THE PROBLEM AND THE POSTULATES

—

1-1 THE TEMPORAL NATURE OF
MACROSCOPIC MEASUREMENTS

Perhaps the most striking feature of macroscopic matter is the incredi-
ble simplicity with which it can be characterized. We go to a pharmacy
and request one liter of ethyl alcohol, and that meager specification is
pragmatically sufficient. Yet from the atomistic point of view, we have
specified remarkably little. A complete mathematical characterization of
the system would entail the specification of coordinates and momenta for
each molecule in the sample, plus sundry additional variables descriptive
of the internal state of each molecule—altogether at least 102*> numbers to
describe the liter of alcohol! A computer printing one coordinate each
microsecond would require 10 billion years—the age of the universe—to
list the atomic coordinates. Somehow, among the 10%* atomic coordinates,
or linear combinations of them, all but a few are macroscopically irrele-
vant. The pertinent few emerge as macroscopic coordinates, or “thermody-
namic coordinates.”

Like all sciences, thermodynamics is a description of the results to be
obtained in particular types of measurements. The character of the.
contemplated measurements dictates the appropriate descriptive variables;
these variables, in turn, ordain the scope and structure of thermodynamic
theory.

The key to the simplicity of macroscopic description, and the criterion
for the choice of thermodynamic coordinates, lies in two attributes of
macroscopic measurement. Macroscopic measurements are extremely slow
on the atomic scale of time, and they are extremely coarse on the atomic
scale of distance.

While a macroscopic measurement is being made, the atoms of a system
go through extremely rapid and complex motions. To measure the length
of a bar of metal we might choose to calibrate it in terms of the
wavelength of yellow light, devising some arrangement whereby reflection
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from the end of the bar produces interference fringes. These fringes are
then to be photographed and counted. The duration of the measurement
is determined by the shutter speed of the camera—typically on the order
of one hundredth of a second. But the characteristic period of vibration of
the atoms at the end of the bar is on the order of 10~ * seconds!
A macroscopic observation cannot respond to those myriads of atomic
coordinates which vary in time with typical atomic periods. Only those few
particular combinations of atomic coordinates that are essentially time
independent are macroscopically observable. ;
The word essentially is an important qualification. In fact we are able to
observe macroscopic processes that are almost, but not quite, time inde- .
pendent. With modest difficulty we might observe processes with time
scales on the order of 1077 s or less. Such observable processes are still
enormously slow relative to the atomic scale of 10~ !° s. It is rational then
to first consider the /imiting case and to erect a theory of time-indepen-
dent phenomena. Such a theory is thermodynamics. :
By definition, suggested by the nature of macroscopic observations, ther- .
modynamics describes only static states of macroscopic systems.
Of all the 10 atomic coordinates, or combinations thereof, only a few -
are time independent.
Quantities subject to conservation principles are the most obvious
candidates as time-independent thermodynamic coordinates: the energy,
each component of the total momentum, and each component of the total .
angular momentum of the system. But there are other time-independent
thermodynamic coordinates, which we shall enumerate after exploring the
spatial nature of macroscopic measurement. '

1.2 THE SPATIAL NATURE OF
MACROSCOPIC MEASUREMENTS

Macroscopic measurements are not only extremely slow on the atomic ;
scale of time, but they are correspondingly coarse on the atomic scale of
distance. We probe our system always with “blunt instruments.” Thus an
optical observation has a resolving power defined by the wavelength of
light, which is on the order of 1000 interatomic distances. The smallest
resolvable volume contains approximately 10° atoms! Macroscopic ob-
servations sense only coarse spatial averages of atomic coordinates.

The two types of averaging implicit in macroscopic observations to-
gether effect the enormous reduction in the number of pertinent variables,
from the initial 10> atomic coordinates to the remarkably small number
of thermodynamic coordinates. The manner of reduction can be il-
lustrated schematically by considering a simple model system, as shown in
Fig. 1.1. The model system consists not of 10%* atoms, but of only 9.
These atoms are spaced along a one-dimensional line, are constrained to
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FIGURE 1.1
Three normal modes of oscillation in a nine-atom model system. The wave lengths of the

three modes are four, eight and sixteen interatomic distances. The dotted curves are a
transverse representation of the longitudinal displacements.

move only along that line, and interact by linear forces (as if connected by
s).
Sp{“lﬁlegrzlotions of the individual atoms are strongly coupled, so the atoms
tend to move in organized patterns called normal modes. ‘Three such
normal modes of motion are indicated schematically in Fig. 1.1. The.:
arrows indicate the displacements of the atoms at a particular moment;
the atoms oscillate back and forth, and half a cycle later all the arrows
reversed. o

wollilﬁhl;j than describe the atomic state of the system by specifying the
position of each atom, it is more conve_nient (and mathematically eqlllnv-
alent) to specify the instantaneous amphtude of each normal mode. T esei
amplitudes are called normal coordinates, and the number of norma
coordinates is exactly equal to the number of atomic coordinates.

In a “macroscopic”’ system composed‘of only ‘r‘nne a‘t(zfns there is no
precise distinction between “macroscopic” and “atomic observations.
For the purpose of illustration, however, we think of a m_acroscopu.:
observation as a kind of “blurred” observation with low resolving powi:r,
the spatial coarseness of macroscopic measurements 18 qualitatively analo-
gous to visual observation of the system ghrough spectacles that are
somewhat out of focus. Under such observation the fine structure of the
frst two modes in Fig. 1.1 is unresolvable, and these modes are rendered
unobservable and macroscopically irrelevant. The ‘thll'd mode, ho_wevert:
corresponds to a relatively homogeneous net expansion (or qontractlon)bc;
the whole system. Unlike the first two modes, it is easily obgerva he
through “blurring spectacles.” The qmplltude of this mode descrlbf;s the
length (or volume, in three dimensions) of the system. The length (or
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volume) remains as a thermodynamic variable, undestroyed by the spatial
averaging, because of its spatially homogeneous (long wavelength) structure.

The time averaging associated with macroscopic measurements aug-
ments these considerations. Each of the normal modes of the system hasa

characteristic {requency, the frequency being smaller for modes of longer

wavelength. The frequency of the third normal mode in Fig. 1.1 is the
lowest of those shown, and if we were to consider systems with very large

numbers of atoms, the frequency of the longest wavelength mode would

approach zero (for reasons to be explored more fully in Chapter 21). Thus
all the short wavelength modes are lost in the time averaging, but the long

wavelength mode corresponding to the “volume” is so slow that it survives

the time averaging as well as the spatial averaging.

This simple example illustrates a very general result. Of the enormous

number of atomic coordinates, a very few, with unique symmetry proper-
ties, survive the statistical averaging associated with a transition to a
macroscopic description. Certain of these surviving coordinates are me-

chanical in nature—they are volume, parameters descriptive of the shape

(components of elastic strain), and the like. Other surviving coordinates
are electrical in nature—they are electric dipole moments, magnetic dipole
moments, various multipole moments, and the like. The study of mechanics

(including elasticity) is the study of one set of surviving coordinates. The
subject of electricity (including electrostatics, magnetostatics, and ferromag-

netism) is the study of another set of surviving coordinates.

Thermodynamics, in contrast, is concerned with the macroscopic conse-
quences of the myriads of atomic coordinates that, by virtue of the coarseness
of macroscopic observations, do not appear explicitly in a macroscopic

description of a system.

Among the many consequences of the “hidden” atomic modes of
motion, the most evident is the ability of these modes to act as a

repository for energy. Energy transferred via a “mechanical mode” (i.e.,

one associated with a mechanical macroscopic coordinate) is called me-
chanical work. Energy transferred via an “electrical mode” is called electri-
cal work. Mechanical work is typified by the term — PdV (P is pressure,
V' 1is volume), and electrical work is typified by the term — E,d% (E, is

electric field, & is electric dipole moment). These energy terms and

various other mechanical and electrical work terms are treated fully in the
standard mechanics and electricity references. But it is equally possible to
transfer energy via the hidden atomic modes of motion as well as via those that
happen to be macroscopically observable. An energy transfer via the hidden
atomic modes is called kear. Of course this descriptive characterization of |
heat is not a sufficient basis for the formal development of thermody-
namics, and we shall soon formulate an appropriate operational defini- -

tion.

With this contextual perspective we proceed to certain definitions and

conventions needed for the theoretical development.

The Composition of Thermodynamic Systems Yy
1-3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS

Thermodynamics is a subject of great generality, applicable to systems
of elaborate structure with all manner of complex mechanical, electrical,
and thermal properties. We wish to focus our chief attention on the
thermal properties. Therefore it is convenient to idealize and simplify the
mechanical and electrical properties of the systems that we shall study
initially. Similarly, in mechanics we consider uncharged and unpolarized
systems; whereas in electricity we consider systems with no elastic com-
p“ressibility or other mechanical attributes. The generality of eithrr subject
is not essentially reduced by this idealization, and after the separate
content of each subject has been studied it is a simple matter to combine
the theories to treat systems of simultaneously complicated electrical and
mechanical properties. Similarly, in our study of thermodynamics we
idealize our systems so that their mechanical and electrical properties are
almost trivially simple. When the essential content of thermodynamics has
thus been developed, it again is a simple matter to extend the analysis to
systems with relatively complex mechanical and electrical structure. The
essential point to be stressed is that the restrictions on the types of
systems considered in the following several chapters are not basic limita-
tions on the generality of thermodynamic theory but are adopted merely
for simplicity of exposition.

We (temporarily) restrict our attention to simple systems, defined as
systems that are macroscopically homogeneous, isotropic, and uncharged,
that are large enough so that surface effects can be neglected, and that are
not acted on by electric, magnetic, or gravitational fields.

For such a simple system there are no macroscopic electric coordinates
whatsoever. The system is uncharged and has neither electric nor magnetic
dipole, quadrupole, or higher-order moments. All elastic shear compo-
nents and other such mechanical parameters are zero. The volume V does
remain as a relevant mechanical parameter. Furthermore, a simple system
has a definite chemical composition which must be described by an
appropriate set of parameters. One reasonable set of composition parame-
ters is the numbers of molecules in each of the chemically pure compo-
nents of which the system is a mixture. Alternatively, to obtain numbers
of more convenient size, we adopt the mole numbers, defined as the actual
number of each type of molecule divided by Avogadro’s number (N, =
6.02217 X 10%).

This definition of the mole number refers explicitly to the “number of
molecules,” and it therefore lies outside the boundary of purely macro-
scopic physics. An equivalent definition which avoids the reference to
molecules simply designates 12 grams as the molar mass of the isotope
12C_ The molar masses of other isotopes are then defined to stand in the
same ratio as the conventional “atomic masses,” a partial list of which is
given in Table 1.1.
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TABLE 1.1
Atomic Masses (g) of Some Naturally
Occurring Elements (Mixtures of Isotopes)”

H 1.0080 F 18.9984
Li 6.941 Na 22.9898
C 12.011 Al 26.9815
N 14.0067 S 32.06

o 15.9994 Cl 35.453

“ As adopted by the International Union of Pure and
Applied Chemistry, 1969.

If a system is a mixture of r chemical components, the r ratio
Nk/(}:;=l N) (k =1,2,...,r) are called the mole fractions. The sum of a
r mole fractions is unity. The quantity V/(L_, N)) is called the mola
volume. ‘

The macroscopic parameters V, N, N,, ..., N, have a common propert
that will prove to be quite significant. Suppose that we are given tw
identical systems and that we now regard these two systems taken togethe
as a single system. The value of the volume for the composite system i

then just twice the value of the volume for a single subsystem. Similarly,

each of the mole numbers of the composite system is twice that for
single subsystem. Parameters that have values in a composite system equa
to the sum of the values in each of the subsystems are called exzensiv

parameters. Extensive parameters play a key role throughout thermody
namic theory.

PROBLEMS

1.3-1. One tenth of a kilogram of NaCl and 0.15 kg of sugar (C,,H,,0,,) ar

dissolved in 0.50 kg of pure water. The volume of the resultant thermodynamic
system is 0.55 X 10> m’. What are the mole numbers of the three components o
the system? What are the mole fractions? What is the molar volume of the
system? It 1s sufficient to carry the calculations only to two significant figures.

Answer:
Mole fraction of NaCl = 0.057;
molar volume = 18 x 107° m*/mole

1.3-2. Naturally occurring boron has an atomic mass of 10.811 g. It is a mixture
of the isotopes '°B with an atomic mass of 10.0129 g and ''B with an atomic mass
of 11.0093 g. What is the mole fraction of '°B in the mixture?

1.3-3. Twenty cubic centimeters each of ethyl alcohol (C,HOH; density = 0.79
g/cm’), methyl alcohol (CH;OH; density = 0.81 g/cm’), and water (H,0;

The Internal Energy 11

density = 1 g/cm’®) are mixed together. What are the mole numbers and mole

fractions of the three components of the system?

Answer:
mole fractions = 0.17, 0.26, 0.57

1.3-4. A 0.01 kg sample is composed of 50 molecular percent H,, 30 molecular
percent HD (hydrogen deuteride), and 20 molecular percent D,. What additional
mass of D, must be added if the mole fraction of D, in the final mixture is to be

0.3?7

1.3-5. A salution of sugar (C;,H,,0,;) in water is 20% sugar by weight. What is
the mole fraction of sugar in the solution?

1.3-6. An aqueous solution of an unidentified solute has a total mass of 0.1029
kg. The mole fraction of the solute is 0.1. The solution is diluted with 0.036 kg of
water, after which the mole fraction of the solute is 0.07. What would be a
reasonable guess as to the chemical identity of the solute?

1.3-7. One tenth of a kg of an aqueous solution of HCl is poured into 0.2 kg of an
aqueous solution of NaOH. The mole fraction of the HCl solution was 0.1,
whereas that of the NaOH solution was 0.25. What are the mole fractions of each
of the components in the solution after the chemical reaction has come to
completion?

Answer:
XH20 = NHZO/N = 0.84

1-4 THE INTERNAL ENERGY

The development of the principle of conservation of energy has been
one of the most significant achievements in the evolution of physics. The
present form of the principle was not discovered in one magnificent stroke
of insight but was slowly and laboriously developed over two and ahha'lf
centuries. The first recognition of a conservation principle, by Leibniz in
1693, referred ouly to the sum of the kinetic energy (%mvz) and the
potential energy (mgh) of a simple mechanical mass point in the_ terrestrial
gravitational field. As additional types of systems were considered the
established form of the conservation principle repeatedly failed, but in
each case it was found possible to revive it by the addition of a new
mathematical term—a “new kind of energy.” Thus consideration of
charged systems necessitated the addition of the Coulomb interaction
energy (0,Q,/r) and eventually of the energy of the _elgct.roma.gnetlc field.
In 1905 Einstein extended the principle to the relativistic region, addmg
such terms as the relativistic rest-mass energy. In the 1930s Enrico Fermu
postulated the existence of a new particle called the neutrino solely for the
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purpose of retaining the energy conservation principle in nuclear reac-
tions. The principle of energy conservation is now seen as a reflection of
the (presumed) fact that the fundamental laws of physics are the same
today as they were eons ago, or as they will be in the remote future; the
laws of physics are unaltered by a shift in the scale of time (¢t -t +
constant). Of this basis for energy conservation we shall have more to say
in Chapter 21. Now we simply note that the energy conservation principle
is one of the most fundamental, general, and significant principles of

physical theory.

Viewing a macroscopic system as an agglomerate of an enormous
number of electrons and nuclei, interacting with complex but definite
forces to which the energy conservation principle applies, we conclude

that macroscopic systems have definite and precise energies, subject to a

definite conservation principle. That is, we now accept the existence of a
well-defined energy of a thermodynamic system as a macroscopic mani-

festation of a conservation law, highly developed, tested to an extreme

precision, and apparently of complete generality at the atomic level.

The foregoing justification of the existence of a thermodynamic energy '1

function is quite different from the historical thermodynamic method.
Because thermodynamics was developed largely before the atomic hy-
pothesis was accepted, the existence of a conservative macroscopic energy
function had to be demonstrated by purely macroscopic means. A signifi-
cant step in that direction was taken by Count Rumford in 1798 as he

observed certain thermal effects associated with the boring of brass
cannons. Sir Humphry Davy, Sadi Carnot, Robert Mayer, and, finally

(between 1840 and 1850), James Joule carried Rumford’s initial efforts to
their logical fruition. The history of the concept of heat as a form of
energy transfer is unsurpassed as a case study in the tortuous development
of scientific theory, as an illustration of the almost insuperable inertia
presented by accepted physical doctrine, and as a superb tale of human
ingenuity applied to a subtle and abstract problem. The interested reader
is referred to The Early Development of the Concepts of Temperature and
Heat by D. Roller (Harvard University Press, 1950) or to any standard
work on the history of physics.

Although we shall not have recourse explicitly to the experiments of
Rumford and Joule in order to justify our postulate of the existence of an
energy function, we make reference to them in Section 1.7 in our discus-
sion of the measurability of the thermodynamic energy.

Only differences of energy, rather than absolute values of the energy,
have physical significance, either at the atomic level or in macroscopic
systems. It is conventional therefore to adopt some particular state of a
system as a fiducial state, the energy of which is arbitrarily taken as zero.
The energy of a system in any other state, relative to the energy of the
system in the fiducial state, is then called the thermodynamic internal
energy of the system in that state and is denoted by the symbol U. Like
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the volume and the mole numbers,
parameter.

the internal energy is an extensive

1-5 THERMODYNAMIC EQUILIBRIUM

Macroscopic systems often exhibit some “memory” of their recent
history. A stirred cup of tea continues to swirl within the cup. Cold-worked
steel maintains an enhanced hardness imparted by its mechanical treat-
ment. But memory eventually fades. Turbulences damp out, internal

strains yield to plastic flow, concentration inhomogeneities diffuse to

uniformity. Systems tend to subside to very simple states, independent of
their specific history.

In some cases the evolution toward simplicity is rapid; in other cases it
can proceed with glacial slowness. But in all systems there is a tendency to
evolve toward states in which the properties are determined by intrinsic
factors and not by previously applied external influences. Such simple
terminal states are, by definition, time independent. They are called equi-
librium states.

Thermodynamics seeks to describe these simple, static “equilibrium”
states to which systems eventually evolve.

To convert this statement to a formal and precise postulate we first
recognize that an appropriate criterion of simplicity is the possibility of
description in terms of a small number of variables. It therefore seems
plausible to adopt the following postulate, suggested by experimental
observation and formal simplicity, and to be verified ultimately by the
success of the derived theory:

Postulate 1. There exist particular states (called equilibrium states) of
simple systems that, macroscopically, are characterized completely by the
internal energy U, the volume V', and the mole numbers N, N,, ..., N, of the
chemical components.

As we expand the generality of the systems to be considered, eventually
permitting more complicated mechanical and electrical properties, the
number of parameters required to characterize an equilibrium state in-
creases to include, for example, the electric dipole moment and certain
elastic strain parameters. These new variables play roles in the formalism
which are completely analogous to the role of the volume V for a simple
system.

A persistent problem of the experimentalist is to determine somehow
whether a given system actually is in an equilibrtum state, to which
thermodynamic analysis can be applied. He or she can, of course, observe
whether the system is static and quiescent. But quiescence is not sufficient.
As the state is assumed to be characterized completely by the extensive
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parameters, U,V, N, N,,..., N,, it follows that the properties of t
system must be independent of the past history. This is hardly
operational prescription for the recognition of an equilibrium state, but
certain cases this independence of the past history is obviously
satisfied, and these cases give some insight into the significance of eq
librium. Thus two pieces of chemically identical commercial steel m
have very different properties imparted by cold-working, heat treatme
quenching, and annealing in the manufacturing process. Such systems
clearly not in equilibrium. Similarly, the physical characteristics of gl
depend upon the cooling rate and other details of its manufacture; hen
glass is not in equilibrium. ’

If a system that is not in equilibrium is analyzed on the basis o
thermodynamic formalism predicated on the supposition of equilibrium,
inconsistencies appear in the formalism and predicted results are a
variance with experimental observations. This failure of the theory is use
by the experimentalist as an a posteriori criterion for the detection o
nonequilibrium states.

In those cases in which an unexpected inconsistency arises in the
thermodynamic formalism a more incisive quantum statistical theor
usually provides valid reasons for the failure of the system to attain

equilibrium. The occasional theoretical discrepancies that arise are there-
fore of great heuristic value in that they call attention to some unsus
pected complication in the molecular mechanisms of the system. Such
circumstances led to the discovery of ortho- and parahydrogen,' and 1

the understanding of the molecular mechanism of conversion between the.
two forms.

From the atomic point of view, the macroscopic equilibrium state is
associated with incessant and rapid transitions among all the atomic states
consistent with the given boundary conditions. If the transition mecha-
nism among the atomic states is sufficiently effective, the system passes
rapidly through all representative atomic states in the course of a macro-
scopic observation; such a system is in equilibrium. However, under
certain unique conditions, the mechanism of atomic transition may be
ineffective and the system may be trapped in a small subset of atypical
atomic states. Or even if the system is not completely trapped the rate of
transition may be so slow that a macroscopic measurement does not yield
a proper average over all possible atomic states. In these cases the system
is not in equilibrium. It is readily apparent that such situations are most
likely to occur in solid rather than in fluid systems, for the comparatively.

high atomic mobility in fluid systems and the random nature of the

1If the two nuclei in a H, molecule have parallel angular momentum, the molecule is called:

ortho-H,; if antiparallel, para-H,. The ratio of ortho-H, to para-H, in a gaseous H, system should
have a definite value in equilibrium, but this ratio may not be obtained under certain conditions. The
resultant failure of H, to satisfy certain thermodynamic equations motivated the investigations of the
ortho- and para-forms of H,.
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interatomic collisions militate strongly against any restrictions of the

_atomic transition probabilities.

In actuality, few systems are in absolute and true equilibrium. In
absolute equilibrium all radioactive materials would have decayed com-
pletely and nuclear reactions would have transmuted all nuclei to the most
stable of isotopes. Such processes, which would take cosmic times to
complete, generally can be ignored. A system that has comple.ted the
relevant processes of spontaneous evolution, and that can be described by
a reasonably small number of parameters, can be considered to be in
metastable equilibrium. Such a limited equilibrium is sufficient for the
application of thermodynamics.

In practice the criterion for equilibrium is circular. Operationally, a
system is in an equilibrium state if its properties are consistently described by
thermodynamic theory!

It is important to reflect upon the fact that the circular character of
thermodynamics is not fundamentally different from that of mechanics. A
particle of known mass in a known gravitational field might be expected
10 move in a specific trajectory; if it does not do so we do not reject the
theory of mechanics, but we simply conclude that some additional force
acts on the particle. Thus the existence of an electrical charge on the
particle, and the associated relevance of an electrical 'force, cannot be
known a priori. It is inferred only by circular reasoping, in that dynarmcgl
predictions are incorrect unless the electric contribution to the force 1s
included. Our model of a mechanical system (including the assignment of
its mass, moment of inertia, charge, dipole moment, etc.) is “correct” if it
yields successful predictions.

1-6 WALLS AND CONSTRAINTS

A description of a thermodynamic system requires the speciﬁcat.ion pf
the “walls” that separate it from the surroundings and that provide its
boundary conditions. It is by means of manipulations of the walls that the
extensive parameters of the system are altered and processes are initiated.

The processes arising by manipulations of the walls generally are
associated with a redistribution of some quantity among varous systems
or among various portions of a single system. A formal classification of
thermodynamic walls accordingly can be be}sed on the property of the
walls in permitting or preventing such redistributions. As a parylcplar
illustration, consider two systems separated by an internal piston within a
closed, rigid cylinder. If the position of the piston is rigidly fixed the
“wall” prevents the redistribution of volume be‘;ween the two systems, but
if the piston is left free such a redistribution is pqrmltted. The cyl{nder
and the rigidly fixed piston may be said to constitute a wall restrictive
with respect to the volume, whereas the cylinder and the movable piston
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may be said to constitute a wall nonrestrictive with respect to the volu
In general, a wall that constrains an extensive parameter of a system
have a definite and particular value is said to be restrictive with respect
that parameter, whereas a wall that permits the parameter to change fre
is said to be nonrestrictive with respect to that parameter.

A.W_all that is impermeable to a particular chemical component
restrictive with respect to the corresponding mole number; whereas
permeable membrane is nonrestrictive with respect to the mole numb
Semipermeable membranes are restrictive with respect to certain m
pumbers apd nonrestrictive with respect to others. A wall with holes in
is nonrestrictive with respect to all mole numbers.

Thfa existence of walls that are restrictive with respect to the energy
associated with the larger problem of measurability of the energy
which we now turn our attention. ’

1-7 MEASURABILITY OF THE ENERGY

On the basis of atomic considerations, we have been led to accept the

existence of a macroscopic conservative energy function. In order that t

energy function may be meaningful in a practical sense, however, we must

convince ourselves that it is macroscopically controllable and measurab.
We shall now show that practical methods of measurement of the ener
do exist, and in doing so we shall also be led to a quantitative operational
definition of heat. f

An essential prerequisite for the measurability of the energy is the
existence of walls that do not permit the transfer of energy in the form of
heat. We briefly examine a simple experimental situation that suggests
that such walls do indeed exist. i

Consider a system of ice and water enclosed in a container. We find
that the ice can be caused to melt rapidly by stirring the system vigor:
ously. By stirring the system we are clearly transferring energy to it

mec_hanically, so that we infer that the melting of the ice is associated with .
an input of energy to the system. If we now observe the system on a
summer day, we find that the ice spontaneously melts despite the fact thar

no work is done on the system. It therefore seems plausible that energy is
being transferred to the system in the form of heat. We further observe
that the rate of melting of the ice is progressively decreased by changing
the wall surrounding the system from thin metal sheet, to thick glass, and
thence to a Dewar wall (consisting of two silvered glass sheets separated
by an evacuated interspace). This observation strongly suggests that the

metal, glass, and Dewar walls are progressively less permeable to the flow
of heat. The ingenuity of experimentalists has produced walls that are able
to reduce the melting rate of the ice to a negligible value, and such walls
are correspondingly excellent approximations to the limiting idealization

of a wall that is truly impermeable to the flow of heat.
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It is conventional to refer to a wall that is impermeable to the flow of

heat as adiabatic; whereas a wall that permits the flow of heat is termed
diathermal. 1f a wall allows the flux of neither work nor heat, it is
restrictive with respect to the energy. A system enclosed by a wall that is

restrictive with respect to the energy, volume, and all the mole numbers
is said to be closed.*

The existence of these several types of walls resolves the first of our
concerns with the thermodynamic energy. That is, these walls demonstrate
that the energy is macroscopically controllable. It can be trapped by
restrictive walls and manipulated by diathermal walls. If the energy of a
system is measured today, and if the system is enclosed by a wall
restrictive with respect to the energy, we can be certain of the energy of
the system tomorrow. Without such a wall the concept of a macroscopic
thermodynamic energy would be purely academic.

We can now proceed to our second concern— that of measurability of
the energy. More accurately, we are concerned with the measurability of
energy differences, which alone have physical significance. Again we
invoke the existence of adiabatic walls, and we note that for a simple
system enclosed by an impermeable adiabatic wall the only type of
permissible energy transfer is in the form of work. The theory of me-
chanics provides us with quantitative formulas for its measurement. If the
work is done by compression, displacing a piston in a cylinder, the work is
the product of force times displacement; or if the work is done by stirring,
it is the product of the torque times the angular rotation of the stirrer
shaft. In either case, the work is well defined and measurable by the
theory of mechanics. We conclude that we are able to measure the energy
difference of two states provided that one state can be reached from the
other by some mechanical process while the system is enclosed by an
adiabatic impermeable wall.

The entire matter of controllability and measurability of the energy can
be succinctly stated as follows: There exist walls, called adiabatic, with the
property that the work done in taking an adiabatically enclosed system
berween two given states is determined entirely by the states, independent of
all external conditions. The work done is the difference in the internal energy
of the two states.

As a specific example suppose we are given an equilibrium system
composed of ice and water enclosed in a rigid adiabatic impermeable wall.
Through a small hole in this wall we pass a thin shaft carrying a propellor
blade at the inner end and a crank handle at the outer end. By turning the
crank handle we can do work on the system. The work done is equal to
the angular rotation of the shaft multiplied by the viscous torque. After
wrning the shaft for a definite time the system is allowed to come to a
new equilibrium state in which some definite amount of the ice is observed

2This definition of closure differs from a usage common in chemistry, in which closure implies only
a wall restrictive with respect to the transfer of matter.




to have been melted. The difference in energy of the final and initia] states
1S equal to the work that we have done in turning the crank.
~We now inquire about the possibility of starting with some arbitrary

permit us to measure the energy difference of any two states with equal mole
numbers.

Joule’s observation that only one of the processes A - B or B — 4
may exist is of profound significance. This asymmetry of two given states
1s associated with the concept of irreversibility, with which we shall
subsequently be much concerned.

The only remaining limitation to the measurability of the energy
difference of any two states is the requirement that the states must have
equal mole numbers. This restriction is easily eliminated by the following
observation. Consider two simple subsystems separated by an imperme-
able wall and assume that the energy of each subsystem is known (relative

different mole numbers,

In summary, we have seen that by employing adiabatic walls and by
measuring only mechanical work, the energy of any thermodynamic system,
relative 1o an appropriate reference state, can be measured.

1-8 QUANTITATIVE DEFINITION OF HEAT—UNITS

The fact that the energy difference of any two equilibrium states is
measurable provides us directly with a quantitative definition of the heat:
The hear flux to a system in any process (at constant mole numbers) s
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simply the difference in internal energy between the final and initial states,
diminished by the work done in that process.

Consider some specified process that takes a system from the initial
state 4 to the final state B. We wish to know the amount of energy
transferred to the system in the form of work and the amount transferred
in the form of heat in that particular process. The work is easily measured
by the method of mechanics. Furthermore, the total energy difference
Us — U, is measurable by the procedures discussed in Section 1.7. Sub-
tracting the work from the total energy difference gives us the heat fiux in
the specified process.

It should be noted that the amount of work associated with different
processes may be different, even though each of the processes initiates in
the same state 4 and each terminates in the same state B. Similarly, the
heat flux may be different for each of the processes. But the sum of the
work and heat fluxes is just the total energy difference U, — U, and is
the same for each of the processes. In referring to the total energy flux we
therefore need specify only the initial and terminal states, but in referring
to heat or work fluxes we must specify in detail the process considered.

Restricting our attention to thermodynamic simple systems, the quasi-
static work is associated with a change in volume and is given quantita-
tively by

aW,, = —Pdv (1.1)

where P is the pressure. In recalling this equation from mechanics, we
stress that the equation applies only to quasi-static processes. A precise
definition of quasi-static processes will be given in Section 4.2, but now we
merely indicate the essential qualitative idea of such processes. Let us
suppose that we are discussing, as a particular system, a gas enclosed in a
cylinder fitted with a moving piston. If the piston is pushed in very
rapidly, the gas immediately behind the piston acquires kinetic energy and
is set into turbulent motion and the pressure is not well defined. In such a
case the work done on the system is not quasi-static and is not given by

- equation 1.1. If, however, the piston is pushed in at a vanishingly slow rate

(quasi-statically), the system is at every moment in a quiescent equilibrium
state, and equation 1.1 then applies. The “infinite slowness™ of the process
1s, roughly, the essential feature of a quasi-static process.

A second noteworthy feature of equation 1.1 is the sign convention. The
work is taken to be positive if it increases the energy of the system. If the
volume of the system is decreased, work is done on the system, increasing
its energy; hence the negative sign in equation 1.1,

With the quantitative expression dWy, = —PdV for the quasi-static
work, we can now give a quantitative expression for the heat flux. In an
infinitesimal quasi-static process at constant mole numbers the quasi-static
heat dQ is defined by the equation

dQ = dU — dW,, at constant mole numbers (1.2)
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or

dQ = dU + PdV at constant mole numbers (1.3)

It will be noted that we use the terms hear and heat flux interchange- -
ably. Heat, like work, is only a form of energy transfer. Once energy is
transferred to a system, either as heat or as work, it is indistinguishable
from energy that might have been transferred differently. Thus, although
dQ and dW,, add together to give dU, the energy U of a state cannot be
considered as the sum of “work” and “heat” components. To avoid this
implication we put a stroke through the symbol d: infinitesimals such as
dW,, and dQ are called imperfect differentials. The integrals of dW,, and

dQ for a particular process are the work and heat fluxes in rhat process;

the sum is the energy difference AU, which alone is independent of the

process.
The concepts of heat, work, and energy may possibly be clarified in
terms of a simple analogy. A certain farmer owns a pond, fed by one

stream and drained by another. The pond also receives water from an

occasional rainfall and loses it by evaporation, which we shall consider as
“negative rain.” In this analogy the pond is our system, the water within it
1s the internal energy, water transferred by the streams is work, and water
transferred as rain is heat.

The first thing to be noted is that no examination of the pond at any
time can indicate how much of the water within it came by way of the
stream and how much came by way of rain. The term rain refers only to a
method of water transfer.

Let us suppose that the owner of the pond wishes to measure the
amount of water in the pond. He can purchase flow meters to be inserted
in the streams, and with these flow meters he can measure the amount of
stream water entering and leaving the pond. But he cannot purchase a rain
meter. However, he can throw a tarpaulin over the pond, enclosing the
pond in a wall impermeable to rain (an adiabatic wall). The pond owner
consequently puts a vertical pole into the pond, covers the pond with his
tarpaulin, and inserts his flow meters into the streams. By damming one
stream and then the other, he varies the level in the pond at will, and by
consulting his flow meters he is able to calibrate the pond level, as read on
his vertical stick, with total water content (U). Thus, by carrying out
processes on the system enclosed by an adiabatic wall, he is able to
measure the total water content of any state of his pond.

Our obliging pond owner now removes his tarpaulin to permit rain as
well as stream water to enter and leave the pond. He is then asked to
evaluate the amount of rain entering his pond during a particular day. He
proceeds simply; he reads the difference in water content from his vertical
stick, and from this he deducts the total flux of stream water as registered
by his flow meters. The difference is a quantitative measure of the rain.
The strict analogy of each of these procedures with its thermodynamic
counterpart is evident.
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Since work and heat refer to particular modes of energy transfer, each is
measured in energy units. In the cgs system the unit of energy, and hence
of work and heat, is the erg. In the mks system the unit of energy is the
joule, or 107 ergs.

A practical unit of energy is the calorie,® or 4.1858 J. Historically, the
calorie was introduced for the measurement of heat flux before the
relationship of heat and work was clear, and the prejudice toward the use
of the calorie for heat and of the joule for work still persists. Nevertheless,
the calorie and the joule are simply alternative units of energy, either of
which is acceptable whether the energy flux is work, heat, or some
combination of both.

Other common units of energy are the British thermal unit (Btu), the
liter—atmosphere, the foot-pound and the watt—hour. Conversion factors
among energy units are given inside the back cover of this book.

Example 1
A particular gas is enclosed in a cylinder with a moveable piston. It is observed

that if the walls are adiabatic, a quasi-static increase in volume results in a
decrease in pressure according to the equation

(for Q = 0)

a) Find the quasi-static work done on the system and the net heat transfer to the
system in each of the three processes (ADB, ACB, and the direct linear process
AB) as shown in the figure.

P3V? = constant

10% L— A D
ol <,
@ g
a, o
U
10%32 |— c B
| |
1073 8x 1073

V (m3) ——

In the process ADB the gas is heated at constant pressure (P = 105 Pa) until
its volume increases from its initial value of 10> m? to its final value of § X 103
m’. The gas is then cooled at constant volume until its pressure decreases to
10°/32 Pa. The other processes (ACB and AB) can be similariy interpreted,
according to the figure.

3 Nutritionists refer to a kilocalorie as a “Calorie” —presumably to spare calorie counters the
trauma of large numbers. To compound the confusion the initial capital C is often dropped, so that a
kilocalorie becomes a “calorie”!
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b) A small paddle is installed inside the system and is driven by an external
motor (by means of a magnetic coupling through the cylinder wall). The motor
exerts a torque, driving the paddle at an angular velocity w, and the pressure of

the gas (at constant volume) is observed to increase at a rate given by

aa _ 2
3

X torgque
dr 4

<|e

Show that the energy difference of any two states of equal volumes can be
determined by this process. In particular, evaluate U. — U, and U, — U,.

Explain why this process can proceed only in one direction (vertically upward

rather than downward in the P-V plot).

¢) Show that any two states (any two points in the PV plane) can be connected
by a combination of the processes in (a) and (b). In particular, evaluate U, — U,
d) Calculate the work W, in the process A — D. Calculate the heat transfer

O .p- Repeat for D — B, and for C — A4. Are these results consistent with those
of (a)?

The reader should attempt to solve this problem before reading the
following solution!

Solution
a) Given the equation of the “adiabat” (for which Q@ = 0 and AU = W), we find

a a2 1% 5/3
Ug— U, = W,p = —fVVPdV= "PAfVV(VA) v

3 N -
= EPAVAS/S(VB 23~ v, 2/3)

= %(25 ~100) = —112.57J

Now consider process ADB:

Wips= = [PdV = ~10° X (8 X 1077 = 107%) = =700

But

Ug— Uy = Wypp+ Qups

0,pp= —112.5 + 700 = 587.5J

Note that we are able to calculate Q 5, but not Q 4, and Qg separately, for we
do not (yet) know U, — U,.

-~ Similarly we find W,z = —21.9Jand Q 5= —90.6 J. Also W, = —3609

Jand Q,, = 2484 J.

b) As the motor exerts a torque, and turns through an angle d#, it delivers an
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energy* dU = torque X df to the system. But df = wdt, so that

21
dp = 37 (torque) w dr
21
=37
or
3
du = —‘2-VdP

This process is carried out at constant ¥ and furthermore dU > 0 (and conse-
quently dP > 0). The condition dU > 0 follows from dU = torque X d#@, for the
sign of the rotation df is the same as the sign of the torque that induces that
rotation. In particular

3 3 _ 1
Uy~ Us= EV(PA—PC)-: 5 X 10 3><(105— 3 ><105)=145.3J
and
3 =2 g x 107 x[105 - & x 10%) = 11625
UD—UB=§V(PD—PB)—§X > ,

¢) To connect any two points in the plane we draw an adiabat through one and
an isochor (V = constant) through the other. These two curves intersect, thereby
connecting the two states. Thus we have found (using the adiabatic process) that
Ug — U, = —112.5 J and (using the irreversible stirrer process) that U, — Up =
1162.5 J. Therefore U, — U, = 1050 J. Equivalently, if we assign the value zero
to U, then
U,=0, U, = 1050 ]

Up= —1125),  U.= —1453],

and similarly every state can be assigned a value of U.
d) Now having U, — U, and W, we can calculate Q ;-

Up—-U, = Wip+ Qup
1050 = —700 + Qup
O.p, = 17501

Also

Ug— Up=Wpp+ Qps
or

—1162.5 =0 + QOpp

To check, we note that Q ,, + Qpp = 587.5 J, which is equal to Q 45 as found
in (a).

4Note that the energy output of the motor is delivered to the system as energy that cannot be
classified either as work or as heat—it is a non-quasi-staric transfer of energy.
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PROBLEMS

1.8-1. For the system considered in Exampl

{ ple 1, calculate the energy of th g
with P =5 X 10* Paand V=8 X 107° m?’. & °
1.8-2. C‘alculgte thg heat transferred to the system considered in Example 1 in th
process in which it is taken in a straight line (on the P—V diagram) from the stat
A to the state referred to in the preceding problem.

1j8-3. For a particular gaseous system it has been determined that the energy i
given by L

U = 2.5PV + constant

Thg system 1is iqitially in the state P = 0.2 MPa (mega-Pascals), ¥V = 0.01 o
designated as point 4 in the figure. The system is taken through the cycle of thr
processes (4 — B, B - C, and C — A) shown in the figure. Calculate Q and

for each of the three processes. Calculate Q and W for a process from A to |
along the parabola P = 10° + 10° x (V — .02)%

0.5 — c
04
5 03—
a.
2
Ay
02—
4 B
0.11—
0 [ L |
0 0.01 0.02 0.03

V(m3) —>

Answer:
Wee=TX 10° J; QOpc= —95X 103

1.8-4. For the system of Problem 1.8-3 find the equation of the adiabats in the

P-V plane (i.e, find the form of the curves P = P(V') such that 40 = 0 along
the curves).

Answer:
V7P’ = constant
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1.8-5. The energy of a particular system, of one mole, is given by
U= APV

where A is a positive constant of dimensions [P]"!. Find the equation of the
adiabats in the PV plane.

1.8-6. For a particular system it is found that if the volume is kept constant at the
value ¥, and the pressure is changed from P, to an arbitrary pressure P’, the heat
transfer to the system is

Q’=A(P’—P0)

In addition it is known that the adiabats of the system are of the form

(A>0)

PV = constant (y a positive constant)

Find the energy U(P,V) for an arbitrary point in the P-V plane, expressing
U(P, V) in terms of Py, ¥, 4, Uy = U(F,, V,) and v (as well as P and V).

Answer:
U- U, =APr—P) +[PV/(y - DIQA-r""Y where r = V/V,
1.8-7. Two moles of a particular single-component system are found to have a
dependence of internal energy U on pressure and volume given by

U= APV? (for N =2)

Note that doubling the system doubles the volume, energy, and mole number, but
leaves the pressure unaltered. Write the complete dependence of U on P, V, and
N for arbitrary mole number.

19 THE BASIC PROBLEM OF THERMODYNAMICS

- The preliminaries thus completed, we are prepared to formulate first the
seminal problem of thermodynamics and then its solution.

Surveying those preliminaries retrospectively, it is remarkable how far
reaching and how potent have been the consequences of the mere choice
of thermodynamic coordinates. Identifying the criteria for those coordi-
nates revealed the role of measurement. The distinction between the
macroscopic coordinates and the incoherent atomic coordinates suggested
the distinction between work and heat. The completeness of the descrip-
tion by the thermodynamic coordinates defined equilibrium states. The
thermodynamic coordinates will now provide the framework for the
solution of the central problem of thermodynamics.

There is, in fact, one central problem that defines the core of thermody-
namic theory. All the results of thermodynamics propagate from its
solution.
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The single, all-encompassing problem of thermodynamics is the determina-
tion of the equilibrium state that eventually results after the removal of

internal constraints in a closed, composite system.

Let us suppose that two simple systems are contained within a closed
cylinder, separated from each other by an internal piston. Assume that the
cylinder walls and the piston are rigid, impermeable to matter, and
adiabatic and that the position of the piston is firmly fixed. Each of the
systems is closed. If we now free the piston, it will, in general, seek some
new position. Similarly, if the adiabatic coating is stripped from the fixed
piston, so that heat can flow between the two systems, there will be a f
redistribution’ of energy between the two systems. Again, if holes are
punched in the piston, there will be a redistribution of matter (and also of
energy) between the two systems. The removal of a constraint in each case
results in the onset of some spontaneous process, and when the systems

finally settle into new equilibrium states they do so with new values of the
parameters U, VO N ... and UP, VP N® ... | The basic prob-
lem of thermodynamics is the calculation of the equilibrium values of
these parameters.

FIGURE 1.2

Before formulating the postulate that provides the means of solution of
the problem, we rephrase the problem in a slightly more general form
without reference to such special devices as cylinders and pistons. Given
two or more simple systems, they may be considered as constituting a
single composite system. The composite system is termed closed if it is
surrounded by a wall that is restrictive with respect to the total energy, the
total volume, and the total mole numbers of each component of the
composite system. The individual simple systems within a closed com-
posite system need not themselves be closed. Thus, in the particular
example referred to, the composite system is closed even if the internal
piston is free to move or has holes in it. Constraints that prevent the flow
of energy, volume, or matter among the simple systems constituting the
composite system are known as internal constraints. If a closed composite
system is in equilibrium with respect to internal constraints, and if some
of these constraints are then removed, certain previously disallowed
processes become permissible. These processes bring the system to a new
equilibrium state. Prediction of the new equilibrium state is the central
problem of thermodynamics.
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1.10 THE ENTROPY MAXIMUM POSTULATES

The induction from experimental observation of the central principle
that provides the solution of the basic problem is subtle indeed. The
historical method, culminating in the analysis of Caratheodory, is a tour
de force of delicate and formal logic. The statistical mechanical approach
pioneered by Josiah Willard Gibbs required a masterful stroke of induc-
tive inspiration. The symmetry-based foundations to be developed in
Chapter 21 will provide retrospective understanding and interpretation,
but they are not yet formulated as a deductive basis. We therefore merely
formulate the solution to the basic problem of thermodynamics in a set of
postulates depending upon a posteriori rather than a priori justification.
These postulates are, in fact, the most natural guess that we might fmake,
providing the simplest conceivable formal solution to the basic problem. On
this basis alone the problem might have been solved; the tentative
postulation of the simplest formal solution of a problem 1s a conventional
and frequently successful mode of procedure in theoretical physics.

What then is the simplest criterion that reasonably can be imagined for
the determination of the final equilibrium state? From our experience with
many physical theories we might expect that the most economical form
for the equilibrium criterion would be in terms of an extremum principle.
That is, we might anticipate the values of the extensive parameters in the
final equilibrium state to be simply those that maximize®> some function.
And, straining our optimism to the limit, we might hope that this
hypothetical function would have several particularly simple mathematical
properties, designed to guarantee simplicity of the derived theory. We
develop this proposed solution in a series of postulates.

Postulate II. There exists a function {(called the entropy S) of the extensive
parameters of any composite system, defined for all equilibrium states and
having the following property: The values assumed by the extensive parame-
ters in the absence of an internal constraint are those that maximize the
entropy over the manifold of constrained equilibrium states.

It must be stressed that we postulate the existence of the entropy only
for equilibrium states and that our postulate makes no reference
whatsoever to nonequilibrium states. In the absence of a constraint the
system 1s free to select any one of a number of states, each of which might
also be realized in the presence of a suitable constraint. The entropy of each
of these constrained equilibrium states is definite, and the entropy is
largest in some particular state of the set. In the absence of the constraint
this state of maximum entropy is selected by the system.

5 Or minimize the function, this being purely a matter of convention in the choice of the sign of the
function, having no consequence whatever in the logical structure of the theory.
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In the case of two systems separated by a diathermal wall we migh
wish to predict the manner in which the total energy U distribute
between the two systems. We then consider the composite system with th
internal diathermal wall replaced by an adiabatic wall and with particula
values of U™ and U™ (consistent, of course, with the restriction tha
UM + U® = U). For each such constrained equilibrium state there is an
entropy of the composite system, and for some particular values of U®
and U™ this entropy is maximum. These, then, are the values of U® and
U® that obtain in the presence of the diathermal wall, or in the absence
of the adiabatic constraint.

All problems in thermodynamics are derivative from the basic problem
formulated in Section 1.9. The basic problem can be completely solved
with the aid of the extremum principle if the entropy of the system is
known as a function of the extensive parameters. The relation that gives
the entropy as a function of the extensive parameters is known as 3
fundamental relation. It therefore follows that if the fundamental relation of
a particular system is known all conceivable thermodynamic information
about the system is ascertainable from it.

The importance of the foregoing statement cannot be overemphasized
The information contained in a fundamental relation is all-inclusive—it is
equivalent to all conceivable numerical data, to all charts, and to all
imaginable types of descriptions of thermodynamic properties. If the
fundamental relation of a system is known, every thermodynamic attri-
bute is completely and precisely determined.

Postulate IIL. The entropy of a composite system is additive over the
constituent subsysiems. The entropy is continuous and differentiable and is a
monotonically increasing function of the energy.

Several mathematical consequences follow immediately. The additivity
property states that the entropy S of the composite system is merely the
sum of the entropies S(® of the constituent subsystems:

S=28 (1.4)

The entropy of each subsystem is a function of the extensive parameters
of that subsystem alone

S@ = S“”(U“”,V“”,N{"’,...,N,‘"’) (1.5)

The additivity property applied to spatially separate subsystems re-

quires the following property: The entropy of a simple system is a homoge-

neous first-order function of the extensive parameters. That is, if all the
extensive parameters of a system are multiplied by a constant A, the
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entropy is multiplied by this same constant. Or, omitting the superscript
(),
.N,) (1.6)

S(AU,A\V,AN,,...,AN.) = AS(U,V, N,, ...

The monotonic property postulated implies that the partial derivative
(3S/0U) v, n 1S @ positive quantity,
[50)
AU v m... N

-----

>0 (1.7)

As the theory develops in subsequent sections, we shall see that the
reciprocal of this partial derivative is taken as the deﬁnitiqn of the
temperature. Thus the temperature is postulated to be nonnegative.®

The continuity, differentiability, and monotonic property imply that the
entropy function can be inverted with respect to the energy and that the
energy is a single-valued, continuous, and differentiable function of

S,V,N,,..., N, The function

S=S(UV,N,....,N) (1.8)
can be solved uniquely for U in the form

U= U(S,V,N,...,N,) (1.9)

Equations 1.8 and 1.9 are alternative forms of the fundamental relation,
and each contains a// thermodynamic information abqut the system.

We note that the extensivity of the entropy permits us to scale the
properties of a system of N moles from the propertie§ of a system of 1
mole. The fundamental equation is subject to the identity

S(U,V,N,N,,...,N)=NS(U/N,V/N,N/N,...,N,/N) (1.10)
in which we have taken the scale factor A of equation 1.§ to be equal to
1/N = 1/, N,. For a single-component simple system, in particular,

S(U,V,N)= NS(U/N,V/N,1) (1.11)
But U/N is the energy per mole, which we denote by u.
u=U/N (1.12)

5The possibility of negative values of this derivative (ie., of negative temper_atures) has: been
discussed by N. F. Ramsey, Phys. Rev. 103, 20 (1956). Such states are not eqltlilibnun.l states 1n'real
systems, and they do not invalidate equation 1.7. They can be produced only in certain very unique
systems (specifically in isolated spin systems) and they spontaneously decz.xy away. Neve'rthelcss the
study of these states is of statistical mechanical interest, elucidating the statistical mechanical concept
of temperature.
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Also, V/N is the volume per mole, which we denote by v.

v=V/N

Thus S(U/N,V/N,1) = S(u, v, 1

mole, to be denoted by s(u, v). ) 1s the entropy of a system of a sing

s(u,v) = S(u,v,1)

Equation 1.11 now becomes

(1.14

S(U,V,N) = Ns(u,v) (1.15

Postulate IV. The entropy of any system vanishes in the state Jor which

(0U/38)y ... n=0  (thatis, at the zero of temperature )

We shall see later that the vanishi i
_ _ anishing of the derivative (U /43S
;s equivalent to the vanishing of the temperature, as indicate{d h)lgthwhN:
ourth postulate is that zero tempera . e

' ture implies zero entropy.
S (Ilt‘ liho;ld be noted that. an immediate implication of postulgte IV is tha
TL e V" and N, but unlike U) has a uniquely defined zero.
1s postulate is an extension, due to Planck, of the so-called Nerns

fggtggz;teulo;t éizitréi éawdof tlhernczlocgznamics. Historically, it was the latest of
¢ developed, being inconsistent with classi isti
mechanics and requiring the pri i ot St sticd
: prior establishment of quant 1Stics i
order that it could be pro i % hermodym i
perly appreciated. The bulk of th i
does not require this ' reference 1c 1o
postulate, and I make no furth i i i
Chantr 10 this pos , rther reference to it until
. . s, I have chosen to presen i
point to close. the postulatory basis. P ! the postulate at thi
th;l;trfocfgzleagomg I;OSt}L:]alteS are the logical bases of our development of
( mucs. In the light of these postulates, then. i 1
reiterate briefly the method of soluti adord type of e 19
] ution of the standard t f th
namic problem, as formulated in Secti N 2 commody
, ection 1.9. We are give i
system and we assume the fund i Seach of the o
_ amental equation of each of th
sttuent systems to be known in princi ental equation,
: ! mciple. These funda 1 i
determine the individual ics en these sratems
; entropies of the subsystems when th
are in equilibrium. If the total composi s in & cousiatan]
1n - postte system is in a c i
equilibrium state, with particular i etors o
: , values of the extensive
each constituent system, the tot [ i fdition of he
each , al entropy is obtained by additi
individual entropies. This tot i ) fanction of b
] . al entropy is known as a functi
various extensive parameters of the subs 1 orward it
1ou ystems. By straightforward diff;
entiation we compute the extrema of th “and thon,
‘ e total entropy functi
on the basis of the sign of the s ivati o s ot
e econd derivative, we classif
| : . tive, y these extrema
as minima, maxima, or as horizontal inflections. In an appropriate physi-

(1.1
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cal terminology we first find the equilibrium states and we then classify
them on the basis of stability. It should be noted that in the adoption of
this conventional terminology we augment our previous definition of
equilibrium; that which was previously termed equilibrium is now termed
stable equilibrium, whereas unstable equilibrium states are newly defined in
terms of extrema other than maxima.

It is perhaps appropriate at this point to acknowledge that although all
applications of thermodynamics are equivalent in principle to the proce-
dure outlined, there are several alternative procedures that frequently
prove more convenient. These alternate procedures are developed in
subsequent chapters. Thus we shall see that under appropriate conditions
the energy U(S,V,N,,...) may be minimized rather than the entropy
S(U,V, Ny, ...), maximized. That these two procedures determine the
same final state is analogous to the fact that a circle may be characterized
either as the closed curve of minimum perimeter for a given area or as the
closed curve of maximum area for a given perimeter. In later chapters we
shall encounter several new functions, the minimization of which is
logically equivalent to the minimization of the energy or to the maximiza-
tion of the entropy.

The inversion of the fundamental equation and the alternative state-
ment of the basic extremum principle in terms of a minimum of the
energy (rather than a maximum of the entropy) suggests another view-
point from which the extremum postulate perhaps may appear plausible.
In the theories of electricity and mechanics, ignoring thermal effects, the
energy is a function of various mechanical parameters, and the condition
of equilibrium is that the energy shall be a minimum. Thus a cone is stable
lying on its side rather than standing on its point because the first position
is of lower energy. If thermal effects are to be included the energy ceases
to be a function simply of the mechanical parameters. According to the
inverted fundamental equation, however, the energy is a function of the
mechanical parameters and of one additional parameter (the entropy). By
the introduction of this additional parameter the form of the energy-
minimum principle is extended to the domain of thermal effects as well as
to pure mechanical phenomena. In this manner we obtain a sort of
correspondence principle between thermodynamics and mechanics—
ensuring that the thermodynamic equilibrium principle reduces to the me-
chanical equilibrium principle when thermal effects can be neglected.

We shall see that the mathematical condition that a maximum of
S(U,V, N,,...) implies a minimum of U(S,V, Ny,. ..) is that the deriva-
tive (88/9U), . be positive. The motivation for the introduction of
this statement in postulate III may be understood in terms of our desire to
ensure that the entropy-maximum principle will go over into an energy-
minimum principle on inversion of the fundamental equation.

In Parts II and III the concept of the entropy will be more deeply
explored, both in terms of its symmetry roots and in terms of its statistical



32 The Problem and the Postulates

mechanical interpretation. Pursuing those inquires now would take us too
far afield. In the classical spirit of thermodynamics we temporarily defer
such interpretations while exploring the far-reaching consequences of our

simple postulates.

PROBLEMS

1.10-1. The following ten equations are purported to be fundamental equations
of various thermodynamic systems. However, five are inconsistent with one or

more of postulates II, III, and IV and consequently are not physically acceptable.

In each case qualitatively skeich the fundamental relationship between S and U

(with N and V constant). Find the five equations that are not physically

permissible and indicate the postulates violated by each.

The quantities vy, 8, and R are positive constants, and in all cases in which

fractional exponents appear only the real positive root is to be taken.

R? 1/3
N 1/3
a) S (uoo) (NVU)
R\’ NU\
» S=(35) 7

1/2
1/2 2
o s =[5} vu+ 2]
0 vl

0

2
d)y s =(R—3€)V3/NU
Us
R3 1/5
e) S = [N2VU?P?
veé

7) S = NRIn(UV/N?Ruv,)

g) S =(%)1/2INU1V2exp<— V2 /2N%g)

R\V2 ” uy
h) S—(—a—) (NUY"exp| = Nrgor

N AT

i) U—( R ) 7 exp(S/NR)
RO
Ug

)NV(l + X’%) exp(—S/NR)

po-|

1.10-2. For each of the five physically acceptable fundamental equations in
problem 1.10-1 find U as a function of S, V, and N.

rrovieny p

1.10-3. The fundamental equation of system A is

R\ ”
S= (000) (NVU)
and similarly for system B. The two systems are separated by a rigid, imperme-
able, adiabatic wall. System A has a volume of 9 X 107® m’ and a mole number
of 3 moles: System B has a volume of 4 X 107% m® and a mole number of 2
moles. The total energy of the composite system is 80 J. Plot the entropy as a
function of U,/(U, + Ug). If the internal wall is now made diathermal and the
system is allowed to come to equilibrium, what are the internal energies of each of
the individual systems? (As in Problem 1.10-1, the quantities v,, 8, and R are
positive constants.)
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THE CONDITIONS
OF EQUILIBRIUM

2-1 INTENSIVE PARAMETERS

By virtue of our interest in processes, and in the associated changes of
the extensive parameters, we anticipate that we shall be concerned with
the differential form of the fundamental equation. Writing the fundamen-
tal equation in the form

U= U(S,V, N, N,,...,N) (2.1)
we compute the first differential:

U
av = (55

U ~ [ U
as +(5I7)S,Nl _____ MdV+J§1(a—NJ) dN;

V,N.,..., N, i/ S V... N,

(22)

The various partial derivatives appearing in the foregoing equation recur
so.frequently that it is convenient to introduce special symbols for them.
They are called intensive parameters, and the following notation is conven-
tional:

= T, the temperature (2.3)

il

P, the pressure (2.4)

the electrochemical potential of

=1 the Jth component (2.3)

o=
e
]

35
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With this notation, equation 2.2 becomes

dU =TdS — PdV + p dN, + --- +p dN,

The formal definition of the temperature soon will be shown to agree
with our intuitive qualitative concept, based on the physiological sensa-
tions of “hot” and “cold.” We certainly would be reluctant to adopt 2.
definition of the temperature that would contradict such strongly en-

trenched although qualitative notions. For the moment, however, we

merely introduce the concept of temperature by the formal definition

(2.3).

Similarly, we shall soon corroborate that the pressure defined byg

equation 2.4 agrees in every respect with the pressure defined in mecha-

nics. With respect to the several electrochemical potentials, we have no

prior definitions or concepts and we are free to adopt the definition
(equation 2.5) forthwith.

For brevity, the electrochemical potential is often referred to simply

as the chemical potential, and we shall use these two terms interchangea-
bly!.

The term — P4V in equation 2.6 is identified as the quasi-static work.

dW,,, as given by equation 1.1.
In the special case of constant mole numbers equation 2.6 can then be
written as
TdS =dU - aw,, if dN,=dN,=dN =0 (2.7)
Recalling the definition of the quasi-static heat, or comparing equation 2.7
with equation 1.2, we now recognize T'dS as the quasi-static heat flux,

dQ = Tds (2.8)

A quasi-static flux of heat into a system is associated with an increase of

entropy of that system.

The remaining terms in equation 2.6 represent an increase of internal

energy associated with the addition of matter to a system. This type of

energy flux, although intuitively meaningful, is not frequently discussed
outside thermodynamics and does not have a familiar distinctive name. '

We shall call X p ; AN, the quasi-static chemical work.

dW.= ). p,dN,

J=1

(2.9)

"However it should be noted that occasionally, and particularly in the theory of solids, the
“chemical potential” is defined as the electrochemical potential p minus the molar electrostatic
energy.

e
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Therefore

dU = dQ + aW,, + dW, (2.10)

Each of the terms TdS,— PdV, p ;dN,, in equation 2.6 has the dimen-
sions of energy. The matter of units will be considered in Section 26 We
can observe here, however, that having not yet specified the units (nor
even the dimensions) of entropy, the units and dimensions of temperature
remain similarly undetermined. The units of p are the same as those of
energy (as the mole numbers are dimensionless). The units of pressure are
familiar, and conversion factors are listed inside the back cover of this

book.

2-2 EQUATIONS OF STATE

The temperature, pressure, and electrochemical potentials are partial
derivatives of functions of S, V, N, ..., N, and conseque;ntly are glso
functions of S, ¥, N,..., N.. We thus have a set of functional relation-

ships
T=T(S,V,N,...,N) (2.11)
P=P(S,V,N,...,N) (2.12)
p,=p,(S,V,N,....N,) (2.13)

Such relationships, expressing intensive parameters in terms of the inde-
pendent extensive parameters, are called equations of state. .

Knowledge of a single equation of state does nor constitute complete
knowledge of the thermodynamic properties of a system. We shall see,
subsequently, that knowledge of all the equations. of state of a system 1s
equivalent to knowledge of the fundamental equation and consequently is
thermodynamically complete.

The fact that the fundamental equation must be homogeneogs first
order has direct implications for the functional form of the equations of
state. It follows immediately that the equations of state are homogenequs
zero order. That is, multiplication of each of the independent extensive
parameters by a scalar A leaves the function unchanged.

T(AS,A\V,AN,,...,AN,) = T(S,V,N,,...,N.) (2.14)
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It therefore follows that the temperature of a portion of a system i
equal to the temperature of the whole system. This is certainly in agree
ment with the intuitive concept of temperature. The pressure and th
electrochemical potentials also have the property (2.14), and together Wltki

the temperature are said to be intensive.

To summarize the foregoing considerations it is convenient to adopt ¢
, N, by
X,, so that the fundamental relation takes the

condensed notation. We denote the extensive parameters V, N, ..
the symbols X, X,,...,

form
U=U(S, X, X,,..., X,) (215
The intensive parameters are denoted by |
aUu ‘
(—Jg)XI‘sz =T=T(S,X,X,,.... X)) (2.16)
au _ .
¥5d =P =P(S, X, X,,..., X)) J=12,...,t (217
SIS, X, .. !
whence
t
dU=TdS + Y, P dX; (2.18)

j=1

It should be noted that a negative sign appears in equation 2.4, but does

not appear in equation 2.17. The formalism of thermodynamics is uniform
— P, is considered as an intensive parameter
Correspondingly one of the genera

if the negative pressure,
analogous to 7 and py, py,... .
intensive parameters P, of equation 2.17 is — P.

For single- component simple systems the energy differential is fre-
quently written in terms of molar quantities. Analogous to equations 1.11'

through 1.15, the fundamental equation per mole is

u=u(s,v) (2.19)
where
s=S/N, v=V/N (2.20)
and
u(s,v) =+ U(S. V. ) (2.21)
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Taking an infinitesimal variation of equation 2.19

du Ju
du =3 ds + 0 dv (2.22)
However
Ju du aUu
(7). = (5 55T (2.23)
and similarly
du
(—a—v)s = —P (2.24)
Thus
du=Tds — Pdv (2.25)
PROBLEMS

2.2-1. Find the three equations of state for a system with the fundamental

equation
v\ §3
o= el
R | NV

Corroborate that the equations of state are homogeneous zero order (i.e., that T,
P, and p are intensive parameters).

2.2-2. For the system of problem 2.2-1 find p as a function of 7, V, and N.

2.2-3. Show by a diagram (drawn to arbitrary scale) the dependence of pressure
on volume for fixed temperature for the system of problem 2.2-1. Draw two such
“isotherms,” corresponding to two values of the temperature, and indicate which
isotherm corresponds to the higher temperature.

2.2-4. Find the three equations of state for a system with the fundamental
equation
_(8\ 2 (RO,
= (7)o B )

and show that, for this system, p = —u.
2.2.5. Express p as a function of 7' and P for the system of problem 2.2-4.
2.2-6. Find the three equations of state for a system with the fundamental

equation
2
u = Bﬁ) 5 ps/R
R v
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2.2-7. A particular system obeys the relation

u = Av %exp(s/R)

N moles of this substance, initially at temperature 7, and pressure P,, arc
expanded isentropically (s = constant) until the pressure is halved. What is the

final temperature?

Answer;

T,= 0637,

2.2-8. Show that, in analogy with equation 2.25, for a system with » components :

r-1
du=Tds—Pdo+ ) (p;—p,) dx;
j=1

where the x; are the mole fractions (= N/N).

2.2-9. Show that if a single-component system is such that PV* is constant in an -

adiabatic process (k is a positive constant) the energy is

U= Z—i—TPV + Nf(PV*/N*)

where f is an arbitrary function.

Hint: PV* must be a function of S, so that (JU/dV )¢ = g(S) - V™%, where g(S)

is an unspecified function.

2-3 ENTROPIC INTENSIVE PARAMETERS

If, instead of considering the fundamental equation in the form U =
..) with U as dependent, we had considered S as depen-
dent, we could have carried out all the foregoing formalism in an inverted

Ues,.... x

2 j’ .

but equivalent fashion. Adopting the notation X, for U, we write

S=5(X,, X,,..., X,) (2.26)
We take an infinitesimal variation to obtain
R
¢S~2izad& (2.27)

Entropic Intensive Parameters 41

The quantities dS/d X, are denoted by F,.

as

FkEﬁz

(2.28)

By carefully noting which variables are kept constant in the various partial
derivatives (and by using the calculus of partial derivatives as reviewed in
Appendix A) the reader can demonstrate that

1 - P,
T

(k=1,2,3,...) (2.29)

These equations also follow from solving equation 2.18 for 4S and
comparing with equation 2.27.

Despite the close relationship between the F, and the P,, thereis a very
important difference in principle. Namely, the P, are obtained by dif-
ferentiating a function of S,..., X »--- and are considered as functions
of these variables, whereas the F, are obtained by differentiating a
function of U, ..., X, ... and are considered as functions of these latter
variables. That is, in one case the entropy is a member of the set of
independent parameters, and in the second case the energy is such a
member. In performing formal manipulations in thermodynamics it is
extremely important to make a definite commitment to one or the other of
these choices and to adhere rigorously to that choice. A great deal of
confusion results from a vacillation between these two alternatives within
a single problem.

If the entropy is considered dependent and the energy mdependent, as

in §=S8(U,..., X,,...), we shall refer to the analysis as being in the
entropy representation. 1f the energy is dependent and the entropy is
independent, as in U = U(S,..., X,,...), we shall refer to the analysis as

being in the energy representation.

- The formal development of thermodynamics can be carried out in either
the energy or entropy representations alone, but for the solution of a
particular problem either one or the other representation may prove to be
by far the more convenient. Accordingly, we shall develop the two
representations in parallel, although a discussion presented in one repre-
sentation generally requires only a brief outline in the alternate represen-
tation.

The relation § = S(X,,..., X, ...) is said to be the entropic fundamen-
tal relation, the set of variables Xg»-.s X;,... is called the entropic
extensive parameters, and the set of variables F,, ..., F,... is called the
entropic intensive parameters. Similarly, the relation U = U(S, X,
so-vs Xjy...) 18 said to be the energetic fundamental relation; the set of
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variables S, X|,...,

X.,.
and the set of variables T,pP,..., P, ... is called the energetic intensi
parameiers.

PROBLEMS

2.3-1. Find the three equations of state in the entropy representation for a systeni:

with the fundamental equation

N /20 \ 552
- R3/2 | p1/2
Answer:
1_2(de) Vs
T 5\ Ry EY
ro_ 2 ( 0(1)/20) _2/5u2/501/5
T 5\ gin :

2.3-2. Show by a diagram (drawn to arbitrary scale) the dependence of tempera-
ture on volume for fixed pressure for the system of problem 2.3-1. Draw two such

“isobars” corresponding to two values of the pressure, and indicate which isobar

corresponds to the higher pressure.

2.3-3. Find the three equations of state in the entropy representation for a system

with the fundamental equation
0 2 2 2
u=|—|s%e /v
()

2.3-4. Consider the fundamental equation

S=AUV"N'

where 4 is a positive constant. Evaluate the permissible values of the threc
constants #, m, and r if the fundamental equation is to satisfy the thermody-
namic postulates and if, in addition, we wish to have P increase with U /V, at
constant N. (This latter condition is an intuitive substitute for stability require-
ments to be studied in Chapter 8.) For definiteness, the zero of energy is to be

taken as the energy of the zero-temperature state.

2.3-5. Find the three equations of state for a system with the fundamental
relation

is called the energetic extensive parameters.

L hermat Lquilibrium— [ emperature 4o

a) Show that the equations of state in entropy representation are homogeneous
zero-order functions.

b) Show that the temperature is intrinsically positive.
¢) Find the “mechanical equation of state” P = P(T,v).

d) Find the form of the adiabats in the P—v plane. (An “adiabat” is a locus of
constant entropy, or an “isentrope”).

2-4 THERMAL EQUILIBRIUM—TEMPERATURE

We are now in a position to illustrate several interesting implications of
the extremum principle which has been postulated for the entropy.
Consider a closed composite system consisting of two simple systems
separated by a wall that is rigid and impermeable to matter but that does
allow the flow of heat. The volumes and mole numbers of each of the
simple systems are fixed, but the energies U™ and U® are free to change,
subject to the conservation restriction

UM+ U@ = constant (2.30)
imposed by the closure of the composite system as a whole. Assuming thgt
the system has come to equilibrium, we seek the values of U and U®.
According to the fundamental postulate, the values of U® and U are
such as to maximize the entropy. Therefore, by the usual mathematical
condition for an extremum, it follows that in the equilibrium state a
virtual infinitesimal transfer of energy from system 1 to system 2 will
produce no change in the entropy of the whole system. That is,

ds =0 (2.31)

The additivity of the entropy for the two subsystems gives the relation
S=8SH(UO YO N®, )+ SOUO, YO, N®, ).
(2.32)

As U® and U™ are changed by the virtual energy transfer, the entropy
change is

3s®

asv
oUP [yver  No

AU ) VO N

ds = ( dU® +( dU® (2.33)
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or, employing the definition of the temperature

1 1
- 1 o))
as 70 dU% + 70 du

By the conservation condition (equation 2.30), we have

dU® = —du®
whence
1 1
N 1t8)
as = ( P Tm) dUu

The condition of equilibrium (equation 2.31) demands that dS vanish for

arbitrary values of dU"", whence

1 1

T(Z)

This is the condition of equilibrium. If the fundamental equations of each

of the subsystems were known, then 1/ T® would be a known function of -
U® (and of ¥ and N®, ..., which, however, are merely constants).

Similarly, 1/7@ would be a known function of U @ and the equation

237

1/TM =1/T® would be one equation in U® and U®. The conserva-
tion condition U® + U® = constant provides a second equation, and
these two equations completely determine, in principle, the values of U M
and of U®. To proceed further and actually to obtain the values of U
and U@ would require knowledge of the explicit forms of the fundamen-
tal equations of the systems. In thermodynamic theory, however, we :
accept the existence of the fundamental equations, but we do not assume
explicit forms for them, and we therefore do not obtain explicit answers..
In practical applications of thermodynamics the fundamental equations
may be known, either by empirical observations (in terms of measure-
ments to be described later) or on the basis of statistical mechanical
calculations based on simple models. In this way applied thermodynamics

is able to lead to explicit numerical answers.

Equation 2.37 could also be written as TW = T®, We write it in the.

form 1/T® = 1/T® to stress the fact that the analysis is couched in the
entropy representation. By writing 1/ T®, we indicate a function of
U® W whereas T would imply a function of S®, vy .. The

physical significance of equation 2.37, however, remains the equality of the

temperatures of the two subsystems.
A second phase of the problem is the investigation of the stability of the
predicted final state. In the solution given we have not exploited fully the
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basic postulate that the entropy is a maximum in equilibrium; rather, we
merely have investigated the consequences of the fact that it is’ an
extremum. The condition that it be a maximum requires, in addition to
the condition dS = 0, that ’

d*S <0 (2.38)
Thg consequences of this condition lead to considerations of stability, to
which we shall give explicit attention in Chapter 8. 3

2-5 AGREEMENT WITH
INTUITIVE CONCEPT OF TEMPERATURE

In the foregoing example we have seen that if two systems are separated
by a diathermal wall, heat will flow until each of the system attains the
same temperature. This prediction is in agreement with our intuitive
notion of temperature, and it is the first of several observations that
corroborate the plausibility of the formal definition of the temperature.

Inquiring into the example in slightly more detail, we suppose that the
two subsystems initially are separated by an adiabatic wall and that the
temperatures of the two subsystems are almost, but not quite, equal. In
particular we assume that 7 .

> T® (2.39)

The system is considered initially to be in equilibrium with respect to the
internal adiabatic constraint. If the internal adiabatic constraint now 1is
removed, the system is no longer in equilibrium, heat flows across the
wall, and the entropy of the composite system increases. Finally the
system comes to a new equilibrium state, determined by the condition that
the final values of T™ and T® are equal, and with the maximum possible
value of the entropy that is consistent with the remaining constraints.
Cpmpare the initial and the final states. If AS denotes the entropy
difference between the final and initial states

AS >0 (2.40)
But, as in equation 2.36,
1 1
AS = (_ﬁ — —7—:(5;) AU (2.41)

where T and T are the initial values of the temperatures. By the



condition that 7! > 7@ it follows that

AUW < 0 (2.42)
This means that the spontaneous process that occurred was one in which
heat flowed from subsystem 1 1o subsystem 2. We conclude therefore tha
heat tends to flow from a system with a high value of T 70 a system with s
low value of T. This is again in agreement with the intuitive notion of
temperature. It should be noted that these conclusions do not depend on
the assumption that T is approximately equal to 7®; this assumption
was made merely for the purpose of obtaining mathematical simplicity in
equation 2.41, which otherwise would require a formulation in terms of
integrals.

If we now take stock of our intuitive notion of temperature, based on
the physiological sensations of hot and cold, we realize that it is based
upon two essential properties. First, we expect temperature to be an
intensive parameter, having the same value in a part of a system as it has
in the entire system. Second, we expect that heat should tend to flow from
regions of high temperature toward regions of low temperature. These
properties imply that thermal equilibrium is associated with equality and
homogeneity of the temperature. Our formal definition of the temperature
possesses each of these properties.

2-6 TEMPERATURE UNITS

The physical dimensions of temperature are those of energy divided by
those of entropy. But we have not yet committed ourselves on the ,
dimensions of entropy; in fact its dimensions can be selected quite
arbitrarily. If the entropy is multiplied by any positive dimensional
constant we obtain a new function of different dimensions but with
exactly the same extremum properties—and therefore equally acceptable

as the entropy. We summarily resolve the arbitrariness simply by adopting

the convention that the entropy is dimensionless (from the more incisive

viewpoint of statistical mechanics this is a physically reasonable choice).

Consequently the dimensions of temperature are identical to those of ~,

energy. However, just as torque and work have the same dimensions, but

are different types of quantities and are measured in different units (the
meter—Newton and the joule, respectively), so the temperature and the .
energy should be carefully distinguished. The dimensions of both energy

and temperature are [mass - (length)®/(time)?]. The units of energy are

Joules, ergs, calories, and the like. The units of temperature remain to be ,

discussed.

In our later discussion of thermodynamic “Carnot” engines, in Chapter ;
4, we shall find that the optimum performance of an engine in contact
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with two thermodynamic systems is completely determined by the ratio of
the temperatures of those two systems. That is, the principles of thermody-
namics provide an experimental procedure that unambiguously determines
the ratio of the temperatures of any two given systems.

The fact that the ratio of temperatures is measurable has immediate
consequences. First the zero of temperature is uniquely determined and
cannot be arbitrarily assigned or “shifted.” Second we are free to assign
the value of unity (or some other value) to one arbitrary chosen state. All
other temperatures are thereby determined.

Equivalently, the single arbitrary aspect of the temperature scale is the
size of the temperature unit, determined by assigning a specific tempera-
ture to some particular state of a standard system.

The assignment of different temperature values to standard states leads
to different thermodynamic temperature scales, but all thermodynamic
temperature scales coincide at 7 = 0. Furthermore, according to equation
1.7 no system can have a temperature lower than zero. Needless to say,
this essential positivity of the temperature is in full agreement with all
measurements of thermodynamic temperatures.

The Kelvin scale of temperature, which is the official Systeme Interna-
tional (SI) system, is defined by assigning the number 273.16 to the
temperature of a mixture of pure ice, water, and water vapor in mutual
equilibrium; a state which we show in our later discussion of triple
points” determines a unique temperature. The corresponding unit of
temperature is called a kelvin, designated by the notation K.

The ratio of the kelvin and the Jjoule, two units with the same dimen-
sions, is 1.3806 X 10~ joules /kelvin. This ratio is known as Boltzmann’s
constant and is generally designated as k p- Thus kT is an energy.

The Rankine scale is obtained by assigning the temperature (%) X
273.16 = 491.688°R to the ice—water—water vapor system just referred to.
The unit, denoted by °R, is called the degree Rankine. Rankine tempera-
tures are merely £ times the corresponding Kelvin temperature.

Closely related to the “absolute” Kelvin scale of temperature is the
International Kelvin scale, which is a “practical” scale, defined in terms of
the properties of particular systems in various temperature ranges and
contrived to coincide as closely as possible with the (absolute) Kelvin
scale. The practical advantage of the International Kelvin scale is that it
provides reproducible laboratory standards for temperature measurement
throughout the temperature range. However, from the thermodynamic
point of view, it is not a true temperature scale, and to the extent that it
deviates from the absolute Kelvin scale it will not yield temperature ratios
that are consistent with those demanded by the thermodynamic for-
malism.

The values of the temperature of everyday experiences are large num-
bers on both the Kelvin and the Rankine scales. Room temperatures are
in the region of 300 K, or 540°R. For common usage, therefore, two




derivative scales are in common use, The Celsius scale is defined as
T(°C)=T (K) ~273.15 (2.43)

where T(°C) denotes the “Celsius temperature,” for which the unit js
called the degree Celsius, denoted by °C. The zero of this scale i
displaced relative to the true zero of temperature, so the Celsius temperq-
ture scale is not a thermodynamic lemperature scale at all. Negative temper-
atures appear, the zero is incorrect, and ratios of temperatures are not in
agreement with thermodynamic principles. Only temperature differences
are correctly given. '

On the Celsius scale the “temperature” of the triple point (ice, water,
and water vapor in mutual equilibrium) is 0.01°C. The Celsius tempera-
ture of an equilibrium mixture of ice and water, maintained at a pressure
of 1 atm, is even closer to 0°C, with the difference appearing only in th
third decimal place. Also the Celsius temperature of boiling water at
atm pressure is very nearly 100°C. These near equalities reveal th
historical origin? of the Celsius scale; before it was recognized that th
zero of temperature is unique it was thought that two points, rather tha
one, could be arbitrarily assigned and these were taken (by Anders
Celsius, in 1742) as the 0°C and 100°C Just described. .

The Fahrenbeit scale is a similar « practical” scale. It is now defined by

T(°F) = T(°R) — 459.67 = T(°C) +32

(2.44) :{

The Fahrenheit temperature of ice and water at 1 atm pressure 1s roughly
32°F; the temperature of boiling water at 1 atm pressure is about 212°F;
and room temperatures are in the vicinity of 70°F. More suggestive of the
presumptive origins of this scale are the facts that ice, salt, and water
coexist in equilibrium at 1 atm pressure at a temperature in the vicinity of
0°F, and that the body (.., rectal) temperature of a cow is roughly
100°F.

Although we have defined the temperature formally in terms of a partial
derivative of the fundamental relation, we briefly note the conventional .
method of introduction of the temperature concept, as developed by
Kelvin and Caratheodory. The heat flux dQ is first defined very much as
we have introduced it in connection with the énergy conservation princi-
ple. From the consideration of certain cyclic processes it is then inferred !
that there exists an integrating factor (1,/7°) such that the product of this
integrating factor with the imperfect differential dQ is a perfect differen- |
tial (dS). i

1 i
dS = =dQ (2.45)

2A very short but fascinating review of the history of temperature scales is given by E. R. Jones, Ir,,
The Physics Teacher 18, 594 (1980).
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The temperature and the entropy thereby are introduced by analysis of
the existence of integrating factors in particular types of differential
equations called Pfaffian forms.

PROBLEMS

2.6-1. The temperature of a system composed of ice, water, and water vapor in
mutual equilibrium has a temperature of exactly 273.16 K, by definition. The
temperature of a system of ice and water at 1 atm of pressure is then measured as
273.15 K, with the third and later decimal places uncertain. The temperature of a
system of water and water vapor (ie., boiling water) at 1 atm is measured as
373.15 K + 0.01 K. Compute the temperature of water—water vapor at 1 atm,
with its probable error, on the Celsius, absolute Fahrenheit, and Fahrenheit
scales.

2.6-2. The “gas constant” R is defined as the product of Avogadro’s number
(N, = 6.0225 X 107 /mole) and Boltzmann’s constant R = N,k ,. Correspond-
ingly R = 8.314 J /mole K. Since the size of the Celsius degree is the same as the
size of Kelvin degree, it has the value 8.314 J/mole°C. Express R in units of
J/mole°F.

2.6-3. Two particular systems have the following equations of state:

1 3_ND

TO 27y
and

1 S _N®

7O 2 o

where R is the gas constant (Problem 2.6-2). The mole number of the first system
is N = 2 and that of the second is N® = 3. The two systems are separated by a
diathermal wall, and the total energy in the composite system is 2.5 X 10° J.
What is the internal energy of each system in equilibrium?

Answer:

UM =714.3]

2.6-4. Two systems with the equations of state given in Problem 2.6-3 are
separated by a diathermal wall. The respective mole numbers are NV = 2 and
N® = 3. The initial temperatures are T™® = 250 K and T® = 350 K. What are
the values of UM and U@ after equilibrium has been established? What is the
equilibrium temperature?

2.7 MECHANICAL EQUILIBRIUM

A second application of the extremum principle for the entropy yields
an even simpler result and therefore is useful in making the procedure




JU Lne Lonaiuons o] Lquiiorium

clear. We consider a closed composite system consisting of two simple
systems separated by a movable diathermal wall that is impervious to the
flow of matter. The values of the mole numbers are fixed and constant,
but the values of U™ and U'® can change, subject only to the closure
condition

UM + U® = constant (2.46)

and the values of V'™ and ¥® can change, subject only to the closure
condition

V® + V@ = constant (2.47)

The extremum principle requires that no change in entropy result from
infinitesimal virtual processes consisting of transfer of heat across the wall
or of displacement of the wall.

Then
ds =0 (2.48)
where
n o8
ds = |25 L dy®
AUN Jyor  wm, vV Jyo v
2) (2) ;
i) AU® 4|98 av® (2.49)
AP | ya, o VP e N .
By the closure conditions
dau® = —qu® (2.50)
and
dve = —gy® (2.51)
whence
L 1) gy (22 B2 o
S = (;m‘}?ﬁ)d(] +(-Y-E— | vU=0 (25

As this expression must vanish for arbitrary and independent values of

dU® and dV®, we must have

1
TGO T®

(2.53) ’
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and
(2.54)

Although these two equations are the equilibrium conditions in the proper
form appropriate to the entropy representation, we note that they imply
the physical conditions of equality of both temperature and pressure.

TO=T® (2.55)

PO = p@ (2.56)

The equality of the temperatures is just our previous result for equi-
librium with a diathermal wall. The equality of the pressures is the new
feature introduced by the fact that the wall is movable. Of course, the
equality of the pressures is precisely the result that we would expect on the
basis of mechanics, and this result corroborates the identification of
the function P as the mechanical pressure.

Again we stress that this result is a formal solution of the given
problem. In the entropy representation, 1/T is a function of UM, 7@,
and N (an entropic equation of state), so that equation 2.53 is formally
a relationship among UM, VD U@ and V'® (with N® and N® each
held fixed). Similarly P®/T™ is a function of U®, ¥, and N®, 50
that equation 2.54 is a second relationship among U®, ¥'®® U@ and
V®. The two conservation equations 2.46 and 2.47 complete the four equa-
tions required to determine the four sought-for variables. Again thermo-
dynamics provides the methodology, which becomes explicit when applied
to a concrete system with a definite fundamental relation, or with known
equations of state.

The case of a moveable adiabatic (rather than diathermal) wall presents
a unique problem with subtleties that are best discussed after the for-
malism is developed more fully; we shall return to that case in Problem
2.7-3 and in Problem 5.1-2.

Example 1

Three cylinders of identical cross-sectional areas are fitted with pistons, and each
contains a gaseous system (not necessarily of the same composition). The pistons
are connected to a rigid bar hinged on a fixed fulcrum, as indicated in Fig. 2.1.
The “moment arms,” or the distances from the fulcrum, are in the ratio of
1:2 3. The cylinders rest on a heat conductive table of negligible mass; the table
makes no contribution to the physics of the problem except to ensure that the
three cylinders are in diathermal contact. The entire system is isolated and no
pressure acts on the external surfaces of the pistons. Find the ratio of pressures
and of temperatures in the three cylinders.




FIGURE 2.1
Three volume-coupled systems (Example 2.7-1).

Solution
The closure condition for the total energy is

UM+ 8UP +8UP =0
and the coupling of the pistons imposes the conditions that
V@ =281®

and
V= 387D
Then the extremal property of the entropy is
1 1 1 P®
= Ay 4 = [©) R —— () I 1)
A o SUY + " U + povey U + e 14

P® P®
VD =
e O G O=0

Eliminating U®, V@ and V'

1 1 1 1
= 1 - = 2
o ( Tw T<3>) o +( T® T® ) v

PO P P®
( M 2 T® 3 76

) VW =0

The remaining three variations 8U", U@, and 8V® are arbitrary and uncon-
strained, so that the coefficient of each must vanish separately. From the coeffi- ‘:
cient of 8U® we find T® = T, and from the coefficient of 8U® we find

T® = T®. Hence all three systems come to a common final temperature. From
the coefficient of §V'™), and using the equality of the temperatures, we find

PO 4 2P® = 3pO)

This is the expected result, embodying the familiar mechanical principle of the i
lever. Explicit knowledge of the equations of state would enable us to convert this -

into a solution for the volumes of the three systems.
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PROBLEMS

27-1. Three cylinders are fitted with four pistons, as shown in Fig. 2.2. The
cross-sectional areas of the cylinders are in the ratio 4,: 4,: Ay =1:2:3. Pairs
of pistons are coupled so that their displacements (linear motions) are equal. The
walls of the cylinders are diathermal and are connected by a heat conducting bar
(crosshatched in the figure). The entire system is isolated (so that, for instance,
there is no pressure exerted on the outer surfaces of the pistons). Find the ratios
of pressures in the three cylinders.

FIGURE 2.2
Three volume-coupled systems. (Problem 2.7-1)

2.7-2. Two particular systems have the following equations of state:

1 3 NGO PO ND
ﬁ T2 m’ TWw - 148
and
1 @ @ @
L _SpN® p® N
T® 2 py® T® 1748

The mole number of the first system is N® = 0.5 and that of the second is
N® = 0.75. The two systems are contained in a closed cylinder, separated by a
fixed, adiabatic, and impermeable piston. The initial temperatures are T = 200
K and 7% = 300 K, and the total volume is 20 liters. The “setscrew” which
prevents the motion of the piston is then removed, and simultaneously the
adiabatic insulation of the piston is stripped off, so that the piston becomes
moveable, diathermal, and impermeable. What is the energy, volume, pressure,
and temperature of each subsystem when equilibrium is established?
It is sufficient to take R = 8.3 J /mole K and to assume the external pressure to
be zero.
Answer:
UMD =17007J

2.7-3. The hypothetical problem of equilibrium in a closed composite system with
an internal moveable adiabatic wall is a unique indeterminate problem. Physi-
cally, release of the piston would lead it to perpetual oscillation in the absence of
viscous damping. With viscous damping the piston would eventually come to rest
at such a position that the pressures on either side would be equal, but the
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temperatures in each subsystem would then depend on the relative viscosity in
each subsystem. The solution of this problem depends on dynamical considers.
tions. Show that the application of the entropy maximum formalism is corr
spondingly indeterminate with respect to the temperatures (but determinate with
respect to the pressures).

Hint: First show that with dU® = — pWgp®_ anq similarly for subsystem
energy conservation gives P = P®_ Then show that the entropy maximu
condition vanishes identically, giving no solution for 7® or T

2-8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW

Consideration of the flow of matter provides insight into the nature o
the chemical potential. We consider the equilibrium state of two simp
systems connected by a rigid and diathermal wall, permeable to one typ
of material () and impermeable to all others (N5, N5, ..., N). We see
the equilibrium values of U™ and U® and of N and N/®. The virtua
change in entropy in the appropriate virtual process is

o

1

1 (H 2)
L —5 dU® - %5 ANG (257

- 1 _
e -

ds = -

dN© +

and the closure conditions demand

dU® = —qu®

and
dN® = —gN® (259

whence
1 1 pd @
= —_— 1y _ Kad SR o O M
ds (Tm T@))dU (T(l) & dN] (2.60)

As dS must vanish for arbitrary values of both dU® and dN®, we find
as the conditions of equilibrium

1

T®

1 ﬁ
W = (2.61)

and

1 2
pd pP

70 = 70 (hence also p{ = @)

(2.62)
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Thus, just as the temperature can be looked upon as a sort of “potential”
for heat flux and the pressure can be looked upon as a sort of “potential”
for volume changes, so the chemical potential can be looked upon as a
sort of “potential” for matter flux. A difference in chemical potential
provides a “generalized force” for matter flow.

The direction of the matter flow can be analyzed by the same method
used in Section 2.5 to analyze the direction of the heat flow. If we assume
that the temperatures T and T® are equal, equation 2.60 becomes
b2 )

ds = T

ANV (2.63)

If p{" is greater than p{®, dN will be negative, since dS must be
positive. Thus matter tends to flow from regions of high chemical poten-
tial to regions of low chemical potential.

In later chapters we shall see that the chemical potential provides the
generalized force not only for the flow of matter from point to point but
also for its changes of phase and for chemical reactions. The chemical
potential thus plays a dominant role in theoretical chemistry.

The units of chemical potential are joules per mole (or any desired
energy unit per mole).

PROBLEMS
2.8-1. The fundamental equation of a particular type of two-component system is
U2y N N,
S = NA + NR IHW — MR 11’1—N— — NlenW

N=N +N,

where A is an unspecified constant. A closed rigid cylinder of total volume 10
liters is divided into two chambers of equal volume by a diathermal rigid
membrane, permeable to the first component but impermeable to the second. In
one chamber is placed a sample of the system with original parameters N = 0.5,
NV =075, V® = 5 liters, and T® = 300 K. In the second chamber is placed a
sample with original parameters N® = 1, NS = 0.5, V® = 5 ljters, and T® =
250 K. After equilibrium is established, what are the values of NV, N@ T, PO,
and PP?

Answer:
T=2727K

2.8-2. A two-component gaseous system has a fundamental equation of the form

BN, N,

S =AUV VION 4 =22 N =N, + N,
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The fundamental equation of the system is

S=S(UV,N,N,,...,N) (2.67)

only to the first component. One mole of the first component, at a temperat
7,, is introduced in the left-hand subvolume, and a mixture of 3 mole of ea
component, at a temperature T,, is introduced into the right-hand subvolume,
Find the equilibrium temperature 7, and the mole numbers in each subvolu
when the system has come to equilibrium, assuming that 7, = 27, =400 K a
that 37B*=100A%V,. Neglect the heat capacity of the walls of the container!

In the course of the chemical reaction both the total energy U and the
total volume V' remain fixed, the system being considered to be enclosed
in an adiabatic and rigid “reaction vessel.” This is not the most common
boundary condition for chemical reactions, which are more often carried
out in open vessels, free to interchange energy and volume with the
ambient atmosphere; we shall return to these open boundary conditions in

Answe on 6.4
N =0 Section 6.4. _ _ . . .
1 The change in entropy in a virtual chemical process is then
r ’.L .
2-9 CHEMICAL EQUILIBRIUM as =-y% —Ti dN, (2.68)
j=1

Systems that can undergo chemical reactions bear a strong form
similarity to the diffusional systems considered in the preceding sectio
Again they are governed by equilibrium conditions expressed in terms
the chemical potential u—whence derives its name chemical potential.

In a chemical reaction the mole numbers of the system change, som
increasing at the expense of a decrease in others. The relationships amon:
the changing mole numbers are governed by chemical reaction equation:
such as

However, the changes in the mole numbers are proportional to the
stoichiometric coefficients »;. Let the factor of proportionality be denoted
by dN, so that

ds = 2

SIS

Y B, (2.69)
j=1

Then the extremum principle dictates that, in equilibrium

2H, + 0, = 2H.0 2.64 . _
2 2 2 ( Zl'ujyj = 0 (270)
pu

or

If the equations of state of the mixture are known, the equilibrium
condition (2.70) permits explicit solution for the final mole numbers.

It is of interest to examine this “solution in principle” in a slightly
richer case. If hydrogen, oxygen, and carbon dioxide are introduced into a
vessel the following chemical reactions may occur.

H, + 30, = H,0

20 = 0, (2.65

—_—

The meaning of the first of these equations is that the changes in the mo
numbers of hydrogen, oxygen, and water stand in the ratio 0
—2:—1:+2. More generally one writes a chemical reaction equation,
for a system with r components, in the form

. = + H,O 2.71
0=3r4d, (2.66) €0, + Hy = CO+H, @.7)
J CO + 30, = CO,
The »; are the “stoichiometric coefficients” (—2, —1, +2 for the reaction In equilibrium we then have
of hydrogen and oxygen to form water), and the A4 , are the symbols for L
the chemical components (4, = H,, 4, = O,, and 4, = H,O for the Bu, 20, = Py,0
preceding reaction). If the reaction is viewed in the reverse sense (for _ n (2.72)
instance, as the dissociation of water to hydrogen plus oxygen) the Bco, ¥ B, = fco F Bao :
opposite signs would be assigned to each of the v;; this is a matter of ) _
arbitrary choice and only the relative signs of the v; are significant. , fico + 3o, = Kco,
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These constitute rwo independent equations, for the first equation i
simply the sum of the two following equations (just as the first chemici
reaction is the net result of the two succeeding reactions). The amounts ¢
hydrogen, oxygen, and carbon introduced into the system (in whatev
chemical combinations) specify three additional constraints. There ar
thus five constraints, and there are precisely five mole numbers to b
found (the quantities of H,, O,, H,O, CO,, and CO). The problem i
thereby solved in principle. '

As we observed earlier, chemical reactions more typically occur in oper
vessels with only the final pressure and temperature determined. The
number of variables is then increased by two (the energy and the volume)
but the specification of 7 and P provides two additional constraints
Again the problem is determinate.

We shall return to a more thorough discussion of chemical reactions in
Section 6.4. For now it is sufficient to stress that the chemical potenti
plays a role in matter transfer or chemical reactions fully analogous to tl
role of temperature in heat transfer or pressure in volume transfer.

—
SOME FORMAL RELATIONSHIPS,
AND SAMPLE SYSTEMS

31 THE EULER EQUATION

Having seen how the fundamental postulates lead to a solution of the
_ equilibrium problem, we now pause to examine in somewhat greater detail
_ the mathematical properties of fundamental equations.

Thfs homogeneous first-order property of the fundamental relation
_permits that equation to be written in a particularly convenient form
called the Euler form. ’

g From ;he definition of the homogeneous first-order property we have,
or any

PROBLEMS

2.9-1. The hydrogenation of propane (C;H,) to form methane (CH,) proce
by the reaction

C;H, + 2H, = 3CH,
Find the relationship among the chemical potentials and show that both
problem and the solution are formally identical to Example 1 on mechan
equilibrium.

UAS,AX,,...,AX,) = NU(S, X,,..., X) (3.1)

‘ Differentiating with respect to A

dU(...,AX,,...) d(AS) L OUC.,AX,,..) 3(AX)
I(AS) IA I(AX)) IA

Sor

U(... AX.,..)
aas) St E

X,

(A X)) s
=U(S,X,,..., X)) (3.3)
This equation is true for any A and in particular for A = 1, in which case
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