaving

AG < Wother at constant ?, P. (5.8)

Because free energy is such a useful quantit¡ values of AG for an enormous
variety of chemical reactions and other processes have been measured and tabulated.
There are many ways to measure AG. The easiest conceptually is to first measure
AfJ for the reaction, by measuring the heat absorbed when the reaction takes
place at constant pressure and no t'other" work is done. Then calculate 4,9 from

)

)

F
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the entropies of the initiai and final states of the system) deterrnined separateryfrom heat capacity data as cresc¡ibed in sections s.z ãi^ä]¿l Finar¡ compute

aG: LH _T AS. (5.9)
values or a,G for the formation of serected compounds and sorutions (at ? : 2gg Kand P : 1 bar) are given in the tabre at ihe bàck 

"r *rì, u-r.. you can computeaG varues for other reactions uy i-"siir"g first that *r.r, ,ãr"r*t is converted toelementar form and_trren that tú.." 
""tä"rrts are converted into the products.As w*h (J and,H,rhe actuar uatuì- or.F* G i; ;;-;î;;;* onry ir we incrudealt the energ"v of rhe,svstem,- 

]""r.,Ji"s i¡u .u.r "'"Ç-^(-rïi *every parricre. Ineveryday situations this wourd b" .i¿iiuìour, ,o i.rrtãåd'*" å"uru." [/ from someother convenient but arbitrary ,"r"r"rr"" point, and trri, urtitr*y choice arso fixesthe zero points for H,.F., and"G ch;;;", in these or*"rrri"räre unaffected by ourchoice of reference point,.and 
"r.ung;rär" at we uùa'n r"'.în.rt anyway, so inpractice we can often avoid choosin! a refêrence point.

Problem 5.1' Let the system be one mole of argon gas at room temperature andatmospheric pressure. compute ut" t.tìi,""ur*" rLrärä'ö'negtecting atomic
;ï.:T::-,'ffL.îi1,,ï¡iît*;¡ï, H"i*t ltz rä à".*r, 

""í'c,¡0. rree energy.

Probrem 5'2' consider the production of ammonia from nitrogen and hydrogen,
Nz*SHz-2NH¡,

at 2gg K and 1 bar. FÞom the varues of {r.-and ,g taburated at the back of this
H::'rîä:XirâG 

ror this '"""iå" ä'ia 
"ne"t tt'at tñ;;.;ä with rhe varue

Electrolysis, F\rel Cells, and Batteries
As an example of using AG, consider the chemical reaction

H2O ------+ Hz + *Oz, (5.10)
the erectrorvsis of riquid..water into hydrogen and oxygen gas (see Figure 5.3).
#;'ff,'Ji"iil3lïJ# "";;;r; ;1;;;",, ,o -" "'J*itf;î -oi" or hydrogen

According to standard reference tables, 
âf t:, this reaction (at room temper_ature'and atmospheric pressure) i. 286 ;J. This is th" u-;;;; oi. t 

"ut 
you wourdget out if you burned,a more of hyd'og*, running the reaction in reverse. whenwe form hvdrogen and oxvgen ."; ;i;;;t 

-we 
need .ro put 2g6 kJ of energy intothe system in some ¡rvay or other. of the 2g6 kJ, u ,-uä ;*;;; goes into push-ing the atmosphere away to make room for the gases produced; this amount isP Av :4 kJ' The other 2g2 kJ remains in the system iiself (see bigu." 5.4). Butof the 286 kJ needed, must we suppry at as work, or can some enter as heat?To answer this question *" -'j ä"*"t;"" the change i. irr"-rr.r**,s entropy.The measured and taburated 

""rr"ou=""i"", ,o, orr" motã of each species are
SH,o : T0 J/K; ,SH, : 7JI J/K; ,go, : 205 J/K. (5.11)
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5.1 Free Energy as A'r'ailable Work 153

Figure 5,3. To separate t'ater into h¡,drogen and oxygen, just run an electric
curLent through it. In this home experiment the electrodes are mechanical pencil

leads (graphite). Bubbles of hydrogen (too small to see) form at the negative

electrode (left) while bubbies ofoxygen form at the positive electrode (right).

P LV :4 kJ (pushing
atmosphere away)

+ Å1,'= ?it2 k'l <-

Svstem
"AS:49 

kJ
(heat)

Figure 5.4. Energy-flo¡¡'diagram for electrolysis of one mole of water. Unrler ideal

conditions, 49 kJ of energ)¡ enter as heat (Tas), so the electrical work required is

only 237 kJ: AG : L,H - ?AS. The difference between Afl and LU is PAV :
4 kJ, the work done to make room for the gases produced.

Subtract Z0 from (131 + I.ZOS¡ and you get +163 J/K-the system's entropy
,increases by thìs amollnt. The maximum a.mount of heat that can enter the s)¡stem

is therefore T 4,9 : (298 K)(163 J lI<) : 49 kJ. The amount of energy that must

enter as electrical $.ork is the difference between 49 and 286, that is, 237 kJ.

This number,237 kJ. is the change in the system's Gibbs free energy; it ís

the minimum "otheI" work required to make the reaction go. To summarize the

computation,
AG: AH- T A,S,

237 kJ:286 kJ - (2e8 K)(163 J/K). þ'12)

For convenience, standard ta,bles (like the one at the back of this book) generally

include AG r.alues, saving you from having to do this kind of arithmetic-
we can also apply aG to the reverse reaction. If you can combine hydrogen

and oxygen gas to produce watel in a controlled wa¡ you canl in principle, extract

237 kJ of electrical work for every mole of hydrogen consumed. This is the principle

LG:237 kJ
(electrical i.vork)

(5.11)
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+

H2+ +02

-'> HzO

Figure 5.5. In a hydrogen fuel
cell, hydrogen and oxygen gas
pass through porous electrodes
and react to form wateÌ, remo\:-
ing electrons from one electrode
and depositing electrons on the
other.
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of the fuel cell (see Figure 5.5), a device that might replace the internal combustion
engine in future automobiles.* In the process of producing this electrical work, thefuel cell will also exper 4g kJ of waste heat, in order to geirid of the excess entropythat was in the gases. But this waste heat is only LT% of the 2g6 kJ of heat thatwould be produced ifyou burned the hydrogen and tried to run a heat engine fromit. so an ideal hydrogen fuer ceil has an ,,efficiency,, of g3%,much better than anypractical heat engine. (In practice, the waste heat will be more and the efficiency
Iess, but a typical fuel cell still beats aimost any engine.)

A similar analysis can telr you the erectricar energy output of a battery, whichis like a fuel cell but has a fixed internar suppry or ruel (usuaily not gaseous). For
example, the familiar lead-acid ceil used in car batteries runs on trr" reaction

pb + pbo2 + 4H+ + 2SO?- _ 2pbSO¿ + 2HzO. (5.13)

According to thermodynamic tabres, a,G for this reaction is -394 kJf mot,at stan_dard pressure, temperature, and concentration of the sorution. so the erectrical
work produced under these conditions, per more of metailic lead, is gg4 kJ. Nlean_'while, a/{ for this reaction is -316 kJ/mol, so the energy that comes out of thechemicals is actuallv ress than the work done, by 7g kJ. This ext.a energy comesfrom heat, absorbed from the environment. Along with this heat comes some en_trop¡ but that's fine, since the entropy of the products is greater than the entropyoJthe reactants, by (78_kJ)/(2g8 K) : 260.1/N (per mole)i rt"."'"rr".gy flows areshown in Figure 5.6' \Mhen you charge the batter¡ the ieaction runs in reverse,taking the system back to its initial state. Then you have to put the zg kJ of heatback inúo the environment, to get rid of the excess entrop¡,.

You can also calculatethe uoltage of a battery or fuel cell, provided that you
know how many electrons it pushes around the circuit for each molecule that reacts.To determine this mrmber, it herps to rook at ühe chemistry in more detail. For a

(
I

tì
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a

¡.,

,tl:

:¡
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*see sivan Kartha and patrick Grimes, ,,Fuer celrs: Energy conversion for the NextCentury," Physics Today 47,54-61 (November, 19g4).
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78 kJ
(heat)

rel

ias
les

)\¡-

de

he

394 kJ
(electrical work)

FigureS'6'Energy.flowdiagramforalead-acidcelloperatingideally.Foreach
ä"ì" tfr" reacts, the system's energy decreases by 316 kJ and its entropy increases

ily zoo J/K. Because of thu 
"ntropy 

increase, the system can absorb 78 kJ of heat

fi-om the environment; the maximum work performed is therefore 394 kJ' (Because

;;;;;t are involved in this reaction, volume changes are negligible so AU = A'H

and AF r AG.)

lead-acid cell,-the reaction (5'13) takes place in three steps:

in solution: 2SO?- + 2H+ 
- 

2HSO, ;

at - electrode: Pb + HSOt ----+ PbSO¿ .u g+ + 2e-; (5'14)

at * electrode: PbOz * HSO| + 3H+ :-'2e- --'--+ PbSO¿ + 2}l2O'

Thus, tu,o electrons are pushed around the circuit each time the full teaction occurs'

The electrical work produced per electron is

394 kJ
-- 3.27 x 10-1e J : 2.04 eV (5.15)

But 1 volt is just the voltage needed to give each electron I eV of èiergy, so the cell

has a .,oltag e of 2.0a V. Ii practice the voltage may be slightly different, because

the concentrations used ure åifi"rerrt from the standard concentration (one mole per

kilogram of water) assutned in thermodynamic tables' (By the wa,yl a car battery

"ottt"uitt. 
six lead-acid cells, giving a total of about 12 V')

Problems.S.UsethedataatthebackofthisbooktoverifythevaluesofAll
and AG quote.d above for the lead-acid reaction 5'13'

Problem 5.4. In a hydrogen fuel cell, the steps of the chemical reaction are

at - electrode: Hz * 2OH- + 2H2O + 2e-;

at f electrode: TO' + H2O I 2e- + 2OH-'

Caiculate the voltage of the cell. What is the minimum voltage required for elec-

trolysis of water? ExPlain brieflY'

ProblemS.S'Considerafuelcellthatusesmethane(..naturalgas'')asfuel'The
reaction is 

cH¿ + 2o2 + 2:Hzo -l coz'

(a)UsethedataatthebackofthisbooktodeterminethevaluesofA,[land
AGforthlsreaction,foronemoleofmethane.Assumethatthereaction
takes place at room temperature and atmospheric pressure'

(b)Assumingidealperformance,howmuchelectricalworkcanyougetoutof
the cell, for each mole of methane fuel?
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(c) How much r,\iaste heat is prodriced, for each mole of methane f.uer?
(d) The steps of this reaction are

at - electrode: CH¿ + 2H2O 
- 

COz + gH+ + ge 
;

at f electrode: 2Oz f gH+ * ge- _ 4¡¡rg.
What is the voltage of the cell?

Prot¡lem 5.6' A mrrscre can be thought of as a fuer cell, procrucing work from themetabolism of glucose:

CoHrzOo * 602 
- 

6COz f 6HzO.

(a) use the data at trre back of this book to determi'e the vaÌ*es of all andaG for this reaction, for one more of grucose. Assume that the reaction '

takes place at room temperature and atmospheric pressure.
(b) \Yhat is the maximum amount of 

'r,ork 
that a muscre can perform, f.or each

mole of glucose consumed, assuming ìdea1 operation?
(c) still assurning idear operation, hov,, much heat is absorbed or expered bythe chemicars during the metaborism of a more of gr'cose? (Be sure to say

r¡.hich direction the heat flows.)
(d) use the concept of entropy to explain why the heat flows in the directionit does.

(e) Horv would your 
?Ty:m to parts (b) and (c) change, if the operation ofthe muscle is not ideal?

Problem 5'2. The metabolism of a grucose molecure (see previous probrem)
occurs in many steps, resulting in the synthesis of 88 moleciles ãf a1p (adenosinetriphosphate) out of ADp (adenosine diphosphate) and phosphate ions. when theATP splits back into ADp and phosphaie, it riberates energythat is used in a hostof important processes including protein synthesis, acti'eîrr"rp".ior moleculesacross cell mernbranes' and muscre contraction. In a muscle, the reaction ATp+ ADP * phosphate is catalyzed by an enzyme called myosin that is attached' to a rruscle filarnent. As the reaction takes prace, the myåsin morecure puts onan adjacent filament, ca'sing the muscre to cå.tract. The force it exerts averagesabout 4 piconewtons and acts ove. a distance of about 11 nm. From this dataand the resuits of the prerrious problem, compute the ,,efficiency,, of a muscle,that is, the ratio of the actuar u-ork done to the maximum work that the laws ofthermodynamics would allow.

Thermodynamic Identities
If you're given the enthalpy or free energy of a substance under one set of con-ditions, but need to know its varue under some other conditions, there are somehandy formulas that are often useful. These formulas resemble the thermodynamic
identitv,

dU : T dS - P dV -f ¡-r,d.N, (5.16)

but are written for H or F or G instead of [/.
I'll start by deriving the formula for the change in ff. If we imagine changing
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H, U, P, and y by infinitesimal amounts, then the definition H : U * PV tells us

Ihat
d,H : d,u + P dv +v dP. (5.17)

The last two terms give the change in the product PV, according to the product
rule for derivatives. Now use the thermodynamic identity 5.16 io eliminate d(J, and
cancel the PdV ternm to obtain

dH ::r dS +V dp .t p,dN. (5.18)

This "thermodynamic identity fot H" tells you how fl changes as you change the
entropr', pressure, andf or number of particles.*

Similar logic can be applied to F' or G. Flom the definition of the Helmholtz
free energy (F : U - TS), \Me have

d,F:d.U-TdS-SdT (5.1e)

Plugging in equation 5.16 for dU and canceling theT dS terms gives

d.F : -S cl,T - P dV -f ¡.t,dN. (5.20)

I'11 call this result the "thermodynamic identity for F." Flom it one can derive
a variety of formulas for partial derivatives. For instance, holding l/ and l/ fixed

),ields the identity

"e--fg) (521)- 
\ðT / v,N

Similarly, holding ? and either ly' or V fixed gives

(5.22)
T,V

Finally, you can derive the thermodynamic identity for G,

dG : -S dr +V dP * ¡tdN,

and from it the following partial derivative formulas:

(5.23)

*Because of the thermodynamic identity for U, it is most natural to think of [/ as a

function of the variabies S, I,/, and .ò1. Similarly, it is most natural to think of 11 as a

function of ,9, P, and ly'. Adding the PV term to U is therefore a kind of change of
variables, from V to P. Similarly, subtracting ?S changes variables from ^9 to T. The
technical name for such a change is Legendre transformation.

P: -(#).., 11 
: (#)

ton-
)me
,mic

^s__rqq\ v:(ry\ /aG\
- \ô'r /",r' \öP,)r,r' ': (*,)"," (5'24)

These formulas are especiaily useful for computing Gibbs free energies at nonstan-
dard temperatures and pressures. For example, since the volume of a mole of

16)
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graphite is 5.3 x 10-6 m3, its Gibbs free energy increases bv b.3 x 10-6 J for each
pascal (N/-') of additional pressure.

In all of these formulas I have implicitly assumed. that the system contains only
one type of particles. If it is a mixture of several types, then you need to replace
pdll with Dp, dNo in every thermodynamic identity. In the partial-derivative
formulas with l/ frxed, all the l/'s must be held fixed. And each formula with
ôf 0N becomes several formulas; so for a mixture of two types of particles,

/ôG\ /aG\pt : 
( ð¡,', /r,",r, and ,, : \u*, )r,o,* i 

(b.25)

Problem 5.8. Derive the thermodynamic identity for G (equation b.2B), and from
it the three partial derivative relations b.24.

Problern 5.9. sketch a qualitatively accurate graph of G vs. T for a pure sub-
stance as it changes from solid to liquid to gas at fixed pressure. Think carefully
about the slope of the graph. Mark the points of the phase transformations and
discuss the features of the graph briefly.

Problern 5'10. suppose you have a moie of water' at 25oc and atmospheric
pressure. use the data at the back of this book to determine what happens to its
Gibbs free energy if you raise the temperature to BOoc. To 

"o-perrsate 
for this

change, you could increase the pressure on the water. How much pressure would
be required?

Problem 5'11-. suppose that a hydrogen fuel cell, as described in the text, is to
be operated at 75oc and atmospheric pressure. we wish to estimate the maximum
electrical work done by the cell, using only the room-temperature data at the back
of this book. It is convenient to first establish a zero-point for each of the three
substances, Hz, oz, and H2o. Let us take G for both H2 and 02 to be zero aL
25oC, so that G for a mole of H2O is -287 kJ at 25oC.

(a) using these conventions, estimate the Gibbs free energy of a mole of H2 at
75"C. Repeat for 02 and H2O.

(b) using the results of part (a), calcurate the maximum electrical work done
by the cell at 75oc, for one mole of hydrogen fuel. compare to the ideal
performance of the cell at 2b"C.

Problem 5'L2. Fìrnctions encountered in physics are generally well enough be-
haved that their mixed partial derivatives do not depend on which derivative is
taken first. Therefore, for instance,

a (au\ a /au\
av\as ): as\dv ),

where each 0/ôv is taken with,g fixed, each ô/0s is taken with v fixed, and,ôy'
is always held fixed. Flom the thermodynamic identity (for u) you can evaluate
the partial derivatives in parentheses to obtain

(#)":-(#)",
a nontrivial identity called a Maxwell relation. Go through the derivation of
this relation step by step. Then derive an analogous Maxwell relation from each of



rach

'nly
.ace

live

'ith

25)

the other three thermodynamic identities discussed in the text (for H,.F,, and G).Hold 'n/ fixed in ail the.partiar auriuurrrr"",liher Maxwel reratiàns can r¡ederivedby considerins nartlar. derivatives *_itrr-.".n"1 to .Ay', but afiber you,ve done four of
:Ïä:T"ïï:Tf ,Hîiï*: 

*uu' or.'--r'ài-ãpprcations 
"r 

*..."'n¿*we' rerarions,

Probrem 5.r8. use.a N{ax',e'relation from the previous probrem and the third
liî:i Jåïï'tíffi ï J J,ïï f i F"ï**ar expansion 

"" "m.L* B (denned

Problem 5.14. The partiar-derivative relations derived in probrems 1.46, g.38,and 5'72' plus a bit more partial-derivative trickery, can be used to derive a com_pleteiy general relation buiween C;;;; C;
(a) with the heat capacity expressions from problem B.B3 in mind, first con-sider 's ro be.1.luncriåtr oi z ";-i. Expand ¿s i" i".r*'or the partial

*î#:å"îJ2f/'r)v and rosiàii,. Note ttat ';;;;""." derivarives

(b) To bring in cp, consider v to be a function of ? and p and expan d, dv interms of partial derivatives i u "i*üinro rhe resurt or parr (,), ; h; ;;-ä": i.J; Ji:i" li:,";ï"äîJ Jï*ia nontrivial expr-ession for (05/07)p. This derivarV" ir"J"îå"¿ to Cp, soyou nov¡ have a formula for the difi"r"rr"" Cp _ Cv. 
- - --*-,

(c) write the remaining partial derivatives in terms of measurable quantities
ff:i*,."#**e' 

relarion and the resuu of probrem i;6. ï;; final result

Cp: Cv +TvP' .
txT

(d) check that this formula gives the correct value of cp - cv for an ideal

(e) Use this formula to argue that, C¡,cannot be less than Cy.(f) use the data in problem 1.46 to erraruate cp-cvfor water and for mercuryat room temperature. By what percentageão trrå two rr"rt-"äpä"ities differ?(g) Figure r"14 shows measured varues of cp fotthree erementar sorids, com_pared to predicted values of Cy. It trrrr* o.rt that a graph of B vs. ? fora solid has same general u,pp"ururr"u u, a g.upt of heat capacity. Use thisract to expiain *h,.?f 
"å ", ü;; l"*t"*p"""t";ffi;; diverge inthe way they do at higher t"*p"rJt*r.

Problem 5.15. The t":T:t" f3r^C7 _Cv derived in the previous problem can alsobe derived starting with the ¿efiniiions ;f *ü" quantities in terms of {/ and ri.Do so' Most of the derivation is very .i-riu.,^t t at one point you need to use therelation P: -(ôF/0V)7.
Problem 5'L6' A fut*Y1? analogous to that for cp- cy relates the isothermaland isentropic compressibiiities of a ;;;i;l; "

5.1 Flee Energy as Available Work 159

Kr : Ks'_ryf
: -(I/V)@V/âp)s is the reciprocal of the adiabatic bulk modulusin Problem 1'3g') Derive this formura. Ãl*'ãrr*t that it is true for an

(Here rcg
considered
ideal gas.
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Problem 5'L7. The enthalpy and Gibbs free energy, as defined in this section, give
special treatment to mechanicar (compressio'-expansion) work, -p dv. Anarog:ous
quantities can be deflned f'or other kinds of work, for instance, magnetic wor.k.*
Consider the situation shown in Figure 5.7, q,here a long solenoid (Ñ turns, totaì
length tr) sur¡ounds a magnetic specimen (pelhaps r piru.rrugr."tic sorid). If the
magnetic field inside the specimen is E and its total mã,gnetic Loment is 

'tû 
, tn n

we define an auxiiliary fretd fr. (often carled sirnpry tñe magnetic field) by the
relation

È=Lñ_ úr
= t"n" - v'

where ¡-rg is the "permeabirity of free space,', 4rxr0-7 N/A2. Assuming cyrindricar
symmetry, all vectors must point either- Ìeft or right, so rÃ.e can drop the ; symbols
and agree that rightward is positive, reftward nãgative. Fr.om Anipere,s raw, one
can also show that when the current in the wire ìs 1, the 1l fietd inside the solenoid
is NIf L, whether or not the specimen is present.

(a) Imagine making an infinitesimal change in the current in the u,ire, resulting
in infinitesimal changes in B, M, and,]1. use Faraday,s raw to show thai
the work required (from the power suppry) to accomprish this change isWøtur:V'11 dB. (Neglect the resistance of the wire.)

(b) Rewrite the result of par.t (a) in terms orrr and, M, then subtract offthe
work that would be required even if the specimen were not present. If
we define w, the work done on the sgstem,r to be r¡u,hat's leftf show thatW: U,oT1dM.

(c) What is the thermodynamic identity for this system? (Include magnetic
work but not mechanicai work or particle flow.)

(d) How would you define analogues of the enthalpy and Gibbs free energy for
a magnetic system? (The Hermhortz free energy is defined in the samã way
as fo¡ a mechanical system.) Derive the thermódynamic identities for each
of these quantities, and discuss their interpretatiåns.

Figure 6.7. A long soienoid, surrounding a magnetic specimen, connected
to a power supply that can change the current, performing magnetic work.

*This problem requires some familiarity with the theory of magnetism in matter. See,for instance, David J. Griffiths, Introduction to Electrodyn mics,ìhird edition (prentice-Hall, Englewood Cliffs, NJ, lg99), Chapter 6.
rThis is not the only possibre definition of the ,,system.,, Different definitions aresujtable for different physical situations, unfortunately leading to much conlîsion in ter-minologv' For a more complete discussion of the ther¡nodyna-ì", of magnetism see I\,fancll(1988), Carrington (1994), an<l/or pippard (1952).
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5.2 Ffee Energy as a Force toward Equilibrium

5.2 Flee Energy as a Force toward Equilibrium
For an isolated system, the entropy tends to increase; the system's entropy is what
governs the direction of spontaneous change. But what if asystem is r¿oú isolated?
suppose, instead, that our system is in good thermai contact with its environment
(see Figure 5.8). Now energy can pass between the system and the environment,
and the thing that tends to increase is not the system's entropy but rather t,,e total
entropy of system plus environment. In this section I,d like to restate this rule in
a more useful form.

I'li assume that the environment acts as a ,,reservoir,' of energ¡ large enough
that it can absorb or rerease unrimited amounts of energy without changing its
temperature. The total entropy of the universe can be written as ,s * ^9¿, where
a subscript ,R indicates a property of the reservoir, while a quantity without a
subscript refers to the system alone. The fundamental rule is that the total entropy
of the universe tends to increase, so let's consid.er a small change in the total entropy,

dSøtut: d,S * d,Sn. 6.26)
I would like to write this quantity entirely in terms of system variables. To do

so, I'11 apply the thermodynamic identity, in the form
1Pot: +du +'Tav - fial, (s.27)

to the reservoir. First I'll assume that v and ry' for the reservoir are fixed-only
energy travels in and out of the system. Then d^g¿ : d,UpfT¡¿, so equation b.26
can be written

dStot,r : d,s + lau* (5.2s)
lR

But the temperature of the reservoir is the same as the temperature of the system,
whiie the change d,u¡¿ in the reservoir's energy is minus the change d,u in the
system's energy. Therefore,

{stotar :d.s *lo, : -}ø, -Tds) : -}or. (5.2e)

Ahal under these conditions (fixed r, v , and. N), an increase in the total entropy
of the universe is the same thing as a d,ecrease in the Helmholtz free energy of the

161

See
Figure 5.8. For a system that can exchange
energy with its environment, the total en-
tropy of both tends to increase.

.tice_

t ate
I ter_
lcucìt

Enr¡ire¡n¡nent {ræervoir)
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L62 Chapter 5 Fbee Energy and Chemical Thermodynamics

system. So we can forget abouü bhe reservoir, and just remember that the system
will do whatever it can to m'inirn,ize its Helmholtz free energy. By the way, we couJd
have guessed this result from equation 5.5? aF < w. rf no work is done on the
system, .F can only decrease.

If instead we let the volume of the system change but keep it at the sarne
constant pressure as the reservoir, then the same line of reasoning gives

ds,.,or :d,s -!0, - lou: -|fo, - Tds +pdv): -íor, (5.30)'1

so it is the Gi,bbs free energy that tends to decrease. Again, we could have guessed.
this from equation 5.8, AG ( lI/otrr"..

Let me summarize these points, just for emphasis:

¡ At constant energy and volume, 
^g 

tends to increase.

o At constant temperature and volume, .F. tends to d.ecrease.

r At constant temperature and pressuïe, G tends to decrease.

All three statements assume that no particles are aliowed to enter or leave the
system (but see Problem 5.23).

We can understand these tendencies intuitively by looking again at the defini-
tions of the Helmholtz and Gibbs free energies. Recall that

F:U_TS (5.31)

So in a constant-temperature environment, saying that f'tends to decrease is the
same as saying t'hat U tends to decrease while 

^9 
tends to increase. Well, we already

know that 
^9 

tends to increase. But does a system's energy tend to spontaneously
decrease? Your int'ition probably sâys yes, and this is correct, but only because
when the system loses energ¡ its environment gains that energ¡ and therefore the
entropy of the environment increases. At low temperature, this effect tends to be
more important, since the entropy transferred to the environment for a given energ"y
transfer is large, proportional to rlT. But at high temperature, the environment
doesn't gain as much entropy, so the entropy of the system becomes more important
in determining the behavior of tr-.

Similar considerations apply to the Gibbs free erergy,

G: U + PV -TS. (b.92)

Now, however, the entropy of the environment can increase in two ways: It can
acquire energJ¿ from the system, or it can acquire volume from the system. So
the system's u and v "want" to decrease, while ^g "\ry'ants" to increase, all in the
interest of maximizing the total entropy of the universe.

Problem 5.L8, Imagine that you drop a brick on the ground and it lands with
a thud. Apparently the energy of this system tend.s to spontaneously decrease.
Expiain why.



5.2 Free Energy as a Force toward Equilibrium

Problem 5.19. In the previous section I derived the formula @F/ðVh_ _ _p.
Explain why this formura makes intuitive sense, by discussing graphs of f. vs. I,with different slopes.

Problem 5.20. The first excited energy lever of a hydrogen atom has an energy of10.2 ev, if we take the ground-state energy to be zåro. Éo*"rr"., the first excited
ievel is really four independent states, all with the same energy.-'w" 

"uo 
therefore

assign it an entropy of,5: ft1n4, since for this given varrå"of the energy, themultiplicity is 4. euestion: For what temperatures is the Hermhortz free energy ofa hydrogen atom in th" t::! excited levei positive, and for what temperatures isit negati.ve? (comment: when f'for the ràvel is negative, the atom wil sponta-neously go from the ground state into that rever, since,F :0 for the ground stateand F always tends.to decrease. However, for a system trri, ,*uri,-trre conclusionis only a probabilistic statement; random fluctuations wilr be very significant.)

Extensive and fntensive euantities
The number of potentialry interesting thermodynamic variabres has been growing
lately. We now have (J,V, N, S,T, p, þ, H, F, and G, among others. Orru *u;to organize all these quantities is to pick out the ones that ¿ou¡te if you simply
double the amount of stuff, adding the new alongside what you had originally (sel
Figure 5.9). under this hypothetical operation, you end up with twice the energy
and twice the volume, b.ot not twice the temperature. Those quantities that d,o
double are called extensive quantities. Those quantities that are unchanged,
when the amount of stuff doubles are called intensive quantities. Here,s a list,
divided according to this classification:

Extensive: V, N, S, (J, H, F, G, mass

Intensive: T, p, þ, density

If you multiply an extensive quantity by an intensive quantity, you end. up with
an extensive quantity; for example, volume x density: mass. ey tfru sameioken,
if you divide one extensive quantity by another, you get an intensive quantity. If
you multipiv two extensive quantities together, you get something that is neiiher;if you're confronted with such a product in one of your calcuiations, there,s a
good chance you did something wrong. Adding two quantities of the same type

V,U, S, P,T 2V,2U,25, P,T
Figure 5'9' Two rabbits have tu,ice as much volume, energy, and entropy as one
rabbit, but not twice as much pressure or temperature.
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L64 Chapter 5 Free Energy and Chernical Thermodynamics

yields another quantit)¡ of that type; fol instance, H : IJ + PV. Adding an
extensive quantity to an intensive one isn't allowed at all, so (for instance) you'll
never encounter the sum G+ p, even though G and p have the same units. There's
nothing wrong with exponentiating an extensive quantity, horn'ever; then you get a
quantity that is mult'ipl'icatiue, like f,) - es/k.

It's a good exercise to go back over the various equations involving F and G
and show that they make sense in terms of extensiveness and intensiveness. For
instance, in the thermod¡.namic identity for G,

ctG : -S dT +V d]) + t tt¿dN¿, (b.33)

each term is extensive, because each product ln rjt,r". one extensive ancl one inten-
sive quantity.

Problem 5.21, Is heat capacity (c) extensive or intensive? what about speciflc
heat (c)? Explain briefly.

Gibbs FÞee Energy and Chemical Potential
Using the idea of extensive and intensive quantities, r /.e can now derive another
useful relation involving the Gibbs free energy. First recall the partial-derivative
relation

/ aG\

': \u*- ),," (5'34)

This equation says that if you adcl one particle to a system, holding the temper-
ature and pressure fixed, the Gibbs free energy of the system increases by p (see
Figure 5.10). If you keep adding more particles, each one again adds ¡-r to the Gibbs
free energy. Now you might think that during this procedure the value of ¡-r could
gradually change, so that by the time you've doubled the number of particies, p has
a very different value from when I'ou started. But in fact, if ? and P are held fixed,
this can't happen: Each additional particle must add exactly t]he same amount
to G, because G is an extensive quantit¡' that rnust simply grow in proportion to
the. number of particles. The constant of proportionality, according to equation
5.34, is simply ¡-r,:

G : Np^ (5.3b)

This amazingly simple equation gives us a new interpretation of the chemical po-
tential, at least for a pure system with onl;' one type of particle: p is just the Gibbs
free energy per particle.

Figure 5.10. When you add a particle
to a system, holding the tempelatur.e and
pressure fixed, the system's Gìbbs free
energy increases by ¡-r.
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The preceding argument is subtle, so please think it through carefully. perhaps
the best way to understand it is to think about rvhy the same logic can't be applied
to the Helmholtz free energy, starting with the true relation

165

I
I

)

{

ðF
¡r (5.36)

T,V

The problem here is thai to increase fl by ¿¡ amount þ, yotrharre to add a particle
while holding the temperature and uolume fixed. Now, as you add more and more
particles, ¡L' does gradually change, because the system is becoming more dense. It,s
true that .F is an extensive quantit¡ but this d.oes not impl¡, ¡þ¿l -F doubles when
vou double the density of the system, holding its volume fixed. In the previous
paragraph it was crucial that the two variabies being held fixed in equation 5.g4, T
and P, r¡"ere both intensive, so that ail extensive quantities could grow in proportion
to l/.

For a system containing more than one type of particle, equation b.35 generalizes
in a natural way:

G: Nt,|_t Nzþz+...: )ì¡¡,p, (5.g2)

The proof is the same as before, except that we i-ugi" building up the system in in-
finitesimal increments keeping the proportions of the various species fixed through-
out the process. This result does not imply, however, that G for a míxture is simply
equal to the sum of the G's for the puïe components. The p's in equation b.BZ are
generally d'i'fferent from their values for the corresponding pure substances.

As a first application of equation b.Bb, let me now derive a very generai formula
for the chemical potential of an ideal gas. consider a fixed amount of gas at a fi.xed
temperature) as ï¡e vary the pressure. By equations 5.J5 and 5.24,

11
a

r

0p, 7AG V
)

b

)

I

ôP NAP N (5.38)

But by the ideal gas law this quantity is just krlp. Integrating both sides from
Po up to P therefore gives

t'(T,P) - p,('f ,Po) : kTln(PlP"). (b.gg)

Here Po can be any convenient reference pressure. usually we take po to be
atmospheric pressure (1 bar, to be precise). The stand.ard symbol for p, for a gas
at atmospheric pressure is po, so we can write

u(7, P) : p" (T) + kT Ln(p I p.) . (b.40)

Values of po (at least at room temperature) can be gotten from tables of Gibbs free
energies (p: GIw).Equation b.40 then tells you how ¡t varies as the pressure (or
equiralently', the density) changes. And in a m,irture of ideat gases, equation s.40
applies to each species separatel¡ if you take p to be the parti,øl pressure of that
species. This works because ideal gases are mostly empty space: How an ideal gas

u exchanges particles with its environment isn't going to be affected by the presence
of another ideal gas.

r
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problem 5.22. Shou'that equation 5.40 is in agreement with the expliclt formtla

for the chemical potential of a monatomic ideal gas derivecl in Section 3'5' show

how to calculate ¡ro fol a monatomic ideal gas'

Problems.2S.Bysubtractirrg¡-r.ly'fron[J,H,F,orG,otrecanobta'infouLnew
thermodynamic poientials. Of the four, the rnost useful is the grand free energy

(or grand Potential),
ó:U-TS-¡.t"N'

(a) Derive the ther-modynamic identity for' Õ, and the relatecl formulas for the

paltial derivatives of @ with respect Lo T, V, and ¡r'

(tr) Prove that, for a system in thermal and difiusive equilibrium (with a reser-

voirthatcarrsrrpplybothenergyandparticles),Õtendstodecrease.
(c) Prove that Õ : -PV '

(d)Asasimpleapplication'lettheSystembeasingleproton,l¡,hichcanbe
,,occupieå,' either by a silgle electron (making a hydlogen atom, with en-

"tgy-136eV)orb)'none(withenergyzero)'Neglecttheexcitedstatesof the atom arrd the t.lvo spin states of the electr.on, so that botlr the oc-

cupiedandunoccupiedstatesoftheprotonhavezeroentropy.Suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-

perature ãr ssoo K and an electron concentration of about 2 x 1019 per

cubic rneter. Calculate Õ for both the occupied and unoccupiecl states, to

determine which is more stable under these conditions. To compute the

chemicalpotentialoftheelectrons,treatthemasanidealgas.Atabout
wlrattemperaturewouldtheoccupiedandunoccupiedstatesbeequally
stable,fortlrisvalueoftheelectronconcentratiorr?(AsinProblem5,20,
thepredictionforsuchasmallsystemisonlyaprobabilisticone.)

5.3 Phase Tþansformations of Pure Substances
.^-riac nf n sub-



4O4 Reference Data

Thermodynamic Properties of Selected Substances

Al1 of the values in this table are fol one mole of material at 298 K and I bar. Following

the chemical formula is the form of the substance, either solid (s), liquid (t), gas (g), or
aqueous solution (aq). When there is more than one common solid form, the mineral
name or crystal structure is indicated. Data for aqueous solutions are at a standard
concentration of 1 mole per kilogram water. The enthalpy and Gibbs free energy of
formation, A¡É/ and A¡G, represent the changes in I{ and G upon forming one moie of
the material starting with elements in their most stable pure states (".g., C (graphite),
Oz (g), etc.). To obtain the value of A-F1 or AG for another reaction, subtract A/ of the
reactants from A¡ of the products. For ions in solution there is an ambiguity in dividing
therrnodynamic quantities between the positive and negative ions; by convention, H+ is
assigned the value zero and ail others are chosen to be consistent u'ith this value. Data
from Atkins (1998), Lide (1994), and Anderson (1996). Please note that, while these data
are sufficiently accurate and consistent for the examples and probiems in this textbook,
not all of the digits shown are necessarily significant; for research purposes you should
always consult original literature to determine experimental uncertainties.

Substance (form) A/.FI (kJ) A/G (kJ) S (J/K) Cp QIK) Iz (cm3)

Al (s)
Al2SiO5 (kyanite)
AlzSiOs (andalusite)
AIzSiO¡ (sillimanite)

A. (s)

C (graphite)
C (diamond)
cH¿ (e)

CzHo (e)

CeHs (e)

C2H5OH (1)

C6H1206 (giucose)

co (e)
Coz (e)
HzCOg (aq)
HCO3 (aq)

Ca2+ (aq)
CaCO¡ (calcite)
CaCO3 (aragonite)
CaCI2 (s)

Clz (e)
Ci- (aq)

Cu (s)

Fe (s)

0

-2594.29
-2590.27
-2587.76

0

0

-2443.88
-2442.66
-2440.99

0
2.900

-50.72
-32.82
-23.49

*r74.78

-910
-137.L7
-394.36
-623.08
-586.77

-553.58
- 1i28.8

-Lr27.8
-748.1

0

-r3t.23

28.33
83.81
93.22
96.11

24,35
rzt.7L
t22.72
I24.52

8.53
6.11

35.31
52.63

17r.46
115

29.L4
37.LL

81.88
81.25
72.59

33.91

-136.4

24.44

25.10

ooo
44.09
51.53
49.90

0 154.84 20.79

0
1.895

-74.8r
-84.68

- 103.85

-277.69
-r273

- 110.53

-393.51
-699.65
-691.99

5.30
3.42

-542.83
-L206.9
-1207.r
-795.8

0

-167.1.6

0

0

5,74
2.38

186.26
229.60
269.9L

160.7
2t2

197.67
2t3.74

r87.4
9r.2

-53.1
92.9
88.7

104.6

223.07
56.5

0 33.150

58.4

36.93
34.15
51.6

17.3

7.r2

7.tI0 27.28
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Substance (form) ai¡r (kJ) arc (kJ) s (J/K) Cp (J/K) U (cm3)
Hz (e)
H (e)
H+ (uq)
Hzo (Ð

Hzo (e)

H" (e)

He (l)

Nz (e)
NHe (e)

Na+ (aq)
NaCI (s)
NaAlSi3Os (albite)
NaAlSi2O6 (jadeite)

N" (e)

oz (e)
oz (aq)
oH- (aq)

Pb (s)
PbO2 (s)
PbSOa (s)

so!- (aq)
HSO. (aq)

SiO2 (o qua,rtz)
HaSiOa (aq)

0

0

0

-46.11

0
277.97

0

-285.83
-247.82

0
203.25

0

-237.r3
-228.57

0

- 16.45

-26L.9L
-384.14
-3711.5
-2852.I

0

L6.4

-r57.24

0

-2L7.33
-813.0

-744.53
-755.91

-856.64
-1307.67

130.68
rI4.77

0
69.91

188.83

191.61

t92.45

59.0
72.L3

207.40
133.5

0 146.33

205.L4
110.9

-L0.75

64.81
68.6

148.5

20.t
131.8

28.82
20.78

0
75.29
33.58

29.t2
35.06

46.4

50.50
205.10

160.0

20.79

29.38

-148.5

26.44
64.64
L03.2

-293
-84

44.43
468.98

18.068

0 126.15 20.7s

0 76.02 27.98 14.81

-240.L2
-411.15
-3935.1
-3030.9

0

0

-17.7
-229.59

0

-277.4
-920.0

-909.27
-887.34

-910.94
-t449.36

4L.84
2L5.t3

_I.2
27.0r

100.07
60.40

18.3

22.69

0
2

)
I
I
3

0

)3
t5
.t¡

I
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