
Physics 114 Statistical Mechanics Spring 2018

Seminar 12

Overview:
This week, we study transitions between different equilibrium phases of mat-
ter. Knowing the chemical potential allows us to trace out coexistence curves
on a phase diagram. We will use the important toy model of a van der Waals
fluid, in order to study the liquid-gas phase transition. We’ll derive that the
enthalpy change, or “latent heat” of transition, determines the slope of the
phase coexistence curve between any two phases on a P-T diagram.

We then focus on critical phenomena and so-called “second order” phase
transitions. These are also known as“order-disorder” transitions. (The word

“order” means two different things in these two sentences :-). We’ll discover that there
is something universal about their behavior in different physical systems like
fluids and ferromagnets. We’ll address one approach to understanding phase
transitions: Mean field or Landau theory. (While it would be cool to study
them via a second approach, Renormalization group, we don’t have time ;-(
We will discuss scaling relations leading to critical exponents.

Finally, since we are studying phase transitions, it is a great time to apply
our understanding of boson statistics to a transition from a gas to a Bose
Einstein Condensate (BEC) . As temperature drops below Tc, bosons make
a transition to a very interesting phase, with an appreciable fraction of them
sharing the ground state. This makes the bosons behave like a superfluid.

Reading:

G&T Sections

• 6.10

• 7.3, 7.4

• 9.1, 9.2

B&B Sections

• 26.1, 26.4

• 28.1 - 28.4 and 28.7

• 30.4



Schroeder

• Section 5.3

• Section 7.6

Review reading: Several sections were read in earlier seminars - no
harm in looking back at them!

• G&T sections 7.1, 7.2 (chemical potential)

• G&T section 5.7 and problem 5.18 (Mean field theory for magnetic
systems)

• B&B Appendices C.4 and C.5 (and new reading if you wish, Appendix
A.13 of G&T) to remind yourself about the analytical way to talk about
Bose Integrals (though Mathematica can surely do them :-)

Concept checklist from readings:

• Phase transitions and phase diagrams: Ideal gasses have
only one phase - gas. But a real substance can exist in different
phases, which have distinct forms. Examples are the ordered packing
of molecules in a solid vs. the disorder of a liquid, or the orientational
ordering of molecules in a liquid crystalline phase. It is something of
a miracle that this happens. Two molecules of a substance interact in
a fixed way. So why, when you change P or T do you get a radically
different form for the entire system? It’s a cooperative phenomenon.
As we read this week, it is all about which phase has a lower free en-
ergy per molecule. Throughout the topics this week, this is a recurring
theme: Lowest G means most thermodynamically stable system ... so
the system will choose the phase with the lowest G(T,P,N), given you
fix T, P and N..

• The most basic kind of phase diagram is that of a pure substance when
the pressure is not huge, as in left hand side of Figure 1below. Axes
are typically P vs T . Analogous magnetic systems, with B taking the
place of P , are shown Figure 2 below, which is Schroeder Fig. 5.14.
To read the diagram on the diagram, you might ask yourself “If I raise
or lower P at constant T, what happens?” A big difference between
H2O and most other substance is that raising P in the solid phase
takes you to a liquid. This makes intuitive sense because unlike most
other substances ρsolid < ρliquid for H2O. See the Clausius-Clapeyron
equation below for a more formal argument.



Figure 1: Phase diagram of H2O, which can also be seen in all of the texts this

week.

• Can you draw a phase diagram with other axes? How about P vs.
ρ or equivalently P vs. V ? This is technically OK as in G&T Fig.
7.5 or Schroeder Fig. 5.23 reproduced below. But careful: V or ρ is
not a control parameter. You might think it is but a system can do
something beyond your control, like phase separate with two different
densities: ρliquid and ρgas say.

Figure 2: Phase diagrams of a van der Waals fluid.

• Some terminology you will learn this week:

– phase: a state of matter characterized by macroscopic properties
like density, symmetry, magnetic moment. These correspond to
labelled areas on a phase diagram.

– phase transition or phase transformation: the properties above
change as a control parameter like temperature, pressure, external
field is varied



– phase coexistence curve: curves on the phase diagram that sepa-
rate one area from another If there were more variables, these could be

surfaces. This week we did not have time to talk about binary fluids, but they

are a good example of a system where we have to be creative about how we

plot, because the volume fraction x of one species is also a control parameter.

– sublimation: the transition from solid to gas

– melting/freezing: the transition between solid and liquid

– vaporization: the transition from liquid to gas

– vapour pressure: the pressure of gas above a solid - or above a
liquid - if the two phases are in equilibrium.

– latent heat: the heat, which is actually an enthalpy difference,
between two phases. Usually symbolized by L.

– Triple point: The special value of T and P where liquid, solid and
gas all coexist. Not all systems have one (He4 doesn’t.)

– Critical point: The special value of T and P where liquid and gas
coexist, but ρliquid = ρgas so there is no real distinction between
them.

• One way to imagine the critical point: along the coexistence curve,
ρgas < ρliquid, but the difference gets smaller as T gets higher. At Tc,
ρgas = ρliquid and beyond it, there is only a thing we call fluid. There
are strong analogies between magnets and fluids. Tc is like the Curie
temperature of a ferromagnet, and it is the critical temperature for our
favorite “toy” model of a magnet, the Ising model.

• Notation alert: Different readings have different symbols conventions.
One text uses G meaning per the total, Gibbs free energy mole, but
another might mean G is per mole. Another text uses g meaning energy
per molecule, and other texts use µ, chemical potential, as a synonym
for g. Also confusing, in one text L will mean latent heat per kg, or
latent heat per mole. But in a different text, G&T for example, they
switch to small letters so that l is the latent heat per mole. They also
use small letters for entropy and volume, so s is entropy per mole, and
v is volume per mole. B&B uses Vm per mole. Sigh!



• Areas of a single phase are separated by phase boundaries: P (T ) curves
where two phases coexist. What determines a phase boundary? At any
point (Tb, Pb) on a phase boundary the Gibbs free energy per molecule
will be numerically equal: µATb, Pb) = µB(Tb, Pb). It costs no free
energy to interconvert from one phase to the other.

• B&B 28.7 talk about a few naming schemes for phase transitions:

– First, vs. second, vs. third ... has to do with which derivative of
G(T, P,N) shows the first discontinuity. E.g across the curves in a
phase diagram, you have a first order transition. For a first-order
transition, the latent heat is nonzero: L = T∆S 6= 0. Thus S, a
first derivative of G with respect to T is discontinuous. Also, V ,
a first derivative of G with respect to P , is discontinous.

– Continuous vs. discontinuous: is a way to lump all orders beyond
the first into one called ”continuous”. However, it makes good
sense. First derivatives of G with respect to an external field like
pressure or magnetic field are order parameters. For example,
the magnetization M(T ) is a derivative of energy with respect to
magnetic field. It rises smoothly from zero as temperature drops
below the Curie temperature.

– Symmetry breaking: is what some transitions do. For example,
a liquid is more statistically symmetric than a crystalline solid,
which is not perfectly symmetric upon translation or rotation. On
the other hand, a liquid and gas have equal amounts of symmetry.

• The Gibbs-Duhem equation:

dg = (
∂g

∂P
)T dP + (

∂g

∂T
)P dT ; or dµ = vdP − sdT

It looks like a weird flipping of the thermodynamic identity, where ex-
tensive are swapped with intensive variables. It plays a role in various
arguments this week, including deriving the Clausius-Clapeyron rela-
tion (below) and the Maxwell construction as done in G&T section
7.4.

• Clausius Clapeyron Let’s go with Schroder’s notation that we
have a mole of stuff that can be either in the A or B phase. Quanti-
ties below will all be considered to be measured per mole. The slope of
the vapour pressure P (T ) curve on the phase diagram is shown to obey:

dP

dT
=
SB − SA
VB − VA

=
L

T∆V
.

Here, L is the latent heat or enthalpy of transition going from A to
B. In other words, L = T∆S = ∆H because when we straddle a line



between phases A and B in the phase diagram, GA = HA − TSA =
HB − TSB = GB.

• When we cross a coexistence curve to move between, say, liquid and
gas phases, L is not zero. (It is positive for liquid to gas, and negative
for gas to liquid.) The density between a liquid and a gas jumps when
you cross the curve. This is the big difference between liquids and
gasses! The only exception is, as we mentioned above, at very end of
the liquid-gas coexistence curve, the critical point.

• Good examples of how to use Clausius-Clapeyron are B&B 28.2, 28.3,
28.4 (the same as Example 7.4 in G&T). In these examples, we derive
the shapes of P (T ) for cases

– liquid↔ gas assuming L is constant, and also taking into account
the change of L(T ) with temperature, which yields

P (T ) = Po exp(−
Lo

RT
+

(Cp gas − Cp liquid) ln (T/To)

R
)

Note: I think there is a missing To in Eq. B&B (28.31) because it needs to

reduce to Eq. (28.23) at the starting temperature, which we might calll To.

– liquid ↔ solid whre we just assume L and the volume difference
∆V between the phases is constant

P (T ) = Po +
L

∆V
ln (T/To)

• A practical use for knowing P (T ) is knowing how a change in pressure
will change the freezing or boiling temperature of a substance. We have
at least one problem on this application this week. There is much talk
of this effect with respect to the ”pressure melting” of water. G&T
show that it cannot be true that this is what melts ice under a skater’s
skates (too little pressure), but Schroder points out that this is relevant
to understand pressure-induced melting of glaciers.

• Interesting in B&B but not required for you to know Are Trou-
ton’s rule, which gives a rough estimate of L for the gas/liquid phase
transition. Also, Kelvin’s formula which arises from a discussion of
metastability ... why drops do not always coalesce (“nucleate”) to
form a liquid when this is the phase with a lower G ... but actually
evaporate, leading to a metastable vapour phase.

• The Van der waals equation of state A gas whose equation
of state is PV = NkT cannot undergo a phase transition. But the van
der Waals equation of state

P =
NkT

V −Nb
− aN

2

V 2
; or in per mole language, P =

RT

Vm − b
− a

V 2
m



models a substance which has realistic short range repulsion and long
range attraction. It can make a transition between gas and liquid. Note
that the constants a and b are different in these two formulations ... for
example b is a volume/molecule on the left, and volume/mole on the
right. The term proportional to b limits reduces the available volume
for each molecule under the assumption that they cannot overlap.

• The term proportional to a can be derived by assuming an attractive
term in the energy Uatt = −aN2/V (or in the per/mole way of looking
at things, Uatt = −an2

moles/V ). This is proportional to N2 (or n2
moles)

since it has pairs of particles attracting one another. Then, either an
argument like dU = −PdV or one constructing the partition function
as in B&B p. 298 yields the vdW equation of state.

• There are issues with the phase diagram that the vdW gas produces.
All three texts show P vs. V plots, where the isotherms do something
crazy below a certain temperature, Tc. This critical isotherm is the
one on which P (V ) has a point of inflection, both first and second
derivatives vanish. On isotherms for T < Tc the compressibility, κ =
− 1
V

(
∂V
∂P

)
T,N

becomes negative in a range of V values. This is physically

impossible! But it comes out of the math ... in particular I like B&B’s
argument in their Eq. (26.11) that P (V ) is a cubic equation, and we
shouldn’t be surprised if it has an “S” shape. it will only do so for
T < Tc .

• The readings make various arguments. Though B&B and Schroeder
avoid doing this, G&T ends up writing g(T, ρ,N), even though ρ is
not g’s “natural variable”. G(T, P,N) turns out to be multi-valued in
a certain range of V . Looking at it another way (see figures below),
when we are below T = Tc, viewing the phase diagram in P, V, T space
, a curve of constant T opens up into an area. But this area is not a
realm of thermal equilibrium.

• Interpretation: only the boundary of that area is physical and repre-
sents thermal equilibrium. The equilibrium system is confined to the
black, dashed binodal line in the bottom figure below. The tan, dashed
spinodal curve is the one inside which a system could never, ever go.
This is where compressibility goes negative. However, a quickly cooled
liquid could get inside the binodal ... it would be called ”supercooled”
and be considered metastable. This is the essence of Figure 7.7 of G&T,
which shows the beginning of the ”loop” in G(P ) shown completely in
Fig. 5.21 of Schroeder.

• Liquid and gas thus coexist at the two volumes on the boundary of the
binodal, Vl and Vg. The Maxwell equal aqrea construction tells us what
these volumes are are for given P and T . We draw a horizontal line



which insures that ∫ P (Vg)

P (Vl)
V (P )dP = 0

• Doing this integral and setting it equal to zero is well and good, but
how do we really find VL(P ) and VG(P ) for arbitrary P? G&T take us
through this partly-analytical, partly-numerical calculation on p. 400
that leads to their Figure 7.9.

• Dimensionless variables and the vdW Critical Point
We get insight by writing the vdW equation of state in terms of di-
mensionless “reduced” variables P̃ = P (27b2/a), T̃ = kT (27b/8a),
ρ̃ = ρ 3b, and g̃ = (g/kTc)(8/3). This not only makes the vdW equa-
tion cleaner, but makes the critical point values Tc, Pc and ρc very
pretty as well ... all equal to unity as one of our problems this week,
G&T 7.10 shows.



• The law of corresponding states shows us that if we rescale P, V and T
by their critical values, a remarkable number of pure substances fall on
the same liquid-gas coexistence curve.

• We can also use the dimensionless vdW equation to derive critical ex-
ponents. A couple of problems treat these this week. There are cool
analogies to the mean field Ising ferromagnet. For example,
M ∝ (T−Tc)β is completely analogous to ρliq−ρgas ∝ (T−Tc)β ... with
the same critical exponent for both. The vdW model is a mean-field
model of a real fluid.

• Order-disorder transitions and Critical phenomena
So far in these notes, we spent most of our time on “first order” transi-
tions that happen on curves in P − T space. Now we narrow our focus
to the viscinity of a single point, the critical point. (So much effort to
understand a single point?! We will try to make the case that this is
interesting!) There is zero latent heat, and it the higher derivatives of
free energy which are discontinuous or divergent. Despite the lack of
a jump in the free energy due to a jump in the entropy, this kind of
transition takes place between an ordered and disordered phase.

• G&T Ch. 9.1 has a review/extension of material from Ch. 5. In Ch. 5
Mean field theory gave us an approximate prediction of magnetization,
m(T,H). When you extend the theory to also talk about free energy,
g(m,T,H), you are doing what is called a Landau theory. G&T Prob-
lem 5.17 (which we didn’t do, but referred to) shows how this goes.

• Now the symbol for free energy per particle has become g(m). More
importantly, now we are being very general ... m does not have to be a
magnetization and we don’t have to derive g from a specific partition
function as in Ch. 5. The quantity m is the order parameter, which will
be zero at T > Tc and rise smoothly from zero as T drops below Tc. We
are meant to apply Eq. (9.1) quite broadly to create a Landau theory
for any system. You will notice it is an analytic function, meaning a
Taylor series in m. This is a hallmark of a mean field theory.

g(T,m) = a(T ) + b(T )m2/T + c(T )m4/4−Hm G&T (9.1)

• As many times in seminar, our guiding principle is that m will minimize
g(m). The key to finding a phase transition is to set b = b0(T − Tc)
(which was derived naturally in the ferromagnetic example in Ch. 5),
with b0, c > 0. From the minimization of m comes the emergence of
three roots: m = 0,±m∗ when T < Tc.

• In order to study critical phenomena, it is convenient to define dimen-
sionless distance from the critical temperature as ε = |T − Tc|/Tc. The
result that m∗ ∝ ε1/2 leads us to the critical exponent β = 1/2.



Figure 3: Graphs of important quantities, using a ferromagnetic example
(from Yeomans Ch. 2, found in our Resources folder.)



• Critical exponents are exciting, in part, because they are universal.
They endow the same mathematical form, a power law, to quantities in
vastly different systems (see Yeomans tables below). Also, any mean
field treatment will yield the same critical exponents. Moreover, two
systems can seem quite different but have a deep similarity - same
spatial dimension and same kind of order parameter - and these will
have the same numerical values for their critical exponents. Systems
that share the same exponents are called members of a universality
class. Finally, systems above a certain upper critical dimension will
revert to their mean field critical exponents.

• Yet another intriguing thing about critical exponents is that they are
not all independent, but obey certain scaling relations, as Table 9.1
of G&T shows. Most of these come from straightforward dimensional
analysis, plus a bit of handwaving (e.g. that the only important length
scale in the problem is ξ.)

• Bose-Einsten condensation ... is weird and wonderful.
When a boson gas has its temperature reduced past Tc, a substan-
tial number of particles begin to occupy the same state, the ground
quantum state. They stop contributing to pressure or viscosity . To
understand why this transition occurs, we first we might think about
how the chemical potential changes with T . Fixing N , the total number
of bosons, we can in principle find µ via:

N =
∫ ∞
0

1

eβ(ε−µ) − 1
g(ε)dε

Calculated this way, using the classical density of states, g(ε) ∝ ε1/2, we
find that the chemical potential rises to a value extremely close to zero
as T gets very low. When µ actually reaches zero (or ε0, the ground
state energy ... which is close to zero in a real system, there will be one
temperature T = Tc that satisfies this equation.

N = V λ−3th
2√
π

∫ ∞
0

x1/2

ex − 1
dx with λth =

h2√
2πmkTc



• The dimensionless integral above has the value 2.315, so

N = 2.612 V λ−3th ≡ Li3/2(z = 1) V λ−3th ≡ ζ(3/2) V λ−3th

(These different ways of writing N are thanks to the polylogarithm
treatment in B&B ... you can read about it in their Appendices C.4
and C.5, and you can remind yourself about Bose and Fermi integrals in
G&T Appendix A.12.) This can only be true for one value of λth, hence
one temperature, the BEC transition temperature. It will depends on
the mass of particles and their density. From above:

kTc = 0.527
h2

2πm
(
N

V
)2/3

• Why can’t we have bosons with lower temperatures than Tc? We can,
but we have to fix a problem in our formalism. We tried to find the
temperature that gave us the known density N/V , by integrating ener-
gies from 0 to∞. But below Tc we have significant numbers of particles
occupying the ground quantum state. These are not accounted for in
our integral weighted by g(ε), which happens to be zero at ε = 0. We
have to count low-lying quantum states using a sum, not an integral.
The population of the ground state rises in a new way below Tc. A
phase transition!

• The expressions for N above are correct, but only for the population
of particles in the excited state. We thus write:

N0 = N −Nexcited = N [1− (
T

Tc
)3/2]

The N0 particles that are “condensed” are in the ground energy state.
So rather than thinking of them like a drop of water in a gas vapor, we
should think of them as all slowed to their zero-point state of motion.
In experiments, the atoms are localized in a magnetic trap. Here is a
link to the Nobel prize lecture of Wolfgang Ketterle, who participated
in the first experiment that found a BEC in ultra cold alkali halide
atoms: http://www.gangalib.org/ketterlelecture.php.
Here’s an MIT video about creating the BEC:
https://www.youtube.com/watch?v=1RpLOKqTcSk.

http://www.gangalib.org/ketterlelecture.php
h


Figure 4: False color image of velocity space of Rubidium gas undergoing
BEC -BaRbiE project, Univ. Ulm

• One can explore the thermodynamics of the Nexcited particles, as one
moves through the BEC phase transition. B&B Fig. 30.6 plots z, U(T ),
and CV (T ), and problem 30.4 (not assigned) allows us to derive the
inflection at CV (T = Tc) which heralds the transition.

Figure 5: Specific heat of ideal bose gas, with superfluid helium specific heat
cartooned in G. Baym lecture notes, Tokyo. 2004

• Superfluidity is a phenomenon related to BEC, though the differences
are subtle. Superfluid bosons also share a quantum state, allowing
them to escape through nanoscopic pores, move without viscosity, and
follow each other in gravity-defying streams. Cool videos of superfluids
exist: e.g. https://www.youtube.com/watch?v=2Z6UJbwxBZI .
A Bose-Einstein condensate is not quite identical to a superfluid. Su-
perfluids require interatomic interactions, whereas Bose-Einstein con-
densation is a result that emerges for noninteracting bosons.

• Bose-Einstein condensation is a collective phenomenon. A large number
of bosons follow each other into the ground state. Were they distin-
guishable, there would be a very tiny fraction in the ground state, due
to the many ways to distribute them among the many, many excited

h


states around energy kT . (This is the essence of the canonical distribu-

tion. Because E−TS is minimized, the large S of having particles in higher

energy states fights with the low E of having them in lower energy states.

The compromise for distinguishable, classical particles is that they hover

around energy kT .) However, for bosons, there are far fewer excited
state configurations available. The larger the number of bosons, N ,
the more important is the smallness of e−εN/kT ≈ e−N , the probability
of occupying a state of energy around kT . So the bosons lower their
free energy by falling into the ground state. Like the degeneracy pres-
sure of fermions, this is truly a result of bosons being identical! It is a
demonstration that (as Schroeder says David Griffiths says) “even God
cannot tell them apart”.



Warmup Problems: Due by Tuesday afternoon on Moodle, or on pa-
per in seminar

1: Clausius-Clapeyron and vapor pressure: Schroeder Problem 5.35
Hint: This problem is actually done as an example in G&T Section 7.3 .

2: Bose-Einstein Condensate: Putting in some numbers: Schroeder
Problem 7.66 parts a) - c)

Regular problems:

1: Changes in boiling and freezing points G&T problem 7.15

2: Phase Diagrams: Schroeder problem 5.24

3: Phase diagrams: Schroeder problem 5.29 parts (a),(b) and (c) .
See the diagram below for a sense of the answers.



4: More phase diagrams: Schroeder Problem 5.34

5: VdW phase transitions and the Law of Corresponding States:
G&T problem 7.10

6: More about vdW phase transitions:
i) Schroeder problem 5.52
ii) Plot G(t = 0.95, v) vs. v. Do you get something like G&T Fig. 7.6, with
minima in the right places?

7: VdW gas and critical exponents:
i) G&T problem 7.18
ii) B&B problem 26.1 ... also, what does your answer give for the
critical exponent γ? How does this result compare to the mean field critical
exponent γ for the Ising model of ferromagnetism?

8: BEC Critical temperature:
i) Schroeder problem 7.65
ii) G&T problem 6.39

9: BEC behavior of pressure: G&T problem 6.40


