Physics 114 Statistical Mechanics Spring 2018
Seminar 11

Overview:

This is our second week studying Fermi-Dirac or Bose-FEinstein particles in
stat mech. Last week, we began with the general formalism: counting states
of the system, finding free energy = ¥, and the occupation number
ny for states labelled with wave number k. These led us, in a familiar way,
to calculating statistical properties of interest. This week, we apply our un-
derstanding of boson statistics to quantized vibrations, or phonons in solids.
We do the Finstein solid (familiar to us) and the Debye solid (new). (Next
week, when we talk about phase transitions, we will do the Bose FEinstein
Condensate (BEC) .)

We also focus on fermions, half-integer spin particles, no two of which
can occupy a single quantum state. The ideal Fermi gas is a starting place
from which to model electrons moving in a solid, or the degeneracy pressure
that keeps a neutron star from collapsing. A key idea is the Fermi level ...
the highest energy level which N fermions fill at 7" = 0*. We will look at this
ground-state situation, and also look at higher temperatures, with particles
excited beyond the Fermi level ... for example, the electrons which carry
current in a conductor.

*Schroeder Problem 7.10, done as a warmup last week, had you filling energy levels sepa-
rated by Aw. You did this for three kinds of particles. You hopefully saw that the lowest
energy state for 5 fermions consisted of filling levels 0, 1, 2, 3, 4. So the “fermi energy” of

this system was 10hw.

Required Reading:
G&T Sections

e 6.8,6.9

e 6.11.2
B&B Sections

e Ch. 24

e 30.2-30.3
Schroeder Sections

e 7.3,7.5

Presentations:
If life gets dull, Amy might talk about Ferm: surfaces ... which bring stat
mech and solid state physics together.



Concept checklist from Readings:

e Quantized vibration in solids ... Recall the Einstein model
of solids. Now we have a new perspective on it. The ¢ quanta of energy
shared among the N oscillators are like ¢ bosons. The expected energy
per oscillator, e, is the ground state energy, hw/2, plus the energy of n
bosons ... each one carrying energy w. That is:

1
_ —PBhw/2
Zl =€ 71 _ e*ﬁhw
_ L 1

These new bosons are quanta which carry vibrational energy. Like
photons, they have p = 0.

e We introduce a relevant, new temperature Tp = hw/kp. If we do
the familiar calculation of C), for the Einstein solid, we notice that
for for T' >> T we are in the high 7' limit known as “Dulong-Petit”

This limit is just what we’d get from equipartition: C, = 3Nkpg.
(Notation alert: We have wave vectors k floating around now, so I have tried to

write Boltzmann’s constant as kg ... but look out for typos.)

e The problem with the Einstein crystal’s C), is that it falls to zero much
too fast as T — 0. Not a theoretical problem, but an experimental one.
Experiments give C, oc T3 as T — 0.

e The Debye model is an improvement. The same kind of summing over
modes as we've done a couple times before, is now applied to lattice
vibrations. Now our quantized vibrations are not independent oscil-
lators as in the Einstein model, but the normal modes of a lattice of
N atoms. Every quantized wave vector k is converted to a frequency
based on the average speed of sound, ¢, in the lattice:

ke =w
This allows us to get the density of states:
3Vw?dw

gWde = =0

e U can be found in the usual way, by integrating hw weighted by n(w)g(w)
over all w. However, we need to think about the limits of integration.
Unlike E&M radiation in a box, solid vibrations have a shortest wave-
length Ap equal to the typical spacing between atoms. This is shown
in problem G&T 6.35, which is assigned this week. It’s equivalent to
arguing that there is a high frequency cutoff wp, so we don’t count
more modes than there are. There can only be 3N normal modes of
vibration in a 3d crystal with N atoms.



e This high energy low wavelength cutoff leads us to define an equivalent
temperature, the Debye temperature Tp = hwp/kp. We thus get:
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e Atlow T, C, o< T® which is what experiments show. Schroeder reminds
us that in a metal, there is another contribution at low temperatures
proportional to 7', which is something we discuss below, the contribu-
tion from the “free electron gas” (i.e. the conduction electrons). At
high T, the law of Dulong and Petit, C', = 3Nk is obeyed, just as for
an Einstein solid. Hooray!

e B&B Section 24.3 gives us a glimpse of a situation where we can no
longer treat phonons like particles-in-boxes. Now, is not the case that
the dispersion relation is w o< k. Nor is the density of states g(w) oc w?
in 3d. This analysis probably familiar to you from a Phys 111 seminar,
where you looked at the normal modes of a system of masses, connected
by springs. In this section, we can read the variable ¢ as being like the
wave number, k. We see the relationship between w and ¢ in Eq. (24.33)
and Fig. 24.5 for a 1d chain of masses. Because sin(qa/2) o (aq/2)
for small ¢, the small-¢q limit is just like an Einstein or Debye model.
For large ¢, the situation is different. Also different is g(w). The low-w
limit is like a particle in a box. But higher w behavior in Fig. 24.7
shows that g(w) depends on the detailed way atoms are bound together
in the copper solid.

e Fermions ... Electrons in solids can be surprisingly well treated,
despite the fact that they are charged, as noninteracting. This is a free
electron model.

e You might think the simplest place to start the topic of fermi gasses
is to treat them at high temperature. But no, fermions are simpler
to understand when T=0, since then ngp(e) is a step or “heaviside”
function: npp(e, T =0) = O(u — €). As one of the problems this week
shows for electrons in copper, room temperature is virtually a 7' = 0
situation for electrons in a solid, because the quantum volume A3 is
very much larger than the volume per electron. These particles truly
act as waves, and quantum mechanics is needed.

e Looking at the distribution function frp(e) (Fig. 1 below) shows that
the step from 1 to 0 occurs at ¢ = u(7T' = 0). We need to write 7' =0
because we know that p(7") is in general a function of T'. (For example,
o< T3/2 for a classical ideal gas.) The Fermi energy ep is defined as

erp = pu(T =0).



e Terminology: There are lots of Fermi things. kg is the Ferm: wave
number, with ep = Ti—];jF The Fermi temperature comes from ep =
kTr Also, pp = hkp is the Fermi momentum, and Ap = h/pp is the
Fermi wavelength, which as we mention above, is much larger than the
interatomic spacing in a crystal. There is also the Fermi surface, which
for free electrons is just the surface of a 3N dimensional sphere in k (or

p) space, with radius kr (or pp).

e The size of the Fermi energy is controlled by the number of particles,
N, via

N = /OkF g(k)dk = /OeF g(€)de

This math is easy with g(e) oc €/ in 3d ( Fig. 1 below). For spin 1/2
particles (electrons, neutrons, ... ) where we can have 2 spin states per
energy, we get
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e The take home is that the Fermi level is an increasing function of the
density of fermions: e and T are proportional to p?/3, while pp o< p'/3.
(Here, G&T use p for a number density, p = N/V.)

Figure 1: Occupation number (aka distribution function) , density of states,
and their product for fermions. Note: p on these graphs is u(7 = 0).

e The energy, U can be found in the usual way: we take the integral of €
weighted by 7(€)g(e). Above are graphs showing 7 and g; bold curves
are for T' = 0, where we’d find U = %6]:‘. Pressure is, as we've seen

before for massive particles, P = %% . Thus P = %%EF, and the bulk
modulus, —VIP/OV = 2&ep .



Now let’s think about finite temperatures. In particular, 0 < T <<
Tr. A big victory for the free electron gas model is that it gives a
linear dependence of heat capacity on 7" as T — 0. One can find Cy,
qualitatively by arguing that only an effective number N.sr oc N(T'/Tr)
of particles near the Fermi energy can get excited by temperature.
This argument relies on asserting pu(7') ~ e when T' << Tr. Thus

This argument can be made quantitative. In G&T 6.8, a long derivation
yields (hooray)
2 T
Cy = —Nk—
VT oot
For T >> 0, we need u(T') to decrease. Arguing qualitatively: The
area under 72(e)g(e) remains constant ... we want to discuss a constant
number N of fermions. The fact that u(7") changes by decreasing, is
because g(€) is an increasing function of e. Figure 7.14 of Schroeder
might be helpful to view here.

The details of how p(T) varies: hangs close to e; near 7= 0 but then
starts to decrease, can be made quantitative as well. We can also find
how E(T) and C,(T) vary with increasing temperature. Schroeder
and B&B call this the Sommerfeld expansion. Please try to follow
the arguments in these texts. The gist is that we expand n(e) in a
Taylor expansion around €z. The expansion parameter can ultimately

be recast as % The end results are:
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Sometimes we want to go above T, though if the fermions are in a
metal, it might melt first :-o. Both G&T problem 6.30 and Schroeder
problem 7.32 find x(7") numerically. The chemical potential goes through
zero at T' = T, and becomes negative for higher temperatures (as we’d
expect in a classical ideal gas :-).

Quantum gasses at high and low temperatures ... I
want to keep our assignment short this week, so I'm not asking you
to do G&T problem 6.60 on finding P(T') for the ideal Fermi gas or
G&T 6.61 for the ideal Bose gas. I will hope to remember to ask about
these when we do “Real Gasses” (Seminar 13) . Though these are ideal
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Figure 2: Figure 7.16 of Schroeder, chemical potential of ideal Fermi gas.

gasses, they are nonclassical ones. As a result, there is a correction

to PV = NKT so long as the deBroglie wavelength is not negligible

compared to the average spacing between particles. This correction is

positive for Fermions, raising the pressure from the classical result:
Ain N

PV = NET [14—% (v) +]

and is negative for Bosons, lowering the pressure:

B A N
PV = NKT [1 = 35 (57) + -]

o G&T Section 6.11.2 goes over the low temperature expansion of a Fermi
gas. This is also done in both the B&B and Schroeder readings.

Warmup Problems: Due before seminar, Monday or Tuesday at latest
. can hand them in as hard copies during seminar

1: Brainstorming for second presentation In one of our last two sem-
inar meetings (Seminar 13: May 2 or 3 or Seminar 14: May 16) you'll give
your second presentation. It should be no more than 10 minutes, and it can
be as close-to-the book (Chapters 6-10 of B&B) or as beyond-our-syllabus
as you wish. Some favored topics of mine would be one of those B&B chap-
ters, how random walks lead to the diffusion equation, density matrices in
stat mech, or the Renormalization Group treatment of phase transitions. Do
some thinking, and give me one or more stat mech or thermo topics about
which you’d be enthusiastic to talk.

2: Counting Fermions Schroeder Problem 7.16



Regular problems:

1: A non-relativistic and a relativistic Fermi gas

i) Each atom in a piece of copper contributes one conduction electron.
By looking up the density and atomic mass of copper, find the Fermi energy,
Fermi temperature, and the degeneracy pressure. Is room temperature low
enough to treat the electrons in copper as a degenerate Fermi gas?

ii) Suppose you have a gas of very high energy, hence relativistic, elec-
trons. In this case, the energy of an electron is € = pc where p is momentum.
Modify the derivation of the Fermi energy of a classical electron gas (found
in all three of our textbooks) to show that
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Also, please show that the total energy is
3
U= ZNGF

for this relativistic Fermi gas. How does this compare with the non relativis-
tic case? (This is Eq. (7.42) of Schroeder, or alternatively Eq. (6.152b) of G&T).

2: Einstein and Debye Theories G&T Problem 6.35
3: A neutron star G&T problem 6.55
4: A Fermi gas at low temperature (7' < Tp) G&T problem 6.31

5: Chemical potential for a Fermi gas Schroeder problem 7.32
6: Toy system of Fermions G&T Problem 6.57

7: Magnons Schroeder Problem 7.64



