
Physics 114 Statistical Mechanics Spring 2018

Seminar 10

Overview:
We have done lots of work on the ideal gas. It is “semiclassical” in the sense
that we count states in a box using quantum ideas, but then we assume it
is dilute enough that every quantum volume λ3

th contains at most 1 particle.
This week, we take on quantum gasses. They are noninteracting, so we want
to call them “ideal”, but are dense enough so Fermi-Dirac or Bose-Einstein
statistics are needed to count how many particles occupy a quantum state
indexed by the wave number ~k. This is a challenging topic, with many inter-
esting applications, and we break it up into two weeks. This week, we begin
with the general idea of how to count the expected number of fermions or
bosons, n̄k in any state ~k. To find thermo averages, say energy Ē, we must
integrate the product E(~k) × g(~k) × n̄k, where g(~k) is the density of quan-
tum states which we we first met, in the case of an ideal gas, a few weeks ago.

Other quantities we’ve met, which become exceptionally useful, are grand
canonical ensemble and its grand potential. We also find that activity which
is also known as fugacity, z = f = eβµ, is an elegant way to parametrize
the state of a bose or fermi ideal gas. New pieces of mathematics this week
are the polylogarithm and zeta function, discussed in Appendices of B&B.
While this week we learn the nuts and bolts of dealing with bosons and
fermions, we bias our work toward the boson gas. (We will save the topic of
Bose-Einstein condensation for next week though.) Bosons are particles with
integer spins, and one can have an infinite number of these in any quantum
state. Photons are massless bosons, and a very important application this
week is photons in thermal equilibrium, also known as black body radiation.
Another important application (which we’ll take up next week) is quantized
vibrations, or phonons in solids.

Required Reading:
G&T Sections

• 6.3-6.5.1 this overlaps with reading we did for Seminar 8

• 6.5.2 this is also some review, but I’m asking you to think for the first
time about relativistic particles

• Section 6.7

B&B Sections

• Chs. 23 and 29

• Problem 29.6 ... we don’t have time to do it this week, but it is an
amazing problem that teaches us yet another way to think about where
Fermi-Dirac and Bose-Einstein statistics come from



• Section 30.1

• Appendices C4 and C5

Schroeder Sections

• 7.2 and 7.4

Recommended Reading:

• A paper by H. Leff that compares a classical and Boson ideal gas,
PhotonGasAJP.pdf is in our Resources folder.

Concept checklist from Readings:

• About counting Bosons and Fermions ... There is a
paradigm shift in how we think of counting states this week. Instead of
saying we have N particles, and talking about the state each particle
is in, we make single-particle states the primary focus. We ask about
how many (identical) particles exist in each of these states.

• Due to their half-integer or integer spins (in a way which one text
admits most physicists accept but don’t understand) fermionic wave
functions are odd under exchange of particles, whereas bosonic wave
functions are even. Thus, you cannot have two fermions in a state with
identical quantum numbers. Not so for bosons; an arbitrary number
can occupy the same quantum state.

• Though our ultimate goal is to understand systems with large numbers
of bosons or fermions, the texts take us through some “toy” problems
where we have only a few particles. Problems like Schroeder 7.8, 7.17
or G&T 6.15 are worthwhile, because they go to the heart of the kind
of state counting needed for fermions or bosons.

• How many quantum states do we have within small range, dk, around
the quantum state k? Here, k is a label, though in many applications
it is the magnitude of the wave number, k = p/λ. As we’ve seen before
(twice!) the number density of states near k is called the density of
states (DOS), written as g(k). Sometimes we are interested in using
g(k) to find g(ε)dε, the number of states within dε of energy ε. This can
be found by setting g(k)dk = g(ε)dε and knowing ε(k) for our system
of interest.

• In past seminars, we’ve used ε = h̄2k2/2m for semiclassical gas parti-
cles. Particularly relevant this week is the relation between k and ε for
photons: ε = h̄ck.

PhotonGasAJP.pdf


• Don’t we already know how to deal with identical particles? Isn’t
Z(N) = ZN

1 /N ! ? Not necessarily ... see Schroeder Section 7.2 for a
good argument. We consider the semiclasical result Z1 = V/λ3

th. (His
notation is vQ ≡ λ3

th, the quantum volume). If it is not the case that
NvQ << V , then the quantum particles are too close to each other
for a semiclassical treatment. It is likely that two particles could try
to share the same single-particle state. This is forbidden for fermions.
While it is OK for bosons, it ruins the counting argument that leads to
Z(N) = ZN

1 /N !, because that argument assumes there is at most one
particle in each state.

• Let’s tune our thinking to the Grand Canonical ensemble. For a semi-
classical gas, µ = −kT ln(Z1/N). Such a gas has a negative µ with
a very large magnitude. If this is not true of µ, we need the kind of
quantum counting arguments that we learn this week.

• How many particles do we expect to exist in any single quantum state
labelled by k? This is the occupation number n̄k. Finding this quantity
lends itself to Grand Canonical statistics. Now, we must take into
account the distinctive statistics of bosons and fermions. Fermions can
only have nk = 0 or 1 particles in state k. Bosons can have an infinite
number.

• All three of our texts tackle the calculation of n̄k. Below I use language
which most closely follows G&T 6.4, but Schroder 7.2 and B&B Ch.
29 are also fine references!

• We write the grand partition function as ZG = ΣkZG,k where

ZG,k = Σnk
e−βnk(εk−µ)

Chasing through the two cases (fermions, bosons) leads to:

ZG,k = (1± e−βnk(εk−µ))±1 with + for fermions ; − for bosons

• To get the bosonic result, the sum in ZG,k from nk = 0 to ∞ leads to
a geometric series, and the convergence of the series requires that the
chemical potential µ < 0 for bosons, just as is true for a semiclassical
ideal gas.

• The Landau potential for each energy state is Ωk = −kT lnZG,k and
the expected occupation number is n̄k = −∂Ωk

∂µ
. These lead to

n̄k =
1

eβ(εk−µ) ± 1
with + for fermions ; − for bosons



• As a pure function of the variable ε and parametrized by µ, these two
expressions are known as the Fermi-Dirac and Bose-Einstein distribu-
tion functions:

fFD(ε) =
1

eβ(ε−µ) + 1
; fBE(ε) =

1

eβ(ε−µ) − 1

Figure 1: f(ε) vs. ε; classical behavior when β(ε− µ) >> 1

• When we have many single-particle states close together, we can find
thermodynamic averages by treating sums over states k as integrals.
We use n̄k g(εk) as the weighting factor for the quantity we want to
average. For example, the mean energy would be

Ē =
∫ ∞

0
εkn̄(εk)g(εk)dεk

while the expected number of particles is

N̄ =
∫ ∞

0
n̄(εk)g(εk)dεk

• B&B Section 30.1 treat quantum counting in a formal, general way.
For example, you know that from quantum mechanics that there are
2S + 1 spin states for a particle with spin S. Thus, B&B Section 30.1
reminds us that these are part of the quantum labeling of any state,
and end up as a multiplicative factor in the Landau free energy.

• B&B also provide us with generic integrals we need to do, and the
mathematical names for the functions that result. (In the interest of
full disclosure: Mathematica can do these needed integrals, without
your knowing their names :-)



– The kinds of definite integrals that we need to calculate averages
of energy to a power: En−1, are a gamma function, Γ(n) times a
polylogarithm function, Lin(z) which is defined as

Lin(z) = Σ∞k=1

zk

kn
.

– The polylogarithm Lin(z) embraces both fermion and boson cases,
through the sign of the argument z. B&B claim this in Eq.
(30.14), and prove in Appendix C.5.

– The argument z is the activity or fugacity z = eβµ. (We met
this quantity in Seminar 8, when we discovered e.g. that for the
semiclassical gas, N̄ = zZ1.) When µ = 0, z = 1 and the polylog-
arithm becomes a Riemann zeta function, ζ(z). B&B Appendix
C.4 has details on this very useful, special case.

• Photons ... have energy ε = pc = h̄ck = h̄ω = hf where these
symbols have their usual meaning. E.g. p is momentum and wavelength
is λ = c/ν = h/p. When we consider a photon confined to a large box,
its wavelength, hence momentum, is quantized.

• Photons can be treated as a (non-classical) gas and we can do pure
thermodynamics and kinetic theory of gasses to get some good infor-
mation. For example, B&B Section 23.1 shows us that if energy density
is u:

u = AT 4 ; P = u/3 ; Power/unit wall area =
1

4
uc = σT 4

where 1
4
Ac ≡ σ is a constant of proportionality known as the Stefan-

Boltzmann constant.

• If we want to find the value of σ and more, we do stat . We use the
3D density of states g(k) = 2× V πk2dk

2π3 where the extra 2 is for the two
polarization states. This can be recast as g(εk) or g(ω) in order to find
the average energy:

Ē ≡ U =
∫ ∞

0
h̄ω n̄BE(ω)g(ω)dω

where n̄BE(ω) is the Bose Einstein occupation number distribution with
µ = 0:

n̄(ω) =
1

eβh̄ω − 1

• Doing the integral above gives U = AT 4 as thermo predicts. The
integral is set up to go over angular frequency ω, but we change vari-
able to get an expression for A that is proportional to

∫∞
0

x3

ex−1
dx =

ζ(4)Γ(4) = π4/15. Thus we have an exact value for A =
π2k4B

15c3h̄3
. The

Stefan-Boltzmann constant is thus σ ≈ 5.67× 10−8Wm−2K−4.



• Though we will not have time to focus strongly on it in this semi-
nar, please do the excellent reading of B&B sections 23.3, 23.3 and
23.8 (which overlaps with some of Schroder 7.4) to learn topics which
astrophysicists and laser/atomic physicists need:

– spectral energy density

– absorptivity, emissivity and how they are related by Kirchoff’s law

– Einstein A and B coefficients.

• A black body is a system (a kiln, a star, ... ) containing photons at
thermal equilibrium. Please be able to work with the black body dis-
tribution, which is the quantity under the integral sign in the equation
for energy:

u(ω) =
h̄ω3

π2c3

1

(eβh̄ω − 1)

Please know that this is the energy density near frequency ω. Know
how to change variable to find u(λ). In terms of either variable, this
function has a characteristic shape ... zero at high and low frequencies
and peaked in the middle at a place, ωmax or λmax, which you can find
by setting the derivative of u equal to zero. This peak occurs where
h̄ωmax/kT = 2.821.... This has a name: Wein’s displacement law.

Figure 2: u(λ) vs. λ; classical behavior when h̄c/λ << kT

• At long λ (small ω) this spectrum can be described classically, with
equipartition applying to modes of E&M radiation. In this regime,
u ∝ λ−4, which is known as the Rayleigh-Jeans law. At short λ, the
spectrum goes to zero because when h̄c/λ >> kT there is insufficient
thermal energy to occupy such high energy modes. This limit, which
was termed the “ultraviolet catastrophe” because Rayleigh-Jeans blows
up there, benefits greatly from knowing the stat mech of photons. As
with the classical paramagnet problem done last week, stat mech shows
that quantum mechanics is real! Both high and low wavelength limits
are beautifully fit by using the BE distribution function.



• Please be able to combine stat mech and thermodynamics, as in G&T
Problem 6.25 or the assigned problems Schroeder 7.44, 7.45. These
ask you to derive good stuff like entropy and free energy of photons in
equilibrium. Below are a couple of tables (from the optional reading by
Leff) that give a snapshot of how the photon and matter ideal gasses
compare.

Presentation: We don’t have a lot of time for presentation this week.
But a cool and often neglected piece of math is summarized in Appendices
C4 and C5 of B&B : the Riemann zeta function and polylogarithm. Please
prepare a presentation on at most two sheets of paper (or a small number of
slides) that teach us about these functions. Also, describe an application of
each of these functions to what we are studying this week.

Warmup Problems: Due before seminar, Monday or Tuesday

1: Counting states for three cases: Schroeder Problem 7.10

2: Black body stuff:
Schroeder problem 7.37
Schroeder problem 7.38

Leftover problems from last week, Seminar 9:

• Wednesday Section A: Problems 5, 6, 7

• Wednesday Section B: Problems 5, 6, 7, 8



• Thursday Section: Problems 6, 7, 8
also Daniel’s presentation, also Jaron solving Seminar 8, problem 7.

Regular problems:
Note: Some of the problems I’ve assigned are two textbook problems. Some
just one problem but, as in the case of Problem 6, Schroeder 7.49, it is long.
Please introducers and solvers ... talk together and share the work. The in-
troducer can do some of the solving!

1: Finding µ from N for bosons:
(Introducer, please compare for us the situation with bosons vs. classical
particles. If you want, get us inspired by doing the short, easy Schroeder
Problem 7.15?)
Schroeder problem 7.17

2: The Cosmic Microwave Background B&B Problem 23.3

3: Ortho and parahydrogen B&B Problem 29.5

4: Relativisitic particles:
G&T 6.18
G&T 6.20

5 : Energy, Entropy and Pressure of a photon gas:
Schroeder problem 7.44
Schroeder problem 7.46

6: Early universe with electrons and positrons:
Schroeder problem 7.49


