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5 Free Energy and

Chemical Thermodynamics

The previous chapter applied the laws of thermodynamics to cyclic processes: the
operation of engines and refrigerators whose energy and entropy are unchanged
over the long term. But many important thermodynamic processes are not cyclic.
Chemical reactions, for example, are constrained by the laws of thermodynamics
but do not end with the system in the same state where it started.

The purpose of the present chapter is to apply the laws of thermodynamics to
chemical reactions and other transformations of matter. One complication that
arises immediately is that these transformations most often occur in systems that
are not isolated but are interacting with their surroundings, thermally and often
mechanically. The energy of the system itself is usually not fixed; rather its temper-
ature is held fixed, through interaction with a constant-temperature environment.
Similarly, in many cases it is not the volume of the system that is fixed but rather
the pressure. Our first task, then, is to develop the conceptual tools needed to
understand constant-temperature and constant-pressure processes.

5.1 Free Energy as Available Work

In Section 1.6 I defined the enthalpy of a system as its energy plus the work needed
to make room for it, in an environment with constant pressure P:

H=U+PV. (5.1)

This is the total energy you would need, to create the system out of nothing and
put it in such an environment. (Since the initial volume of the system is zero,
AV =V.) Or, if you could completely annihilate the system, H is the energy you
could recover: the system’s energy plus the work done by the collapsing atmosphere.
Often, however, we're not interested in the total energy needed or the total
energy that can be recovered. If the environment is one of constant temperature,
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the system can extract heat from this environment for free, so all we need to
provide, to create the system from nothing, is any additional work needed. And if
we annihilate the system, we generally can’t recover all its energy as work, because
we have to dispose of its entropy by dumping some heat into the environment.

So I'd like to introduce two more useful quantities that are related to energy
and analogous to H. One is the Helmholtz free energy,

F=U-TS. (5.2)

150 Chapter 5  Free Energy and Chemical Thermodynamics

This is the total energy needed to create the system, minus the heat you can get
for free from an environment at temperature 7. This heat is given by TAS =TS8,
where S is the system’s (final) entropy; the more entropy a system has, the more of
its energy can enter as heat. Thus F is the energy that must be provided as work,
if you're creating the system out of nothing.™ Or if you annihilate the system, the '
energy that comes out as work is /', since you have to dump some heat, equal to T'S,
into the environment in order to get rid of the system’s entropy. The awailable, or
“free,” energy is I

The word “work” in the previous paragraph means all work, including any
that is done automatically by the system’s surroundings. If the system is in an
environment with constant pressure P and constant temperature 7', then the work
you need to do to create it, or the work you can recover when you destroy it, is
given by the Gibbs free energy,

G=U-—TS+PV. (5.3)

'This is just the system’s energy, minus the heat term that’s in F , plus the atmo-
spheric work term that’s in H (see Figure 5.1).

Figure 5.1. To create a rabbit out of nothing and place it on the table, the
magician need not summon up the entire enthalpy, H = U + PV. Some energy,
equal to 7'S, can flow in spontaneously as heat; the magician must provide only
the difference, G = H — TS, as work.

*In the context of creating a system, the term free energy is a misnomer. The energy
that comes for free is T'S, the term we subtracted to get F7. In this context, I should be
called the costly energy. The people who named F were instead thinking of the reverse
process, where you annihilate the system and recover £ as work.
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5.1 Free Energy as Available Work

-TS
—
Figure 5.2. To get H from U or G from F,
add PV; to get F from U or G from H, sub- U F
tract T°S. + P Vl
H G

The four functions U, H, F, and G are collectively called thermodynamic
potentials. Figure 5.2 shows a diagram that I use to remember the definitions.

Usually, of course, we deal with processes that are much less dramatic than the
creation or annihilation of an entire system. Then instead of F' and G themselves,
we want to look at the changes in these quantities.

For any change in the system that takes place at constant temperature T', the
change in F' is

AF =AU ~TAS=Q+W —TAS, (5.4)

where @ is the heat added and W is the work done on the system. If no new entropy
is created during the process, then @ = T'AS, so the change in F is precisely equal
to the work done on the system. If new entropy is created, then T'AS will be
greater than @, so AF will be less than W. In general, therefore,

AF <W at constant 7T'. (5.5)

This W includes all work done on the system, including any work done automati-
cally by its expanding or collapsing environment.

If the environment is one of constant pressure, and if we're not interested in
keeping track of the work that the environment does automatically, then we should
think about G instead of F'. For any change that takes place at constant T and P,
the change in G is

AG=AU -TAS+PAV=Q+W -TAS+ PAV. (5.6)

Again, the difference Q — T AS is always zero or negative. Meanwhile, W includes

the work done by the environment, —P AV, plus any “other” work (such as elec-
trical work) done on the system:

W = —PAV + Wither- (5.7)

This P AV cancels the one in equation 5.6, leaving

AG < Wother at constant T', P. (5.8)

Because free energy is such a useful quantity, values of AG for an enormous
variety of chemical reactions and other processes have been measured and tabulated.
There are many ways to measure AG. The easiest conceptually is to first measure
AH for the reaction, by measuring the heat absorbed when the reaction takes
place at constant pressure and no “other” work is done. Then calculate AS from
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the entropies of the initial and final states of the system, determined separately
from heat capacity data as described in Sections 3.2 and 3.4. Finally, compute

AG = AH -TASg. (5.9)

Values of AG for the formation of selected compounds and solutions (at 7° = 298 K
and P = 1 bar) are given in the table at the back of this book. You can compute
AG values for other reactions by imagining first that each reactant is converted to
elemental form and then that these elements are converted into the products.

As with U and H, the actual value of For@Gis unambiguous only if we include
all the energy of the system, including the rest energy (me?) of every particle. In
everyday situations this would be ridiculous, so instead we measure U from some
other convenient but arbitrary reference point, and this arbitrary choice also fixes
the zero points for H s F, and G. Changes in these quantities are unaffected by our
choice of reference point, and changes are all we usually talk about anyway, so in
practice we can often avoid choosing a reference point,

Problem 5.1. Let the system be one mole of argon Bas at room temperature and

atmospheric pressure. Compute the total energy (kinetic only, neglecting atomic

rest energies), entropy, enthalpy, Helmholtz free energy, and Gibbs free energy.

Express all answers in SI units.

Problem 5.2. Consider the production of ammonia from nitrogen and hydrogen,

Np +3Hy; — 2NHg,

at 298 K and 1 bar. From the values of AH and § tabulated at the back of this
boaok, compute AG for this reaction and check that it is consistent with the valuye
given in the table.

Electrolysis, Fuel Cells, and Batteries

As an example of using AG, consider the chemical reaction
H,O0 — H, + %Oz, (510)

the electrolysis of liquid water into hydrogen and OXygen gas (see Figure 5.3).
Assume that we start with one mole of water, so we end with a mole of hydrogen
and half a mole of oxygen,

According to standard reference tables, AH for this reaction (at room temper-
ature and atmospheric pressure) is 286 kJ. This is the amount of heat you would
get out if you burned a mole of hydrogen, running the reaction in reverse. When
we form hydrogen and Oxygen out of water, we need to put 286 kJ of energy into
the system in some way or other. Of the 286 kJ, a small amount goes into push-
ing the atmosphere away to make room for the gases produced; this amount is
PAV =4 kJ. The other 282 kJ remains in the system itself (see Figure 5.4). But
of the 286 kJ needed, must we supply all as work, or can some enter as heat?

To answer this question we must determine the change in the system’s entropy.
The measured and tabulated entropy values for one mole of each species are

SH2O =70 J/K,‘ SH-;_ =131 J/K, 502 = 205 J/K. (5.11)
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¢ our Figure 5.3. To separate water into hydrogen and oxygen, just run an electric
56 b current through it. In this home experiment the electrodes are mechanical pencil
leads (graphite). Bubbles of hydrogen (too small to see) form at the negative
electrode (left) while bubbles of oxygen form at the positive electrode (right).
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ic P AV =4kJ (pushing
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1e AG =237 kJ I %;leAaf)— 49 kJ
(electrical work) System
Figure 5.4. Energy-flow diagram for electrolysis of one mole of water. Under ideal
conditions, 49 kJ of energy enter as heat (T'AS), so the electrical work required is
only 237 kJ: AG = AH — TAS. The difference between AH and AU is PAV =
5.10) 4 kJ, the work done to make room for the gases produced. )
.10 :
5.3). Subtract 70 from (131 + }-205) and you get +163 J/K—the system’s entropy
rogen increases by this amount. The maximum amount of heat that can enter the system
is therefore TAS = (298 K)(163 J/K) = 49 kJ. The amount of energy that must
nper- enter as electrical work is the difference between 49 and 286, that is, 237 kJ.
would This number, 237 kJ, is the change in the system’s Gibbs free energy; it is
When the minimum “other” work required to make the reaction go. To summarize the
v into computation,
- AG = AH — T AS,
DUET : (5.12)
unt is 237 kJ = 286 kJ — (298 K)(163 J/K).
. But
? For convenience, standard tables (like the one at the back of this book) generally
tropy. include AG values, saving you from having to do this kind of arithmetic.
We can also apply AG to the reverse reaction. If you can combine hydrogen .
and oxygen gas to produce water in a controlled way, you can, in principle, extract
(5.11) 237 kJ of electrical work for every mole of hydrogen consumed. This is the principle
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Figure 5.5. In a hydrogen fuel
cell, hydrogen and oxygen gas
pass through porous electrodes
and react to form water, remov-
ing electrons from one electrode
and depositing electrons on the
other.

of the fuel cell (see Figure 5.5), a device that might replace the internal combustion
engine in future automobiles.* In the process of producing this electrical work, the
fuel cell will also expel 49 kJ of waste heat, in order to get rid of the excess entropy
that was in the gases. But this waste heat is only 17% of the 286 kJ of heat that
would be produced if you burned the hydrogen and tried to run a heat engine from
it. So an ideal hydrogen fuel cell has an “efficiency” of 83%, much better than any
practical heat engine. (In practice, the waste heat will be more and the efficiency
less, but a typical fuel cell still beats almost any engine.)

A similar analysis can tell you the electrical energy output of a battery, which
is like a fuel cell but has a fixed internal supply of fuel (usually not gaseous). For
example, the familiar lead-acid cell used in car batteries runs on the reaction

Pb +PbO; + 4H" + 2503~ — 2PbS0, + 2H,0. (5.13)

According to thermodynamic tables, AG for this reaction is —394 kJ /mol, at stan-
dard pressure, temperature, and concentration of the solution. So the electrical
work produced under these conditions, per mole of metallic lead, is 394 kJ. Mean-
while, AH for this reaction is —316 kJ /mol, so the energy that comes out of the
chemicals is actually less than the work done, by 78 kJ. This extra, energy comes
from heat, absorbed from the environment. Along with this heat comes some en-
tropy, but that’s fine, since the entropy of the products is greater than the entropy
of the reactants, by (78 kJ)/(298 K) =260 J/K (per mole). These energy flows are
shown in Figure 5.6. When you charge the battery, the reaction runs in reverse,
taking the system back to its initial state. Then you have to put the 78 kJ of heat
back into the environment, to get rid of the excess entropy.

You can also calculate the voltage of a battery or fuel cell, provided that you
know how many electrons it pushes around the circuit for each molecule that reacts.
To determine this number, it helps to look at the chemistry in more detail. For a

*See Sivan Kartha and Patrick Grimes, “Fuel Cells: Energy Conversion for the Next
Century,” Physics Today 47, 54-61 (November, 1994).
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IS

- Al = ~316 k] -
78 kJ
394 kJ L )

(electrical work)

5.6. Bnergy-flow diagram for a lead-acid cell operating ideally. For each
acts, the system’s energy decreases by 316 kJ and its entropy increases
the entropy increase, the system can absorb 78 kJ of heat
he maximum work performed is therefore 394 kJ. (Because
changes are negligible so AU = AH

Figure
mole that re
by 260 J/K. Because of
from the environment; t
no gases are involved in this reaction, volume

and AF = AG.)
lead-acid cell,the reaction (5.13) takes place in three steps:

in solution: 280%™ + 2H' — 2HSOy;
at — electrode: Pb +HSO; — PbSO4 + HT +2e7;
at + electrode: PbOy + HSOF + 3H* + 2~ — PbSO4 +2Hz0.

(5.14)

Thus, two electrons are pushed around the circuit each time the full reaction occurs.

The electrical work produced per electron is

394 kJ =
g = 32T X 107 I =204 eV (5.15)

give each electron 1 eV of energy, so the cell
ay be slightly different, because
ard concentration (one mole per
(By the way, a car battery

But 1 volt is just the voltage needed to
has a voltage of 2.04 V. In practice the voltage m
the concentrations used are different from the stand
kilogram of water) assumed in thermodynamic tables.
contains six lead-acid cells, giving a total of about 12 V.)

Problem 5.3. Use the data at the back of this book to verify the values of AH

and AG quoted above for the lead-acid reaction 5.13.

Problem 5.4. In a hydrogen fuel cell, the steps of the chemical reaction are

at — electrode: Hp +20H — 2H,0 + 27

at + electrode: %02 + HyO +2¢~ — 20H™.

Calculate the voltage of the cell. What is the minimum voltage required for elec-

trolysis of water? Explain briefly.
Problem 5.5. Consider a fuel cell that uses methane (“natural gas”) as fuel. The

reaction is
CH4 + 209 — 2H,0 + COg.

back of this book to determine the values of AH and

(a) Use the data at the
ume that the reaction

AG for this reaction, for one mole of methane. Ass
takes place at room temperature and atmospheric pressure.
get out of

(b) Assuming ideal performance, how much electrical work can you
the cell, for each mole of methane fuel?
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(c) How much waste heat is produced, for each mole of methane fuel?

(d) The steps of this reaction are

at — electrode: CHy + 2H,0 - — COy +8H1 4+ 8e ;
at + electrode: 209+ 81UV 48 4H50.

What is the voltage of the cell?

Problem 5.6. A muscle can be thought of as a fuel cell, producing work from the
mefabolism of glucose:

CeH1206 + 602 — 6C0Oq + 6Ho0.

(a) Use the data at the back of this book to determine the values of AH and
AG for this reaction, for one mole of glucose. Assume that the reaction
takes place at room temperature and atmospheric pressure.

(b) What is the maximum amount of work that a muscle can perform, for each
mole of glucose consumed, assuming ideal operation?

(c) Still assuming ideal operation, how much heat is absorbed or expelled by
the chemicals during the metabolism of a mole of glucose? (Be sure to say
which direction the heat Hows.)

(d) Use the concept of entropy to explain why the heat flows in the direction
it does.

(e) How would your answers to parts (b) and (c) change, if the operation of
the muscle is not ideal?

Problem 5.7. The metabolism of a glucose molecule (see previous problem)
occurs in many steps, resulting in the synthesis of 38 molecules of ATP (adenosine
triphosphate) out of ADP (adenosine diphosphate) and phosphate ions. When the
ATP splits back into ADP and phosphate, it liberates energy that is used in a host
of important processes including protein synthesis, active transport of molecules
across cell membranes, and musele contraction. [n a muscle, the reaction ATP
—+ ADP + phosphate is catalyzed by an enzyme called myosin that is attached
to a muscle filament. As the reaction takes place, the myosin molecule pulls on
an adjacent filament, causing the muscle to contract. The force it exerts averages
about 4 piconewtons and acts over a distance of about 11 nm. From this data
and the results of the previous problem, compute the “efficiency” of a muscle,
that is, the ratio of the actual work done to the maximum work that the laws of
thermodynamics would allow.

Thermodynamic Identities

If you're given the enthalpy or free energy of a substance under one set of con-
ditions, but need to know its value under some other conditions, there are some
handy formulas that are often useful. These formulas resemble the thermodynamic
identity,

dU =TdS — PdV + udN, (5.16)

but are written for H or F or G instead of U.
Pll start by deriving the formula for the change in H. If we imagine changing
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H, U, P, and V by infinitesimal amounts, then the definition H = U + PV tells us

that
dH =dU + PdV + V dP. (5.17)

The last two terms give the change in the product PV, according to the product
rule for derivatives. Now use the thermodynamic identity 5.16 to eliminate dU, and
cancel the P dV terms to obtain

dH =TdS +V dP + pdN. (5.18)

This “thermodynamic identity for H” tells you how H changes as you change the
entropy, pressure, and/or number of particles.*

Similar logic can be applied to F' or G. From the definition of the Helmholtz
free energy (F'=U — T'S), we have

dF =dU —TdS - SdT. (5.19)
Plugging in equation 5.16 for dU and canceling the T'dS terms gives
dF = —-SdT'— PdV + pdN. (5.20)

I'll call this result the “thermodynamic identity for F.” From it one can derive
a variety of formulas for partial derivatives. For instance, holding V' and N fixed
yields the identity

F
S=— or . (5.21)
T Jy N
Similarly, holding 7" and either N or V fixed gives
or oF
P=—{_— . == . 5.22
() #= (W), 62

Finally, you can derive the thermodynamic identity for G,
dG = —-5dT +V dP + pdN, (5.23)

and from it the following partial derivative formulas:

oG oG oG
s =)y (), o

These formulas are especially useful for computing Gibbs free energies at nonstan-
dard temperatures and pressures. For example, since the volume of a mole of

*Because of the thermodynamic identity for U, it is most natural to think of U as a
function of the variables S, V, and N. Similarly, it is most natural to think of H as a
function of S, P, and N. Adding the PV term to U is therefore a kind of change of
variables, from V to P. Similarly, subtracting T'S changes variables from S to T'. The
technical name for such a change is Legendre transformation.

157




158 Chapter 5 Free Energy and Chemical Thermodynamics

graphite is 5.3 x 107% m?3, its Gibbs free energy increases by 5.3 x 1079 J for each
pascal (N/m?) of additional pressure. ;

In all of these formulas I have implicitly assumed that the system contains only
one type of particles. If it is a mixture of several types, then you need to replace
pdN with 37 u; dN; in every thermodynamic identity. In the partial-derivative
formulas with NV fixed, all the N’s must be held fixed. And each formula with
0/ON becomes several formulas; so for a mixture of two types of particles,

oG 0G
= — and = | =— . 5.25
i <8N1 )T,P,N2 = (3N2 >T,P,N1 ( )

Problem 5.8. Derive the thermodynamic identity for G (equation 5.23), and from
it the three partial derivative relations 5.24.

Problem 5.9. Sketch a qualitatively accurate graph of G vs. T for a pure sub-
stance as it changes from solid to liquid to gas at fixed pressure. Think carefully
about the slope of the graph. Mark the points of the phase transformations and _
discuss the features of the graph briefly. i

Problem 5.10. Suppose you have a mole of water at 25°C and atmospheric
pressure. Use the data at the back of this book to determine what happens to its
Gibbs free energy if you raise the temperature to 30°C. To compensate for this
change, you could increase the pressure on the water. How much pressure would
be required?

Problem 5.11. Suppose that a hydrogen fuel cell, as described in the text, is to
be operated at 75°C and atmospheric pressure. We wish to estimate the maximum
electrical work done by the cell, using only the room-temperature data at the back
of this book. It is convenient to first establish a zero-point for each of the three
substances, Hy, O3, and HyO. Let us take G for both Hy and O3 to be zero at
25°C, so that G for a mole of HyO is —237 kJ at 25°C.

{(a) Using these conventions, estimate the Cibbs free energy of a mole of Hy at
75°C. Repeat for Oy and HaO.

(b) Using the results of part (a), calculate the maximum electrical work done
by the cell at 75°C, for one mole of hydrogen fuel. Cormupare to the ideal
performance of the cell at 25°C.

Problem 5.12. Functions encountered in physics are generally well enough be-
haved that their mixed partial derivatives do not depend on which derivative is
taken first. Therefore, for instance,

4 o (U _ o (U
1 ovi\as) oas\ev )
where each 8/0V is taken with S fixed, each 8/0S is taken with V fixed, and N

is always held fixed. From the thermodynamic identity (for U) you can evaluate
the partial derivatives in parentheses to obtain

(7).=-(5),

i’ a nontrivial identity called a Maxwell relation. Co through the derivation of
this relation step by step. Then derive an analogous Maxwell relation from each of
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the other three thermodynamic identities discussed in the text (for H, F, and G).
Hold N fixed in all the partial derivatives; othep Maxwell relations can be derived
by considering partial derivatives with respect to N, but after you've done four of
them the novelty begins to wear off. For applications of these Maxwell relations,
see the next four problems.

Problem 5.13. Use a Maxwell relation from the previous problem and the third

law of thermodynamics to prove that the thermal expansion coefficient B (defined
in Problem 1.7) must be zero at T'=0,

Problem 5.14. The partial-derivative relations derived in Problems 1.46, 3.33,
and 5.12, plus a bit more partial-derivative trickery, can be used to derive a com-
pletely general relation between Cp and Cy,

(a) With the heat capacity expressions from Problem 3.33 in mind, first con-
sider § to be a function of T and V. Expand dS in terms of the partial
derivatives (95/8T)ys and (0S/0V)p. Note that one of these derivatives
is related to ().

(b) To bring in C'p, consider V to be a function of 7' and P and expand dV in
terms of partial derivatives in a similar way. Plug this expression for {1/
into the result of part (a), then set dP = 0 and note that you have derived
a nontrivial expression for (08/9T)p. This derivative is related to Cp, so
you now have a formula for the difference C'p — Cy.

(c) Write the remaining partial derivatives in terms of measurable quantities
using a Maxwell relation and the result of Problem 1.46. Your final result
should be

TV g
Cp = Cy + s :
KT
(d) Check that this formula gives the correct value of Cp ~ Cy for an ideal

gas.
(e) Use this formula to argue that C'p cannot be less than Cy.

(£) Use the data in Problem 1.46 to evaluate Cp—Cy for water and for mercury
at room temperature. By what percentage do the two heat capacities differ?

(8) Figure 1.14 shows measured values of Cp for three elemental solids, com-
pared to predicted values of Cy. It turns out that a graph of 3 vs. T for
a solid has same general appearance as a graph of heat capacity. Use this
fact to explain why Cp and Cy agree at low temperatures but diverge in
the way they do at higher temperatures.

Problem 5.15. The formula for C'p —Cy derived in the previous problem can also
be derived starting with the definitions of these quantities in terms of U and H.
Do so. Most of the derivation is very similar, but at one point you need to use the
relation P = —(GF/aV ).

Problem 5.16. A formula analogous to that for Cp — Cy relates the isothermal
and isentropic compressibilitioes of a material:
TV 3?

KT =Kg + cp

(Here kg = ~(1/V)(@V/8P)g is the reciprocal of the adiabatic bulk modulus
considered in Problem 1.39.) Derive this formula. Also check that it is true for an
ideal gas.

159




160 Chapter 5  Free Energy and Chemical Thermodynamics

Problem 5.17. The enthalpy and Gibbs free energy, as defined in this section, give
special treatment to mechanical (CI'JIilj)l‘i-.'.‘_-:.‘iiOll-(.'K{Jal’lSiOIl) work, — P dV. Analogous
quantities can be defined for other kinds of work, for instance, magnetic work.*
Consider the situation shown in Figure 5.7, where a long solenoid (IV turns, total
length L) surrounds a magnetic specimen (perhaps a paramagnetic solid). If the
magnetic field inside the specimen is B and its total magnetic moment is M, then
we define an auxilliary field # (often called simply the magnetic field) by the
relation

where pp is the “permeability of free space,” drx 107" N / A2, Assuming cylindrical
symmetry, all vectors must point either left or right, so we can drop the ~ symbols
and agree that rightward is positive, leftward negative. From Ampere’s law, one
can also show that when the current in the wire is [ , the H field inside the solenoid
is NI/L, whether or not the specimen is present.

(a) Imagine making an infinitesimal change in the current in the wire, resulting
in infinitesimal changes in B, M, and H. Use Faraday's law to show that
the work required (from the power supply) to accomplish this change is
Wiotal = VH dB. (Neglect the resistance of the wire.)

(b) Rewrite the result of part (a) in terms of H and M, then subtract off the
work that would be required even if the specimen were not present. If
we define W, the work done on the system,’ to be what’s left, show that
W = ‘U.U'}"I’. dM.

(c) What is the thermodynamic identity for this system? (Include magnetic
work but not mechanical work or particle flow.)

(d) How would you define analogues of the enthalpy and Gibbs (ree energy for
a magnetic system? (The Helmholtz free energy is defined in the same way
as for a mechanical system.) Derive the thermodynamic identities for each
of these quantities, and discuss their interpretations.

Figure 5.7. A long solenoid, surrounding a magnetic specimen, connected
to a power supply that can change the current, performing magnetic work.

*This problem requires some familiarity with the theory of magnetism in matter. See,
for instance, David J. Griffiths, Introduction to Electrodynamics, third edition (Prentice-
Hall, Englewood Cliffs, NJ, 19899), Chapter 6.

"This is not the only possible definition of the “system.” Different definitions are
suitable for different physical situations, unfortunately leading to much confusion in ter-
minology. For a more complete discussion of the thermodynamics of magnetism see Mandl
(1988), Carrington (1994), and/or Pippard (1957).
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5.2 Free Energy as a Force toward Equilibrium

For an isolated system, the entropy tends to increase; the system’s entropy is what
governs the direction of spontaneous change. But what if a system is not isolated?
Suppose, instead, that our system is in good thermal contact with its environment
(see Figure 5.8). Now energy can pass between the system and the environment,
and the thing that tends to increase is not the system’s entropy but rather the total
entropy of system plus environment. In this section I’d like to restate this rule in
a more useful form.

I'll assume that the environment acts as a “reservoir” of energy, large enough
that it can absorb or release unlimited amounts of energy without changing its
temperature. The total entropy of the universe can be written as S + Sgr, where
a subscript R indicates a property of the reservoir, while a quantity without a
subscript refers to the system alone. The fundamental rule is that the total entropy
of the universe tends to increase, so let’s consider a small change in the total entropy:

dStotal = dS -+ dSR (526)
I would like to write this quantity entirely in terms of system variables. To do
so, I'll apply the thermodynamic identity, in the form
1 P 7
=-—=d —=dV — = ;
ds T U+T v TdN, (5.27)

to the reservoir. First Il assume that V and N for the reservoir are fixed—only
energy travels in and out of the system. Then dSg = dU, r/Tr, so equation 5.26
can be written

1
dStotal e dS + = dUR (528)
Tr

But the temperature of the reservoir is the same as the temperature of the system,
while the change dUg in the reservoir’s energy is minus the change dU in the
system’s energy. Therefore,

1 1 1
@Shora1 = dS = 7 dU = —7(dU ~ T dS) = ~ - dF. (5.29)

Aha! Under these conditions (fixed T, V, and N ), an increase in the total entropy
of the universe is the same thing as a decrease in the Helmholtz free energy of the

Figure 5.8. For a system that can exchange
energy with its environment, the total en- = O System A

tropy of both tends to increase. ;’ IJJ-

Environment (reservoir)
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system. So we can forget about the reservoir, and just remember that the system
will do whatever it can to minimize its Helmholtz free energy. By the way, we could
have guessed this result from equation 5.5, AF < W. If no work is done on the
system, F' can only decrease.

If instead we let the volume of the system change but keep it at the same
constant pressure as the reservoir, then the same line of reasoning gives

1 P i i
ASiote = dS — 7 dU = ZdV = (AU ~TdS + PdV) = —dG,  (5.30)

s0 it is the Gibbs free energy that tends to decrease. Again, we could have guessed
this from equation 5.8, AG < Wother.
Let me summarize these points, just for emphasis:

o At constant energy and volume, S tends to increase.
e At constant temperature and volume, F' tends to decrease.
o At constant temperature and pressure, G tends to decrease.

All three statements assume that no particles are allowed to enter or leave the
system (but see Problem 5.23).

We can understand these tendencies intuitively by looking again at the defini-
tions of the Helmholtz and Gibbs free energies. Recall that

F=U-TS. (5.31)

So in a constant-temperature environment, saying that F' tends to decrease is the
same as saying that U tends to decrease while S tends to increase. Well, we already
know that S tends to increase. But does a system’s energy tend to spontaneously
decrease? Your intuition probably says yes, and this is correct, but only because
when the system loses energy, its environment gains that energy, and therefore the
entropy of the environment increases. At low temperature, this effect tends to be
more important, since the entropy transferred to the environment for given energy
transfer is large, proportional to 1/7. But at high temperature, the environment
doesn’t gain as much entropy, so the entropy of the system becomes more important
in determining the behavior of F.
Similar considerations apply to the Gibbs free energy,

G=U+PV-TS. (5.32)

Now, however, the entropy of the environment can increase in two ways: It can
acquire energy from the system, or it can acquire volume from the system. So
the system’s U and V' “want” to decrease, while S “wants” to increase, all in the
interest of maximizing the total entropy of the universe.

Problem 5.18. Imagine that you drop a brick on the ground and it lands with
a thud. Apparently the energy of this system tends to spontaneously decrease.
Explain why.
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5.2  Free Energy as a Force toward Equilibrium

Problem 5.19. In the previous section I derived the formula, (OF/0V)p = —P.
Explain why this formula makes intuitive sense, by discussing graphs of F vs. V
with different slopes.

Problem 5.20. The first excited energy level of a hydrogen atom has an energy of
10.2 eV, if we take the ground-state energy to be zero. However, the first excited
level is really four independent states, all with the same energy. We can therefore
assign it an entropy of S = kln4, since for this given value of the energy, the
multiplicity is 4. Questiorn: For what temperatures is the Helmholtz free energy of
a hydrogen atom in the first excited level positive, and for what temperatures is
it negative? (Comment: When F for the level is negative, the atom will sponta-
neously go from the ground state into that level, since F' = 0 for the ground state
and I always tends to decrease. However, for a system this small, the conclusion
is only a probabilistic statement; random fluctuations will be very significant.)

Extensive and Intensive Quantities

The number of potentially interesting thermodynamic variables has been growing
lately. We now have U, V, N, S, T, P, H, H, I, and G, among others. One way
to organize all these quantities is to pick out the ones that double if you simply
double the amount of stuff, adding the new alongside what you had originally (see
Figure 5.9). Under this hypothetical operation, you end up with twice the energy
and twice the volume, but not twice the temperature. Those quantities that do
double are called extensive quantities. Those quantities that are wnchanged
when the amount of stuff doubles are called intensive quantities. Here’s a list,
divided according to this classification:

Extensive: V, N, S, U, H, F, G, mass
Intensive: T, P, u, density

If you multiply an extensive quantity by an intensive quantity, you end up with
an extensive quantity; for example, volume x density = mass. By the same token,
if you divide one extensive quantity by another, you get an intensive quantity. If
you multiply two extensive quantities together, you get something that is neither:
if you're confronted with such a product in one of your calculations, there’s a
good chance you did something wrong. Adding two quantities of the same type

V,U,S5 P, T 2V,2U,28, P, T

Figure 5.9. Two rabbits have twice as much volume, energy, and entropy as one
rabbit, but not twice as much pressure or temperature.
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yields another quantity of that type; for instance, H = U + PV. Adding an
extensive quantity to an intensive one isn’t allowed at all, so (for instance) you’ll
never encounter the sum G + y, even though G and p have the same units. There’s
nothing wrong with exponentiating an extensive quantity, however; then you get a
quantity that is multiplicative, like Q = e5/k,

It’s a good exercise to go back over the various equations involving F and G
and show that they make sense in terms of extensiveness and intensiveness. For
instance, in the thermodynamic identity for G,

dG = -SdT + VdP + Y p; dN; (5.33)

each term is extensive, because each product involves one extensive and one inten-
sive quantity.

Problem 5.21. Is heat capacity (C') extensive or intensive? What about specific
heat (¢)? Explain briefly.

Gibbs Free Energy and Chemical Potential

Using the idea of extensive and intensive quantities, we can now derive another
useful relation involving the Gibbs free energy. First recall the partial-derivative

relation PYe
— _— . . 4
= (5%, (34

This equation says that if you add one particle to a system, holding the temper-
ature and pressure fixed, the Gibbs free energy of the system increases by u (see
Figure 5.10). If you keep adding more particles, each one again adds 1 to the Gibbs
free energy. Now you might think that during this procedure the value of 1 could
gradually change, so that by the time you've doubled the number of particles, y has
a very different value from when you started. But in fact, if T and P are held fixed,
this can’t happen: Each additional particle must add exactly the same amount
to G, because G is an extensive quantity that must simply grow in proportion to
the. number of particles. The constant of proportionality, according to equation
5.34, is simply u:

G = Nu. (5.35)
This amazingly simple equation gives us a new interpretation of the chemical po-

tential, at least for a pure system with only one type of particle: 4 is just the Gibbs
free energy per particle.

/— " Figure 5.10. When you add a particle
to a system, holding the temperature and

pressure fixed, the system’s Gibbs free
energy increases by .
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5.2 Free Energy as a Force toward Equilibrium

The preceding argument is subtle, so please think it through carefully. Perhaps
the best way to understand it, is to think about why the same logic can’t be applied
to the Helmholtz free energy, starting with the true relation

o <§%>m' (5.36)

The problem here is that to increase F' by an amount #+, you have to add a particle
while holding the temperature and volume fixed. N ow, as you add more and more
particles, i does gradually change, because the system is becoming more dense. It's
true that F' is an extensive quantity, but this does not imply that F' doubles when
you double the density of the system, holding its volume fixed. In the previous
paragraph it was crucial that the two variables being held fixed in equation 5.34, T
and P, were both intensive, so that all extensive quantities could grow in proportion
to N.

For a system containing more than one type of particle, equation 5.35 generalizes
in a natural way:

G = Nipi1 + Noptg + -+ = ZNi,Ui- (5.37)

The proof is the same as before, except that we imagine building up the system in in-
finitesimal increments keeping the proportions of the various species fixed through-
out the process. This result does not imply, however, that G for a mixture is simply
equal to the sum of the G’s for the pure components. The w's in equation 5.37 are
generally different from their values for the corresponding pure substances.

As a first application of equation 5.35, let me now derive a very general formula
for the chemical potential of an ideal gas. Consider a fixed amount of gas at a fixed
temperature, as we vary the pressure. By equations 5.35 and 5.24,

op 110G V

OP  NOP N
But by the ideal gas law this quantity is just kT/P. Integrating both sides from
P° up to P therefore gives

(T, P) — u(T, P°) = kT'In(P/P°). (5.39)

(5.38)

Here P° can be any convenient reference pressure. Usually we take P° to be
atmospheric pressure (1 bar, to be precise). The standard symbol for u for a gas
at atmospheric pressure is p°, so we can write

(T, P) = u°(T) + kT In(P/P°). (5.40)

Values of 4° (at least at room temperature) can be gotten from tables of Gibbs free
energies (4 = G/N). Equation 5.40 then tells you how y varies as the pressure (or
equivalently, the density) changes. And in a mizture of ideal gases, equation 5.40
applies to each species separately, if you take P to be the partial pressure of that
species. This works because ideal gases are mostly empty space: How an ideal gas
* exchanges particles with its environment isn’t going to be affected by the presence
of another ideal gas.
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Problem 5.22. Show that equation 5.40 is in agreement with the explicit formula
for the chemical potential of a monatomic ideal gas derived in Section 3.5. Show
how to calculate ;° for a monatomic ideal gas.

Problem 5.23. By subtracting uN from U, H, F, or G, one can obtain four new
thermodynamic potentials. Of the four, the most useful is the grand free energy
(or grand potential),

®=U-T8 - pN.

(a) Derive the thermodynamic identity for @, and the related formulas for the
partial derivatives of ® with respect to T,V,and p.

(b) Prove that, for a system in thermal and diffusive equilibrium (with a reser-
voir that can supply both energy and particles), ® tends to decrease.

(c) Prove that ® = —PV.

(d) As a simple application, let the system be a single proton, which can be
“occupied” either by a single electron (making a hydrogen afom, with en-
ergy —13.6 eV) or by none (with energy zero). Neglect the excited states
of the atom and the two spin states of the electron, so that both the oc-
cupied and unoccupied states of the proton have zero entropy. Suppose
that this proton is in the atmosphere of the sun, a reservoir with a tem-
perature of 5800 K and an electron concentration of about 2 X 109 per
cubic meter. Calculate ® for both the occupied and unoccupied states, to
determine which is more stable under these conditions. To compute the
chemical potential of the electrons, treat them as an ideal gas. At about
what temperature would the occupied and unoccupied states be equally
stable, for this value of the electron concentration? (As in Problem 5.20,
the prediction for such a small system is only a probabilistic one.)

5.3 Phase Transformations of Pure Substances
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Reference Data

Thermodynamic Properties of Selected Substances

All of the values in this table are for one mole of material at 298 K and 1 bar. Following
the chemical formula is the form of the substance, either solid (s), liquid (1), gas (g), or
aqueous solution (aq). When there is more than one common solid form, the mineral
name or crystal structure is indicated. Data for aqueous solutions are at a standard
concentration of 1 mole per kilogram water. The enthalpy and Gibbs free energy of
formation, AyH and A;G, represent the changes in H and G upon forming one mole of
the material starting with elements in their most stable pure states (e.g., C (graphite),
03 (g), etc.). To obtain the value of AH or AG for another reaction, subtract Ay of the
reactants from A of the products. For ions in solution there is an ambiguity in dividing
thermodynamic quantities between the positive and negative ions; by convention, HT is
assigned the value zero and all others are chosen to be consistent with this value. Data
from Atkins (1998), Lide (1994), and Anderson (1996). Please note that, while these data
are sufficiently accurate and consistent for the examples and problems in this textbook,
not all of the digits shown are necessarily significant; for research purposes you should
always consult original literature to determine experimental uncertainties.

Substance (form) AH (KJ) AfG (K)) S (J/K) Cp (J/K) V (cm®)
Al (s) 0 0 28.33 24.35 9.99
Al15SiOs (kyanite) —2594.29 —2443.88 83.81 121.71 44.09
AlSiOs (andalusite)  —2590.27 —2442.66 93.22 122.72 51.53
Al3SiOs5 (sillimanite) ——2587.76  —2440.99 96.11 124.52 49.90
Ar (g) 0 0 154.84 20.79
C (graphite) 0 0 5.74 8.53 5.30
C (diamond) 1.895 2.900 2.38 6.1 3.42
CHy (g) —74.81 —50.72  186.26 35.31
C2Hg (g) —84.68 —32.82  229.60 52.63
C3Hs (g) ~103.85 —23.49  269.91 73.5
CyH50H (1) —277.69  ~174.78 160.7 111.46 58.4
CgH1206 (glucose) —1273 -910 212 115
CO (g) —110.68  —137.17  197.67 29.14

. COs2 (g) —393.51  —394.36  213.74 37.11
H;CO3 (aq) —699.65  —623.08 187.4
HCO; (aq) —691.99  —586.77 91.2
Ca?* (aq) —~542.83  —553.58  —53.1
CaCO3 (calcite) —1206.9  -1128.8 92.9 81.88 36.93
CaCO3 (aragonite) —~1207.1  —1127.8 88.7 81.25 34.15
CaClg (s) ~795.8 —748.1 104.6 72.59 51.6
Cly (g) 0 0 223.07 33.91
Cl~ (aq) —-167.16  —131.23 56.5 —136.4 17.3
Cu (s) 0 0 33.150 24.44 7.12

Fe (s) 0 0 27.28 25.10 7.11
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Substance (form) ArH (k1) AG (K1) S(I/K) Cp (J/K) V (cm?)
H; (g) 0 0 130.68 28.82

H (g) 217.97 203.25  114.71 20.78

HY (aq) 0 0 0 0

H,0 (1) —285.83  —237.13 69.91 75.29  18.068
H,0 (g) —241.82  -228.57  188.83 33.58

He (g) 0 0 126.15 20.79

Hg (1) 0 0 76.02 27.98 14.81
N; (g) 0 0 191.61 29.12

NH;3 (g) —46.11 —16.45  192.45 35.06

Na%t (aq) —240.12  —261.91 59.0 46.4 -1.2
NaCl (s) —411.15  —384.14 72.13 50.50 27.01
NaAlSi3Og (albite) —3935.1  —3711.5  207.40 205.10  100.07
NaAlSi2Og (jadeite)  —3030.9 —2852.1 133.5 160.0 60.40
Ne (g) 0 0  146.33 20.79

02 (g) 0 0 20514 29.38

O3 (aq) ~11.7 16.4 110.9

OH™ (aq) —229.99  -157.24 —10.75 -148.5

Pb (s) 0 0 64.81 26.44 18.3
PbO; (s) —2774  —217.33 68.6 64.64

PbSOy4 (s) —920.0 —813.0 148.5 103.2

SO;~ (aq) —909.27  —744.53 20.1 —293

HSOJ (aq) —887.34  —755.91 131.8 —84

SiO2 ( quartz) —910.94  —856.64 41.84 44.43 22.69
H4Si04 (aq) —1449.36  —1307.67  215.13 468.98
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