
Physics 114 Statistical Mechanics Spring 2018

Seminar 13

Overview:
This week’s assignment is made up of three parts. First, we study systems
which have interparticle interactions which can’t be neglected (which can thus
make a system undergo a phase transition). The potential energy, u(ri, rj)
between particles i and j thus factors into a fluid’s statistical properties. We
will learn how to write virial series for pressure (and other quantities like free
energy). These are series with the density N/V as the expansion parameter.
A virial series is used when a gas is not dilute enough to be ideal, but not
dense enough to be a liquid.

Second, we have several presentations in each of our 3 sections.
Wed A: David, Noah R, Sarah
Wed B: Jimmy, Emma, Davy
Thurs: Noah L, Sam, Jaron
If you have reached out to me for good references, I will respond to you over
the weekend. Please make this talk as informative, interactive, and polished
(slides?!) as you can. Aim for 10 minutes, but if your talk lasts 15 minutes
it will be OK.

Finally, I am assigning an Honors Exam from the past. I hope everyone
will attempt it. Please bring solutions, partial solutions, ideas, ... and we
will go over as much as we can!

Reading:
G&T Sections

• 8.1-8.3

• optional 8.4.1 - 8.4.4 Diagrammatic expansion of free energy

B&B Section

• 26.3

Concept checklist from readings:

• Virial coefficients Suppose we have a classical gas that is dense
enough for interparticle interactions to matter, but insufficiently dense
or cold for transition to a liquid. Now pressure can be written as a virial
expansion. B&B are fond of writing expressions per mole so framed this
way, for one mole with molar volume Vm:
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In G&T language, this would be
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• G&T and B&B go on to justfy this virial series in similar ways (though
B&B is a lot shorter and just fine for our purposes). Recall the general
form for the partition function:

Z(T, V,N) =
1

N ! h3N

∫
...
∫
dr1, ..., drN dp1, ..., dpN e−βU(r1,....rN,p1,....pN)

For much of seminar, we’ve been dealing with an ideal gas, so U was
wholly kinetic: U = UK ≡ Σip

2
i /2m. In this case, the partition function

was:

Z(T, V,N) = Zideal(T, V,N) =
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• Now we will assume there is potential energy as well as kinetic. So
U = UK + UP . We find that we can write the partition function as
a product Z = ZKEZPE where ZKE = Zideal and ZPE is often seen
written as Zc. This is because Zc is called the “configuration integral”
- it depends on the spatial configuration r1, ..., rN. We thus have

ZPE = Zc =
1

V N

∫
...
∫
dr1...drNe

−βUP (r1....rN)

• Notice the V N in the denominator! We need it! Otherwise, U = 0
would not lead to Z = Zideal.

• Two approximations: i) We use pair potentials - so two particles con-
tribute to Up via u(ri, rj), no matter where the other particles in the
system are located. ii) It is only the scalar distance between particles i
and j that determines their potential energy. Thus

UP = Σi<ju(|ri − rj|) ≡ Σi<ju(rij)

where the sum is over all distinct pairs of particles. This leads to

Zc = V −N
∫
...
∫
dr1...drN Πi<je

−βu(rij)

• Now comes a notation that B&B doesn’t use but G&T, and most other
people do. We frame Zc in terms of the Mayer f functions
f(rij) = e−βu(rij) − 1. See the figure below ...

• The f(r) functions go quickly to zero as soon as a pair of particles are
separated by r greater than the range of their interactions. These are
“molecule-sized” functions. By definition,

Zc = V −N
∫
...
∫
dr1...drN Πi<j[1 + f(rij)]



• From here, one expands out the infinite product. Note that f(r) is
small when βu is small ... i.e. when interactions between particles are
not too important on a scale of kT . If we truly expect f to be small
enough to ignore for all pairs of particles, we have Zc = 1. This is an
ideal gas.

• If we can’t ignore these factors of f , we have the issue of calculating
terms in the product.

Zc =
1

V N

∫
...
∫
dr1...drN[1+Σpairs i<jf(rij) + Σdistinct pairs i<j, k<l f(rij)f(rkl)+...]

• It is at this point that we say that we are stopping only at the very
first sum above ... only one power of f(r). This is like saying that our
gas is dilute enough that it is rare to have a triplet (or quadruplet or
... ) of particles close to each other at any one time. We can make the
usual N large approximation

Zc = 1 +
N2

2V

∫
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We now integrate over angle space for the one remaining 3d coordinate,
r, to arrive at

Zc = 1− NB2(T )

V
where B2(T ) = −2π

∫ ∞
0

r2f(r)dr

• Last steps ... use F = −kT lnZ and P = −(∂F
∂V

)T to get our first term
in the virial expansion for free energy and pressure:
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• Quantum gasses at high temperatures ... In the context
of Virial expansions, I’m asking you to do G&T problem 6.60 on finding
P (T ) for the ideal Fermi gas and G&T 6.61 for the ideal Bose gas.
Though these are ideal gasses, they are nonclassical ones. As a result,
there is a correction to PV = NkT so long as the deBroglie wavelength
is not negligible compared to the average spacing between particles.
As you will derive in these problems, this correction is positive for
Fermions, raising the pressure from the classical result:
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and is negative for Bosons, lowering the pressure:

PV = NkT [1− λth
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Warmup Problems: None!

Regular problems:

1: Virial coefficients:
G&T Problem 8.30 parts (a) and (b)

2: VdW virial coefficients:
Begin with the vdW equation of state:
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) (V −Nb) = NkT

Expand the equation of state for low density ρ = N/V and thus find the
second virial coefficient, B(T ) for a vdW gas. The temperature at which
B(T ) = 0 is called the “Boyle temperature”. Why is this a special tempera-
ture?

3: Ideal Fermi Gas at high T:
G&T Problem 6.60

4: Ideal Bose Gas at high T:
G&T Problem 6.61


