
Physics 114 Statistical Mechanics Spring 2018

Seminar 8

Overview:
The big theme this week is systems where particle numbers can vary . We
learn the third major ensemble: the grand canonical ensemble. The grand
canonical partition function is noted as ZG or Z. From Z(T, V, µ), all thermo-
dynamic quantities can be calculated for a system in contact with a reservoir
that can supply both energy and particles. The reservoir serves to establish
both the smaller system’s temperature, T (as for a canonical system) and its
chemical potential, µ, whose importance we will probe this week.

Later in seminar, we will find that grand canonical statistics are essential
for dealing with quantum particles which are not conserved in the universe
(photons, phonons, ... ). This week, we begin just past the part of G&T (p.
329) where they derive expressions for the expected number of particles n̄k in

any quantum state ~k. We can exploit their results - sticking to examples with
semiclassical particles - to find thermo averages, like energy Ē. We’d find
Ē by integrating the product E(~k) × g(~k) × n̄k, where g(~k) is the density
of states. We’ve already calculated g in previous weeks for particles-in-a-
box; we are reminded of its value this week for both matter particles and
photons. This week we do problems that apply grand canonical statistics to
ideal gasses, absorption on surfaces, chemical reactions and osmosis.

Catching up and moving on :-) We have a numerical and an analyt-
ical issue to catch up on ... both of which have to do with probability. In
section Wed B, we did not hear a presentation about a classic Monte Carlo
simulation of N particles, so Amy will do a short presentation on it this week.
Finally, we will do a couple of problems on Bayesian statistics, for which we
did not have time in Seminar 5.

Review Reading:
Bayesian statistics: G&T Section 3.4.2 and B&B Section 15.6
Canonical Monte Carlo simulation: Section 4.11

Required Reading:
G&T Sections

• Section 4.12

• Sections 6.5, 6.6, and 6.11.1
Note: Parts of these Ch. 6 readings are tough going without having
read Sections 6.3 and 6.4. For now, just use Section 6.4 equations like
(6.85), (6.86) and (6.87). (We’ll cover the derivations two weeks from
now :-) .



• Sections 7.1, 7.2 and 7.5

B&B sections

• Ch. 22

Schroeder section (scan is on our Moodle site)

• Section 7.1

Concept checklist from Readings:

• The Grand canonical ensemble has a probability distribu-
tion known as the Gibbs distribution:

Ps =
1

ZG
e−β(Es−µNs); where ZG = Σs e

−β(Es−µNs)

• Notation alert: The grand partition function is noted as ZG in G&T
and Z in both B&B and Schroeder.

• The proof that the Gibbs probability distribution is established equi-
librium is very much like the one for the Boltzmann probability distri-
bution. We argue that the system shown above has Ns particles and
energy Es , with energy and particles being exchanged with a huge
bath. Thus:

lnΩb(E−Es, N−Ns) = lnΩb(E,N)−d ln Ωb(E,N)

dE
Es−

d ln Ωb(E,N)

dN
Ns+...

From earlier weeks, we recall that

d ln Ωb(E,N)

dN
≡ 1

k

dSb
dN
≡ −µ/kT .



Because the equilibrium probability of observing a particular value
of Es and Ns is proportional to Ωb(E − Es, N − Ns) (which assumes
Ωs(Es, Ns) = 1) we are lead to the Gibbs distribution.

• The chemical potential, µ , will be very important this week, and we’ll
say more about it below.

• In the definition of the grand partition function,

ZG(T, V, µ) = Σs e
−β(Es−µNs)

you should infer that Es depends on Ns . So to calculate Z you might
first sum over all states for a given Ns and then sum over all possible
Ns:

ZG = ΣNse
βNsµ ΣEs,where s has Ns particles e−βEs

• What we have just written is:

ZG(T, V, µ) ≡ ΣNe
βNµZ(T, V,N)

where Z(T, V,N) is the canonical partition function. Cool! ZG is a
transform of Z, where the variable N is transformed to µ. Moreover,
the Landau free energy, Ω, which is also known as the grand potential,
is a transform of the Helmholtz free energy. They are related by a
Legendre transform: Ω = F − µN .

• Below is a figure (Clemson University website) which shows how mul-
tiplying Z(N) by e−αN , produces a sharp peak at N̄ , the mean number
of particles in the system. (Note: Their variable α is our -βµ . For the semi-

classical gas, µ << 0 . So with α > 0, the shape of graph is sensible and relevant

:-)



• The grand potential is proportional to the logarithm of the
grand partition function; just as F = −kT lnZ for the canonical en-
semble.

• Notation alert: the Grand potential is written as Ω(T, V, µ) in G&T,
as ΦG(T, V, µ) in B&B and as Φ(T, V, µ) in Schroeder.

• However you choose to write it, ΦG(T, V, µ) = −kT lnZG(T, V, µ). As
we learned in a problem in an earlier week, ΦG = F − µN = −PV .
For similar mathematical reasons, G = µN .

• A nice summary of the three fundamental potentials: Entropy, Helmholtz,
and Grand are shown in B&B:

Ω = eβTS

Z = e−βF

Z = e−βΦG

• Like their partition functions, the potentials contain all equilibrium
thermodymic information for their respective ensembles. For example,
B&B section 22.4 shows

S = −
(
∂ΦG

∂T

)
V,µ

, P = −
(
∂ΦG

∂V

)
T,µ

, N = −
(
∂ΦG

∂µ

)
T,V

As ever, partial derivatives of a potential yield the “conjugate” quan-
tities to its natural variables. Here: (T, V µ)↔ (S, P,N).

• Chemical potential is discussed both in B&B and stat the start
of G&T Ch. 7. We consider two systems, say 1 and 2, where particles
can be exchanged. Guided by the idea that entropy is maximized, use of
the definition µ/T = −( ∂S

∂N
)U,V leads to µ1/T1 = µ2/T2 at equilibrium

• Furthermore, using the idea that entropy must decrease when systems
move toward equilibrium, we find that particles flow down the gradient
of chemical potential, so if µ1 > µ2 , particles flow from 1 to 2.

• On the topic of chemical potential, be sure you feel comfortable with

– definitions of µ in other ensembles:

µ =

(
∂U

∂N

)
S,V

=

(
∂F

∂N

)
T,V

=

(
∂G

∂N

)
T,P

= G/N

– the example of Figure 7.1, where part of system is raised up in a
gravitational field leading to Nu = Noe

−βmgy



– the example of two Einstein solids which can exchange particles
... leading to ∂lnΩA/∂NA = ∂lnΩB/∂NB at equilibrium

– Free energy arguments, like dG = ΣiµidNi for a multi particle
system. Such arguments

∗ are the basic principle upon which chemical reaction problems
(see below) rest

∗ let us deduce that if we can destroy a species of particle com-
pletely (like a photon) then µ = 0

– the numerical Widom particle insertion method which relies on the
fact that µ is the change in free energy, F , when we add a single
particle to the simulation. A clever idea is to calculate only the
addition to the ideal gas part of µ. This “excess” contribution is
µexcess = −kT ln < e−β∆U >

– the chemical demon Monte Carlo algorithm ... which appears in
a presentation problem this week.

• About grand canonical statistics ... the backstory
for B&B 6.5 and 6.6

• How many particles do we expect to exist in any single quantum state
labelled by k? This is the occupation number n̄k. Finding this quantity
lends itself to grand canonical statistics, because we are not requiring
a certain number of particles exist ... we are instead counting probable
occupation of energy levels. In future weeks, we’ll emphasize the fact
that we must take into account the spin-related statistics of bosons
and fermions. Fermions can only have nk = 0 or 1 particles in state k.
Bosons can have an infinite number.

• We write the grand partition function as ZG = ΣkZG,k where

ZG,k = Σnk
e−βnk(εk−µ)

G&T Section 6.4 goes through the two cases (fermions, bosons) to
deduce that

ZG,k = (1± e−β(εk−µ))±1 with + for fermions ; − for bosons

• The Landau potential for each energy state is Ωk = −kT lnZG,k and
the expected occupation number is n̄k = −∂Ωk

∂µ
. These lead to

n̄k =
1

eβ(εk−µ) ± 1
with + for fermions ; − for bosons

• What is interesting to us this week is the situation for semiclassi-
cal particles, where n̄k is tiny. This is achieved in the limit that



eβnk(εk−µ) >> 1. While G&T call this the Maxwell-Boltzmann dis-
tribution in their Eq. (6.87). I find it odd ... I’m not sure why we
don’t call it the Gibbs distribution.

n̄k = e−β(εk−µ)

• When we have many single-particle states close together, we can find
thermodynamic averages by treating sums over states k as integrals.
We use n̄k g(εk) as the weighting factor for the quantity we want to
average. For example, the mean energy would be

Ē =
∫ ∞

0
εkn̄(εk)g(εk)dεk

while the expected number of particles is

N̄ =
∫ ∞

0
n̄(εk)g(εk)dεk

As in previous weeks, particle-in-a-box counting yields the density of
states g(k) :

g(k)dk =
V k2

2π2
dk the number of waves with wave vector k;

Then one can convert from k to energy, ε for the cases of matter par-
ticles or photons:

g(ε) = ns
V

4π2h̄2 (2m)3/2ε1/2 matter particles with ns internal states;

g(ε) =
V ε2

π2h̄3c3
photons with two polarizationstates

• Chemical reactions are a key application of chemical potential.
A typical reaction might be: |νA|A+ |νB|B ↔ |νC |C + |νD|D . The νi
are stoiciometric coefficients. We translate this to math as

ΣiνiNi = 0

with Ni the number of molecules of type i. By convention, νi > 0 if i
is a product molecule; νi < 0 for a reactant.

• Conservation principles and the minimization of the Gibbs free energy
at a given temperature and pressure lead to

dG = −SdT + V dP + ΣiµidNi = 0 => Σiνiµi = 0 (1)

This is the condition of chemical equilibrium.



• What is a equilibrium constant , K? It sets the ratio of reagents to
products. Its definition depends on the specific reaction, as well as
P and T . We will only deal with gas phase reactions in this seminar
- though liquid ones aren’t much harder once you get the procedure
down. K is defined as

K = Πi(Ni/N)νi ≡ Πi(Pi/P )νi

K is a constant when the reagents and products are in equilibrium.
The relationship above is also called the law of mass action.

• How do we find the value of K? The arguments in B&B and G&T
begin with

µi(T, P,Ni) = µoi (T, P )− kT ln(Ni/N) (2)

Using Eqs. (1) and (2), we find K via

−kT lnK = Σiνi µ
o
i (T, P )

where µoi is the chemical potential of a system of molecules of type i at
temperature T and pressure P . (Remember that µ for an ideal gas is
one of the many things you know how to find from Zideal.)

• Sometimes chemists standardize µo by finding it at a standard tem-
perature and pressure. They often note the standard pressure as P−	−.
This leads to writing, as in B&B, µo ≡ µ−	− and

K = Πi(Pi/P
−	−)νi

• Yet another way to write the equilibrium constant is derived from Eqs.
(1) and (2) above:

K = e−∆rG−	−/RT (3)

The subscript r means that we take the difference between reactants
and products, and we measure these quantities in moles. To find ∆rG,
a table like the one at the back of Schroeder is just the thing!

• Another game we can play with K leads to Le Chatellier’s principle.
Using Eq. (3) and the definition H = G+ TS = G− T (∂G

∂T
)P we find

d lnK

dT
=

∆rH
−	−

RT 2
; or

d lnK

d (1/T )
=
−∆rH

−	−

R
(4)

• How does Eq. (4) help us? Since exothermic reactions have ∆rH
−	− < 0,

it tells us how K drops as temperature increases. Similarly, it tells us
how K rises with T for endothermic reactions. This is Le Chatelier’s
principle ... reactions adjust their equilibrium to try and minimize the
disturbance. If you raise temperature for an exothermic reaction, it
goes less strongly, thereby releasing less heat!



• Another name for the second identity in Eq. (4) is the van’t Hoff
equation. There is a linear relationship between lnK and (1/T ), with
the slope equal to −∆rH

−	−/R.

• Osmosis is a very useful phenomenon involving particle exchange. A
membrane dividing two containers of an A and B mixture is permeable
to only one species, A say. This will result in a pressure higher by an
amount Π, on the the side containing more B. Eventually, Π will reach
an equilibrium value.

• What is this equilibrium value? The question is answered for “dilute,
ideal” solutions in B&B section 22.9. Example 22.8 shows that the
chemical potential of a solvent A with a tiny amount of solute B added
is lowered from the value of the pure liquid. The amount by which it
is lowered is RTlnxA. Using this fact and equating chemical potentials
on either side of the membrane, leads to

Π = nBRT/V

where nB/V is the concentration of B.

• On the way to deriving the osmotic pressure, B&B mention Raolt’s
law. (We will probably see it again when we study phase transitions.)
Raolt’s law states that the vapor pressure of A is lowered from its pure
liquid by a factor xA, if there is a fraction xB = 1− xA mixed in.

• Fluctuations are discussed in G&T 6.11.1. Number fluctuations
are directly proportional to κ, the isothermal compressibility. This is
going to be important when we think about a critical phase transition
later ... fluctuations go wild as a gas becomes so compressible it falls
into a liquid state!

– Don’t worry about a “new Maxwell relation”. Eq. (6.235) does
not have the right form.

– Do follow the logic that leads to Eq. (6.238), with the take-home
message that κ = 1

ρkT
<∆N2>
<N>

– Do take home the message of Eq. (6.240), that <∆N>
<N>

∝ 1√
<N>

Amy’s Presentation (Wed Section B):
Metropolis Monte Carlo

Sydney and Emma’s Presentations (Wed Sections A and B):
A new Demon algorithm



i) Explain the “Chemical Demon algorithm”, which produces the Gibbs dis-
tribution: P (Ed, Nd) ∝ E−β(Ed−µNd)

ii) Begin with the familiar result that for a 3d semiclassical, noninteracting
particles µ = −kT ln[(Z(T, V, 1)/N ]. Adapt it to 1d and show that with
k = 1, h = 1, and m = 1/2, a Demon simulation should give:

µ = −T ln[
L

N

√
πT ]

iii) Do G&T problem 7.7 (c) using their chemical demon applet to take data,
and compare with the value of µ predicted in ii).
iv) This applet lets you go beyond the ideal gas by adding either a “hard
core” close-range repulsion, or an attractive well. Do one of these variations,
take data, and discuss how µ has changed.

Warmup Problem: B&B 22.3
It is OK this week to hand this problem in during seminar if needed. I know
some folks are taking the test late, and others are working on corrections.

Regular problems:

1: Bayesian Statistics
i) B&B Problem 15.6 (see copy below ... it may be missing in some editions)

Note: This B&B problem is done as example 3.15 in G&T. Feel free to
use this as a guide, but also look at G&T Problems 3.23, 3.24. Problem 3.23
asks us to do the problem the “simple way”, by making a table and imagin-
ing our space of outcomes is reduced once the host opens a door. Let’s do
the problem in this simple way, as well as the more elegant way using Bayes’
theorem. Problem 3.24, which asks us to answer assuming that the host was
not informed, and picked the door which they chose completely at random.
It happened to not have a car behind it. Let’s decide if in this case - an
ignorant host - should the the contestant stick with their original choice, or
switch to the remaining unopened door? ii) G&T Problem 3.25



2: Grand canonical statistics and fluctuations in an ideal gas
G&T Problem 6.44

3: PV = 2/3 E the hard way
Do G&T Problem 6.19, but please feel free to specialize to the semiclassical
particle case, where n̄(ε) is described by Eq. (6.87)

4: Chemical reactions: production of Ammonia
The commercial production of ammonia from nitrogen and hydrogen is an
example of a reaction that occurs the gaseous state:

N2 + 3H2 ↔ 2NH3

a) Write down the equilibrium constant, K, in terms of the partial pressures
of the nitrogen, hydrogen, and ammonia. (You may take po = 1 atm.)
b) Using the data tables at the back of Schroder (on our website under “Re-
sources” link) please confirm that at T = 298K, K = 5.9× 105 .
c) Please draw a quantitatively accurate plot of logK vs. 1/T . From this
plot or in some other way, find K when T = 773K. (This is 500oC which is

apparently a good temperature at which to run this reaction, using a catalyst to

speed it up.)

d) Will you drive the equilibrium toward more ammonia, or more nitrogen
and hydrogen, if you increase T?
e) Same question, if you increase the pressure?

5: Absorption onto a surface
Suppose a surface has M distinguishable sites, each of which can absorb at
most one indistinguishable gas molecule. Say that an absorbed gas molecule
has an energy of −ε compared with an unabsorbed molecule. The molecules
have chemical potential µ both in the gas phase and on the surface. (This



is what it means for the gas phase to be in equilibrium with the absorbed
phase.)
a) Show that Z(T, V, µ) = (1 + eβ(ε+µ))M

b) Find the equilibrium fraction, f , of sites that have absorbed molecules.
In other words, if No molecules are absorbed, then f = No/M .
c) By equating µ with the chemical potential of an ideal gas at pressure P
and temperature T , show that

f =
P

P + Po(T )

and find an expression for Po(T ). Hint: Po will also depend on ε, the mass of

the gas particles, and constants of nature.

6: Chemical potential and equations of state of the monatomic
ideal gas
i) G&T Problem 6.21
ii) G&T Problem 6.22

7: Chemical potential and ionization of hydrogen
B&B Problem 22.6

8: Condition of chemical equilibrium
Please write down the conditions of chemical equilibrium for the following
reactions:
i) e+ + e− ←→ 2γ
ii) CH4 + 2O2 ←→ 2H2O + CO2


