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| APPENDIX 4. \

’
SOME RELATIONS
INVOLVING PARTIAL
DERIVATIVES

A-1 PARTIAL DERIVATIVES

In thermodynamics we are interested in continuous functions of three
~ (or more) variables

y=9(x,y,2) (A1)

If two independent variables, say y and z, aré held constant, ¥» becomes a
function of only one independent variable x, and the derivative of ¢ with
respect to x may be defined and computed in the standard fashion. The
derivative so obtained is called the partial derivative of ¢ with respect 10 X
and is denoted by the symbol (dy/dx), . or simply by dy/dx. The
derivative depends upon x and upon the values at which y and z are held
during the differentiation; that is i/ dx is a function of x, y, and z. The
. erivatives dy/dy and dy/dz are defined in an identical manner.

The function d¢/dx, if continuous, may itself be differentiated to yield
three derivatives which are called the second partial derivatives of ¥
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By partial differentiation of the functions dy/dy and Y/ dz, we obtain
other second partial derivatives of ¥
3 Y 3y 9%y I M
dx dy ay? dzady dx dz dydz 922
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¥(x + dx
Y Ay, z 4 dz) = e(dx(3/8x)+dy(8/3p)+dz(902)) (
l!/ X, V, Z)

(A5)

Expansion of
th 1
€ symbolic exponential according to the usual
sual series
e*=1+x+ l'x2+ +l g
5 prESE (A.6)

then
reproduces the Taylor expansion (equation A 4)
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The Taylor exp

DIFFERENTIALS
ansion (equation A.4) can also be written in the form

Wx +dx,y +dy,z+dz) = P(x,.2)

1 1
=d\p+§d2xp+---+md"\b--- (A7)
~ where
= 9y W 4y Y
dy = 5 dx + 3y dy + 3, dz (A.8)
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0y 0*
+29-77 dxdz +2 5y 7 dydz (A9)
and generally
(A.10)

U I A A
dmy = (dx P + dy 3y + dz az) v(x,y,z)
These quantities dy, d,...,d",... are called the first-, second-, and
nth-order differentials of .

A-4 COMPOSITE FUNCTIONS

Returning to the first-order differential

dy = (%)y’zdx +(%) x’zdy +(%—¢Z—)x,ydz

(A.11)

re not varied independently

s when x, y, and z a
ariable u. Then

an interesting case arise
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dy (N) fii]du (A.12)
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. (A.14)
av=(2) w+(2) @ (a9
where
d
(56).- (&), (5], L&) A5G,
(A.16)

and similarly for (dy/dv),.
It may happen that u is identical to x itself. Then

Wy _ (9
(3.7 (&), (5], 3 ARG, oo

Other special cases can be treated similarly.

A-5 IMPLICIT FUNCTIONS

If ¢ is held const :
ant, the variati
e ithe relalion riations of x, y, and z are not independent

¥(x, y,z) = constant (A1)

S solved for one variable, say z, 1t

 This function can then be treated by
|, derive certain relations among the partial
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. By successively putting dy =

* f we now put dz =

~ of ¢ and z. Equation

among X, y, and z. This relation may

25 an implicit functional relation
terms of the other two

z=z2(x,y) (A.19)

the techniques previously described
derivatives. However, 4 more

f obtaining the appropriate relations among the partial
0 in equation A.8.

(A.20)

0= (%ii)y’zdx +(%) x'zdy +(%%)x~ydz

0 and divide through by dx, we find

0= (%%)er(%)(%y;)xv

in which the symbol (0 y/0x)y.: appropriately indicates that the implied
functional relation between y and x is that determined by the constancy
A.21 can be written in the convenient form

(é_y_) — —(a‘!//ax)y,z
dax v,z (a"l//ay)x,z

ominent role in thermodynamic calculations.
0 and dx =0 in equation A20, we find the

(A21)

(A22)

This equation plays a Very pr

~ wo similar relations

32 _ —(a"p/ax)y,z
(—a_‘;}*-.?' N (a‘!’/az)xy (A-23)
and
( ay) W, X (34//32))(,}, (A.24)

Returning to equation A20 we again put dz = 0, but we now divide

through by dy rather than by dx

_(oy) (& (ﬁi)
¢ (3x\’y.2(3}’)¢,z+ 9y | .z (A.25)
whence

5.
ay ¥,z

(a"//ax)y,z
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and. on cot

< rison with i
that - equation A.21, we find the very reasonable resul
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(ﬁ) _ 1
9y )y (dy/dx),., (A27)

From equations A.22 to A.24 we then find
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Finally we r
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If we further requi
quire that z shall be a con i
stant independent of u
we find

o= (38),.(5),. () (2)..

(A.28)

Q_i_(ﬂ) dz

Ldu dz x,ya}du (A.29)

(A.31)
or
(ay/au)\[z,z - _ (alp/ax)yz
(ox/30),.. ~ " (3v/ay)... .32
Comparison with equation A.22 shows that
(a_y) _ (8y/u), .
dx ¥,z (3x/3u)¢7z (A33)

Equations A.22, A
I 27, and A.33
anipulations in thermodynamic calcalllrlzti)mngng the most useful formal

%

!
!
%
|

i

i

APPENDIX

MAGNETIC
SYSTEMS

[f matter is acted on by a magnetic field it generally develops a
magnetic moment. A description of this magnetic property, and of its
interaction with thermal and mechanical properties, requires the adoption
of an additional extensive parameter. This additional extensive parameter
X and its corresponding intensive parameter P are to be chosen so that

" the magnetic work AW, is

AW g = PdX (B.1)
where

dU = dQ + AWy, + dW + AWy (B.2)

" Here dQ is the heat T dS, dW,, is the mechanical work (e.g., — PdV), and

dW, is the chemical work Tp dN,. We consider a specific situation that
clearly indicates the appropriate choice of parameters X and P.
Consider a solenoid, or coil. as shown in Fig. B.1. The wire of which the
solenoid is wound is assumed to have zero electrical resistance (supercon-
ducting). A battery is connected to the solenoid, and the electromotive
force (emf) of the battery is adjustable at will. The thermodynamic system
is inside the solenoid, and the solenoid 1is enclosed within an adiabatic
wall.
1f no changes occur within the system, and if the current I is constant,
the battery need supply no emf because of the perfect conductivity of the
wire.
Let the current be [ and let the local magnetization of the thermody-
namic system be M(r). The current I can be altered at will by controlling

the battery emf. The magnetization M(r) then will change also. We assume
a single-valued function of the

that the magnetization at any position r is
current

M(r) = M(r; I) (B.3)
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