
Physics 114 Statistical Mechanics Spring 2018

Seminar 9

Overview:
Magnets! This week, we will envision magnets as lattices populated by spins,
with magnetic moments. Spins are distinguishable objects which, in the sim-
plest model of magnetism, can point either “up” or “down” along a chosen
axis. Each spin’s energy is lower when it is parallel to an applied magnetic
field. If these spins do not interact with one another, we have a paramagnetic
material, possible to treat with the kind of statistical mechanics we have ap-
plied to Einstein solids, ideal gasses, and other noninteracting systems.

If the magnetic moments interact, as they will in a ferromagnet, there can
be a phase transition. This transition is highly analogous to the gas-to-
liquid transition in a real fluid, which we will meet in a future week. The
simplest ferromagnet model is the Ising model, in which nearest neighbors
lower their energy by aligning. They will align even in the absence of an
external magnetic field, if T < Tc, a critical temperature. We will study
this “paramagnetic-to-ferromagnetic” phase transition, finding that in 1D
the critical temperature is Tc = 0. Other properties like the magnetization
and magnetic susceptibility are readily calculated in 1D. In 2D finding an
exact solution is much tougher, and in 3D it’s impossible. For these reasons,
we will learn other fruitful approaches to magnetic phase transitions, like
mean field theory and Monte carlo simulation.

Required Reading:
G&T Sections

• Sections 5.1-5.9

B&B Sections

• Section 28.8

Schroeder Section

• Section 8.2
Electronic copy in“Resources” at our Moodle Site

Recommended Reading:

• There are several readings that we’ve already done, that are an excellent
review of paramagnetic spins

– B&B Example 20.5 is a review of the spin 1/2 paramagnet



– B&B Section 3.5 pages 134-137 is a review of Bernoulli processes
applied to magnetic spins

– B&B Example 4.1 is a review of Microcanonical stats for N non-
interacting spins

– Schroeder Section 3.3 is an accessible and complete discussion of
paramagnetism; you can find a copy in “Resources” section of our
Moodle site.

• Baierline pp. 389-397 (sections 16.3 and 16.4) has a great discussion
of the Ising model, including mean field theory. He clearly defines
main concepts like spontaneous magnetization, critical temperature, and
critical exponent. He ends by summing up successes and failures of the
Ising model (exact and mean field approximation) when compared with
real-world magnets.

Concept checklist from Readings:

• Spins in a paramagnetic lattice do not interact with each other but
only with an external field, B, so each spin has energy ε = ±µB. The
sign depends on if it is spinning antiparallel or parallel to an applied
field. The macrostate is given by how many spins, n are parallel to
the field. We thus have a microcanical ensemble where energy is E =
−nµB + (N − n)µB.

• For the microcanonical paramagnet, there are Ω = 2N total microstates,
each equally likely. The multiplicity of macrostates is Ω(n) = N !

n!(N−n)! .

We use familiar arguments to find 1
T

= ∂S(E)
∂E

.

• As usual, canonical statistics may seem easier :-) The partition func-
tion yields all other quantities of interest. For a paramagnet, Z1 =
2coshβµB and ZN = ZN

1 . Canonical and microcanonical treatments
agree that E = −NµB tanh(βµB).

• As with other systems, F = −kT lnZN , Ē = −∂ lnZN
∂β

, and

CB = (∂E/∂T )B can be found. The specific heat is, for example,
CB = kN (βµB)2 sech2(βµB).

• Of special interest for magnetic systems are the expected magnetization

M = µ Σis̄i = −∂F
∂B

In the paramagnetic case, M = Nµ tanh(βµB) .



• Also important is the magnetic susceptibility ... which describes how
willing the system is to change its magnetization M in response to an
external field. The susceptibility is

χ =
∂M

∂B

and for a paramagnet, χ = Nβµ2 sech2(βµB). At high temperatures,
we see the Curie law where susceptibility drops as 1/T .

• A problem this week asks you to show that χ = β(< M2 > − < M >2),
so fluctuations in magnetization determine the susceptibility, just as
fluctuations in energy determine the specific heat.

• The intensive quantity of magnetization per spin is m = M/N . From
here on, we tend to drop the symbol µ ... and treat magnets as if they
are just spins of size ±1.

• The thermodynamics of magnetic systems is not very intuitive for most
of us. G&T focus on the H field because it is what we control. The
analogy to a fluid is M is like pressure, P and field H is like volume V .
(Definitely not intuitive.) If we accept this, we can writeG(T, P,N) and
F (T,H,N) = G(T,H,N) − HM , the usual Legendre transformation.
Then

M = −(
∂F

∂H
)T ; χ = (

∂M

∂H
)T

• Paramagnets can be artificially set up at a negative temperature. T < 0
is actually hotter than T = ∞. See the review reading in Schroeder
Ch. 3 or Baierlein for this interesting situation.



• The Ising model for a ferromagnet comprised of N distinguishable,
quantized spins. The Hamiltonian for a microstate of the N spins
looks like

E({s1, ...., sN}) = −Σi,j neighbors Jsisj − Σi siH

where si = ±1 are the values allowed for any spin. The canonical
partition function is thus ZN = Σmicrostatese

−βE(microstate)

• Writing ZN down does not mean solving it in closed form. Now that
we have a system with interactions, the partition function does not
decompose into a product : ZN 6= ZN

1 as it did if we had J = 0 and
were back to solving a paramagnetic system. Before we get into math
details, let’s get comfortable with the conceptual landscape.

Figure 1: A microstate of ising spins. An external H field would point up or
down.

Figure 2: Green is a paramagnet. Magnetization is zero at H = 0 for a
magnet that doesn’t remember its history like a (green) paramagnet or (blue)
superparamagnet (not part of our course, but cool.) The pink curve is a
ferromagnet, which has had H increased and decreased repeatedly ... it
remembers its past and has leftover magnetization, showing “hysteresis”. For
example, M(H = 0) 6= 0. However, if we started an experiment at H = 0
with a ferromagnet having M = 0, and then we increased (or decreased)
H from zero, it would do what the blue curve does. Take home message:
Because neighboring spins want to align in a ferromagnet, M(H) has the
same general shape, but rises more strongly than in a paramagnet.



Figure 3: A phase diagram, M(T) for an Ising ferromagnet. First follow the
black line ... it has H = 0±. Above a critical temperature T > Tc there is zero
magnetization (entropy wins). For T < Tc there is nonzero magnetization,
that increases as T decreases, and spins become successively more aligned
(energy wins). The white regions are best explained by looking back at the
blue line in Figure 2. There is a nonzero M when H 6= 0 at all temperatures.
Spins always want to align with H. The shaded regions are forbidden.

Figure 4: Plot of M(H) showing the difference between passing through H =
0 if the Ising ferromagnet is above, at, or below the critical temperature Tc.
For T ≥ Tc, M is continuous. But for T < Tc, as soon as H rises from zero,
M jumps up to a finite value. (This is one case that isn’t shown in Figure
2.) Another way to look at this jump is to look at Figure 3. The jump
involves crossing the “forbidden” shaded region when going between positive
and negative H values.



• One can make small models of interacting spins. Example 28.9 in
B&B uses a 4x4 lattice and shows how to count states, leading to Z
and < E >. There are some good lessons here: the ground state
is degenerate; and there’s a “crossover” from ordered to disordered
macrostate as a function of kT/J .

• The simplest analytically-solvable case in the thermodynamic limit (i.e.
N →∞) is a 1d Ising model with H = 0. It is tractable in a couple of
ways. G&T section 5.5 talk about solving this Ising chain by directly
counting states. They find find ZN = 2(2cosh(βJ))N−1. If we close the
chain so that the N th spin interacts with the first, there is a small dif-
ference which is immaterial in the N →∞ limit: ZN = (2cosh(βJ))N .
From ZN of course, we find energy, free energy, magnetization, specific
heat, and susceptibility.

• Schroeder points out that this ZN for the ferromagnet has exactly the
same mathematical form as ZN for the paramagnet, if one replaces J
with µB. This is only true in 1d.

• χ diverges as T → 0. A phase transition!? It is a matter of definition
... since it doesn’t occur at a nonzero temperature. Both B&B and
G&T make an argument about “domain walls”, which in 1d is just the
place where a row of spins changes alignment. It costs a bit of energy
and a lot of entropy in 1d, which supports the idea that in the N →∞
limit, the 1d Ising model is paramagnetic for all nonzero T .

• There is one more trick that works for the 1d Ising model for both zero
and nonzero H. This is the transfer matrix method. We can write
ZN = tr(T̃N) = λN+ + λN− where

T =

(
eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
λ± are eigenvalues

This exact solution not only lets us calculate all thermodynamic quan-
tities, but supports the result that the H = 0 ferromagnetic transition
does not exist save at Tc = 0.

• Let’s now talk about higher dimensions. For H = 0 in 2d, 3d, ...
there is definitely an exciting kind of transition... an “order-disorder”
transition. Tc is called a critical point. Below Tc, the system exhibits
spontaneous magnetization. Quantities like C and χ are singular, or
even divergent with so-called critical exponents. E.g. χ ∝ |T − Tc|−γ.
(More about them later when we study “critical phenomena”.)

• The spin-spin correlation function G(r) measures the correlations be-
tween spin directions when the spins are separated by distance r.
G(r = 0) = m2 − m2 ∝ χ. For arbitrary r, G(r) usually dies



off exponentially, as e−r/ξ(T ) where ξ is the correlation length. But as
one approaches the critical point Tc, ξ(T ) → ∞ . At distances less
than ξ will die off as G(r) ∝ 1

rd−2+η . This slower, algebraic die-off near
the phase transition suggests that spins “communicate” over large dis-
tances.

• The 2D Ising model has an exact solution thanks to Onsager (and
later by Yang). The solution begins with the transfer matrix, but
then treats spins using the Pauli spin matrices of quantum mechanics,
creation/annihilation operators for spins ... beyond our scope.

• A very accessible technique that yields Tc and critical exponents (though
not the correct ones) is mean field theory ... also known as “Weiss
molecular field theory”. In this theory, we replace Σneighbors j sj with
q m . Here, q is the number of neighbors of any spin. Self-consistency
in the definition of m leads to

m = tanh(βµH + βqJm)

This in turn leads to (for H = 0) Tc = qJ/k.

• Problem 5.18, which will be done this week, shows that one can also
write a mean-field theory expression for the free energy. This is an
even more fundamental thing than the Weiss theory described above.
This expression for free energy is called a Landau theory. For the
ferromagnet:

f(m) = a−Hm+ b(1− βqJ)m2 + cm4

We will do more with this in future weeks - but even now we see that this
free energy can be used to find out which solution of the self-consistent
equation for m is the stable one!



• Monte Carlo again?! Yes, because another very accessible technique to
study magnets is Monte Carlo (MC) simulation. Please know that MC
creates a trajectory, a sequence of states of the system. MC sampling
involves finding the average of a quantity of interest ... call it G:
< G >T = (1/T ) ΣjGj where on step j of the trajectory of length T ,
the value of G is Gj.

• Being even more careful, we mights find partial averages of the quantity
e.g. < G >(Li) over the ith set of L steps along the trajectory. Taking
many successive sets of L steps allows us to find the average:
< G >T = ( L/T ) ΣLi < G >(Li). This gives us a good estimate of
the true < G > as the trajectory length T grows. This also lets us
estimate uncertainties in our estimate by finding the sum of squares of
deviations of the set of < G >(Li). When you click “zero averages” for
the ith time in a G&T simulation and then compile data for L more
steps, you are finding a partial average in this way.

• The nuts and bolts of MC simulation in its very simplest form involves
just trying configurations at random. A slightly less simple form which
lets us avoid wasting time in configurations of low probability is impor-
tance sampling via an acceptance/rejection algorithm we’ve met before:
Metropolis algorithm. Now, the probability distribution we want to
sample is the Maxwell-Boltzmann probability which governs the Ising
system: prob ∝ e−βE({s1,....,sN}).

• G&T and Schroeder both give us the rules for sampling with the
Metropolis algorithm in order to achieve the canonical distribution.
We make a trial move from spin microstate a to state b say, and then
accept or reject it so that

proba→b/probb→a = eβ(Ea−Eb)

If Ea and Eb are the Hamiltonians associated with two different spin
configurations, a and b respectively, this allows us to simulate the Ising
model.

• Critical slowing down is an enemy of Metropolis Monte Carlo calcu-
lations near a critical point. B&B mentions the Wolff algorithm, and
G&T describe it in the description page that shows up when you launch
their simulation of the 2d, square lattice, Ising model: If we are inter-

ested only in the static properties of the Ising model, the algorithm used to

sample the states is irrelevant as long as the transition probability satisfies

what is known as detailed balance. The Wolff algorithm flips a cluster of

spins rather than a single spin, and is an example of a global algorithm. The

utility of the Wolff algorithm is that it allows us to sample states efficiently

near the critical temperature; that is, it does not suffer as much from critical

slowing down.



• The Lattice Gas is the Ising Model in disguise ... we treat a spin up
like an occupied lattice site, and a spin down as an empty one. Math-
ematically, we define ni ≡ (si + 1)/2 to get a variable ni = 0, 1. We
find attractive interactions of magnitude uo between occupied neigh-
boring sites if we define uo = 4J . We also have a chemical potential,
µ = 2H−8J . The energy of the gas (if we get rid of a constant additive
factor) becomes:

E = uoΣi,j neighbors ninj + µΣini

• The easiest thing to do with a lattice gas model is to simulate it, as is
done in a problem assigned this week. This gas can undergo a phase
transition. Just as the Ising model develops a spontaneous magnetiza-
tion at Tc, there will be a jump in the density of the gas at a critical
temperature. Below its Tc, a “liquid” (condensed phase) will appear.
The easiest way to collect the liquid is to turn on a gravitational field
- done in the simulation - allowing it to collect at the bottom of the
simulation cell. Watch one evolve on YouTube:
https://www.youtube.com/watch?v=DljO94GXsKc

https://www.youtube.com/watch?v=DljO94GXsKc


Presentation: The lattice gas
Please do G&T Problem 5.23. Explain to us how a lattice gas is like or unlike
an Ising model. Is there a critical temperature Tc? What happens to the gas
when the temperature crosses this value? What happens when you lower the
temperature very quickly, a “quench”? What happens when you turn on a
gravitational field?

Warmup Problems: Due before seminar ... Tuesday is ideal
1: Thermodynamics of noninteracting spins G&T Problem 5.3

2: Microcanonical derivation of M Schroeder Problem 3.19.
This problem asks you to fill in the missing steps to derive his equations 3.30,
3.31 and 3.32.

Regular problems:

1: Magnetic susceptibility

i) G&T Problem 5.2
ii) Demonstrate that this makes sense when applied to paramagnets by doing
the following: Show that your answer to i) plus the expression for χ in G&T
Eq. (5.19) imply that

M̄2 − M̄2 = Nµ2sech2(µβB) (1)



In Ch. 3 when we studied the Binomial distribution, G&T Eq. (3.78) claimed
that:

M̄2 − M̄2 = N(4pq) (with µ ≡ 1) (2)

Show that Eqs. (1) and (2) above are equivalent, when Eq. (2) is applied to
spins in equilibrium at temperature T .

2: Thermodynamics of 1d Ising model G&T Problem 5.6

3: Mean field (Landau) free energy G&T Problem 5.18

4: Transfer matrix solution of 1d Ising chain
Please fill in some steps in the derivation so that everyone understands this tech-
nique. In particular:

i) Show that the definition T =

(
eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
implies G&T Eq.

(5.76), that ZN = Tr(TN ).

ii) Find the eigenvalues of T which are given in Eq. (5.80).

iii) Show that Eq. (5.81) follows, so that only the larger eigenvalue λ+ is im-
portant in the thermodynamic limit.

iv) Do the algebraic manipulations necessary to find m(T ) as in Eq. (5.83).
Plot f this function: m(T ) vs. T for cases H = 0 and H = 1 . For each case, use
J = 0, 0.5, 2.0,and 4.0 to show us how this function looks.

5: 2d Ising model via MC simulation
Use the “Ising model: Square lattice” program to do parts (a) - (d) of G&T Prob-
lem 5.13. You can do fewer temperatures than they say in part (c); it’s fine to do
T = 3.6, 3.1, 2.6, 2.3, 2.1, 1.9 and 1.6.

6: Counting states with small magnetic systems
i) Do G&T Problem 5.7 . Compare your data (admittedly only two points) for
G(r) with the infinite chain result : G(r) = tanh(βJ)r

ii) G&T Problem 5.36

7: Critical temperature, Critical exponents
i) Please take us through the mean field theory calculations that yield Tc and the
exponents β, γ and δ for the 2d square lattice.

ii) What would mean field theory predict for Tc and the critical exponent β for
the triangular and hex lattices shown below? Also below are exact and simulated
data (S. Eltinge, 2015) on Tc and the critical exponent β. Does mean field theory



care about lattice type or spatial dimension in terms of the Tc it predicts? How
about for the critical exponents it predicts?

8: Playing around with the Onsager solution
Though our texts don’t, a few undergraduate books quote the famous “Onsager
solution” ZN for the 2d Ising model. It is:

ZN (H = 0) = [2cosh(βJ)eI ]N

where

I =
1

2π

∫ π

0
ln[

1

2
(1 + (1− κ2sin2φ)1/2)]

and
κ(βJ) = 2sinh(2βJ)/cosh2(2βJ)

a) This is a familiar form for ZN if one sets I = 0 ... what other system has
this partition function? If I = 0 for the 2d Ising ferromagnet, what temperature
does this correspond to?

b) Using ZN above, find an expression for F/N , the free energy per spin.

c) We could differentiate the result of b) ourselves to find the energy E, but
let’s trust that G&T have done their math right; assume that E is given by G&T
Eq. (5.88). Use Mathematica’s EllipticK function to show that the needed “el-
liptic integral of the first kind” indeed has a divergence at κ = 1.

d) Show that κ = 1 when T = Tc is equivalent to saying sinh(2J/kTc) = 1.
Then solve numerically to find Tc and confirm Eq. (5.86).

e) Again using Mathematica if you wish, try to reproduce the plot on p. 264
of Eq. (5.90), which is C(kT/J) vs. kT/J .

f) Your experience of specific heats from earlier seminars tell you that C(T )
peaks at a temperature T where lots of modes are becoming available for energy
to inhabit. Extend this understanding to the 2d Ising model ... what is happening
to the system near the critical temperature?


