Physics 114 Statistical Mechanics Spring 2018

Seminar 6

Overview:

This week, we’ll continue to work with the Canonical ensemble. We’ll
see the simple relationship between Z(7',V, N) and the Helmoltz free energy,
F(T,V,N). We'll practice calculating other thermodynamic variables, both
ones that are easy to measure and control (like P), easy to measure but
not control (like Cy/) and difficult to control (like E and S) from Z(T,V, N).
We'll do problems that bridge the gap between micro canonical and canonical
statistics - showing that for thermodynamically large systems, these provide
two roads to the same destination. Finally, via a presentation,we will study
how one simulates a system of interacting particles using Monte Carlo.

Required Reading:
G&T Sections

e Section 4.7-4.11
e Sections 4.13

B&B sections
e Section 4.7
e Ch. 20
e Ch. 21

Recommended Reading:

e Every book on our Cornell library reserve shelf has a section on the
Canonical ensembles, with good explanations and examples.

e Vis a vis our discussion last week on erasing bits and entropy:
https://arstechnica.com/science/2012/03/
information-and-entropy-finally-linked-through-experiment/


https://arstechnica.com/science/2012/03/
information-and-entropy-finally-linked-through-experiment/

Concept checklist from Readings:

e From Z comes the free energy, and more ... Last
week in B&B problem 14.8 we saw that

S/k=BE+In Z

(except that B&B used U, not E for energy.) This week, this equa-
tion reappears; moreover we learn that Helmholtz free energy is the

“natural” free energy for the Canonical ensemble:
F(T,V,N)=—kT In Z(T,V,N) or equivalently Z = e "

As the logarithm of a “master function”, free energy is also a master
function. Either produces all thermodynamic information.

e This sausage machine:

produces, via explicit formulae we already know, all useful functions of

state.
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Table 20.1 Thermodynamic quantities derived from the partition function Z.




Analogy: Q(E,V,N) and its logarithm S(E,V, N) contain all thermo-
dynamic information in the micro canonical ensemble.

The protocol for the Canonical ensemble is simply described in a box
in Ch. 20 of B&B

1. Write down Z
2. Go through standard procedures to obtain functions of state you

want from Z

Applications of Canonical ensemble to single-particle
systems, with easy extension to /N particles ...

As mentioned last week, often partition functions for N particles are
simply derived from 1 particle ones. This is possible if the particles
don’t interact! This explains why many of the examples this week are
pitched in terms of finding f = —kT InZ(T,V,1), s = —(0f/0T)v,

e = —0 InZ(T,V,1)/9B, ... and so on. These are the free energy,
entropy, and expected energy per particle. For N non-interacting par-
ticles, you just multiply by N.

Many examples are done this week, which are good “toy” models for
realistic systems. Please be sure that for the models listed below, you
feel comfortable finding both single-particle and N-particle quantities
like £, S, C, ...

— 2-level system

— N-level system

— 1d harmonic oscillator

— Rotating diatomic molecule

— Chemical reactions: dependence of products on temperature

— The isothermal atmosphere

— The spin 1/2 paramagnet

— The ideal gas
The specific heat C' = OF /0T is of particular interest this week. Please

be sure you can see a calculation through, beginning with Z and ending
with a “response function” like specific heat.

We have confidence that the equipartition theorem holds for sufficiently
high 7', and this gives us a guide to what E and C' should be in the
high temperature limit.



o Magnetic systems have a couple of observables that we care about in
addition to £ and C. These are the magnetization m = —(0F/0B)r
and the susceptibility x o< 9m/9B. (It is the case that xy o m/B in the
limit that B — 0.) We will do more with paramagnets in a later week;
for now just appreciate that we can find these things in the Canonical
ensemble :-)

e The Canonical ensemble for ideal gasses ... Ch. 22 of
B&B is all about the ideal gas; a review and extension of what we did
last week. In particular it

— reviews finding the density of states g(k) and g(F) with particle-
in-a-box counting arguments.

— emphasizes the importance of the thermal de Broglie wavelength,
now called Ay,. The idea of quantum concentration was introduced
in a problem last week, and is now called ng = 1/A},. When
particles are much less concentrated than ng, they can be treated
classically. An elegant way to write the single particle partition
function for the ideal gas is:

lei
ng

— extends what we already did, to find free energies like F'; G and
H for a Canonical treatment of the ideal gas. Please see Problem
8 ii) for a statement that all ensembles are supposed to give the
same results for these in the thermodynamic limit!

— calculates the Sackur-Tetrode entropy S(7,V,N) and goes over
the notion of entropy of mizring and the Gibbs paradox.

— discusses as an example, the heat capacity of the diatomic ideal
gas. B&B does quantitatively what we did qualitatively in G&T
problem 6.47 last week, when we discussed equipartition for a
diatomic molecule that could rotate (and vibrate).

e The Canonical partition function: its uses and some
useful facts ... (some relevant items from last week’s summary)

e One can not only find the expectation value of the energy:
E = —0 InZ/O0T but also the expected size of mean squared fluctua-
tions in the energy:

< E? — E? >=kT?Cy
e If we use a label « to signify a microstate, then

Z = N, EFe (1)



e [f a macrostate whose energy is E; has got multiple microstates , we
need to count them ... to find the degeneracy g;. Then we can write:

Z =%y, g,E P (2)

Please note that Eqs. (1) and (2) are calculating the same thing in two
different ways.

e Sometimes energy is a continuous variable. Even if discrete, sometimes
energy states are so closely spaced that there is a huge number in any
interval AE we could measure. An example is the semiclassical ideal
gas. In this case, the degeneracy is called the density of states g(E).
This is much like last week when we had probabilities, p(x;) for discrete
variables x;, and probability densities p(x) for continuous variables.
Now,

7 = /g(E)e_fBEdE

e Z(T,V,N) is the partition function for N particles, but we read a
lot about the single particle partition function. Why care about one
particle? Because Z(T,V, 1) is often much easier to calculate, and if we
have N distinguishable particles, it is the case that for noninteracting
particles

Z(T,V,N) = Z(T,V,1)" distinguishable particles

e In a related way, if we have three completely different degrees of free-
dom (like A = rotations, B = translations, and C = vibrations) then
partition functions just multiply

4 =74y Zp Zeo

e What about N indistinguishable particles?

— The right way: Find out if they are bosons and fermions and do
the correct counting arguments

— The not-totally-right way: This works for classical ideal gasses,
and is essential to get the entropy of mixing correct:

Z(T,V,N) = ]\1]'Z(T, V, )N dilute, semiclassical particles
This approach is predicated on the idea that there are so many
states, and so few particles (N is few? Yes, N is few compared
to the number of available quantum states.) that it would be
extremely unlikely to find any two particles occupying the same
quantum state.



e Simulation techniques ...
e In our G&T reading, we learn

— a tiny bit about micro canonical simulations, which will be more
relevant when we do magnetic systems (because other things than
energy are of interest)

— demon thermometer simulations, which we have used with good
results in previous weeks

— canonical simulations, which could be done by solving F' = ma
(molecular dynamics) but are easier to do via Monte Carlo (MC).
A description of the standard Metropolis algorithm is given, which
involves the very useful accept/reject paradigm that will establish
thermal equilibrium at temperature 7.

Warmup Problem: Due before seminar, Monday (best) or Tuesday
(second best) or by seminar time (I'll take it ;-)

1: High T limits of partition functions: B&B problem 20.1

Presentation: MC simulation: Tuking on this presentation pre-
sumes that you feel comfortable enough to write a straightforward MC simu-
lation yourself. I think I recall from the warmup for Seminar 1 that all of you
could do this. It could be a Matlab .m file, or a Python notebook, or Mathe-
matica ... anything. If you do not feel comfortable with this assignment, talk
to me early (like Monday) and we will figure something out?!

i) Talk us through the standard steps of a Metropolis Monte Carlo sim-
ulation, as listed on G&T p. 227.

ii) Construct your own MC simulation and show us some results. Here is
a suggested protocol that would simulate an Einstein solid:

1. Decide on a temperature. That is, let 1/kT =  and pick a value of
5. 1 suggest a value not too different from S = 1, but you can try a
couple of different values, and see what difference it makes.

2. Initialize: Create an array of N numbers representing the energies of a
set of N particles. Let them each start with 0 energy.

3. Pick a random particle (That is, choose a random integer between 1
and N to determine your particle of interest.)



4. Trial move: Toss a “coin” (That is, choose another random integer,
now either 0 or 1.) If heads, consider adding AE = +1 to the energy
of the particle. If tails, think about adding AE = —1 to its energy.

5. Accept or reject the move:

e Definitely accept the move if it would lower the particle’s energy,
but not below zero.

e Definitely reject the move if it would lower the energy of the par-
ticle below 0.

e Accept the move with probability e #2F if it would raise the en-
ergy. (To do this, you need to generate a real random number
between 0 and 1, which G&T call r.)

6. Go back to step 3 and iterate a lot of times ... you want each of the NV
particles to experience many moves.

As the simulation proceeds, measure something interesting. Average energy?
A histogram of energies? Other ...7

Regular problems:

1: Einstein solid + Magnetic system (a review of last week’s methods)

G&T Problem 4.38
Note: My bad ... I really wanted folks to do 4.39 which matches this title.
Whichever of these two you did ... it’s all good.

2: Harmonic Oscillators (We did micro canonical as G&T 4.22 last week
- now ... canonical!)

G&T Problem 4.28

3: More Harmonic Oscillators
G&T Problem 4.50
Hint: Much of this is done in B6B ... please fill in any gaps in math or logic for yourself.



4: 7 and more for a 2-particle system:
G&T Problem 4.52

5: Hydrogen:
B&B Problem 20.8

6: A 2-state system with degeneracy:

B&B Problem 21.4

Also: Please compare and contrast your result for C', Eq. (21.46), with with
Figure 20.4 part (a), which applies to a slightly different 2-state system.

7: Demonstrating an entropy-driven phase transition:
i) G&T Problem 4.34
ii) G&T Problem 4.56

8: Fluctuations in a mole of gas:

What is the probability that a mole of ideal gas at temperature 7" will have
an energy that differs by a factor of 107% (i.e. one part in a million) from its
mean energy?

Hint: Section 4.14.2 of GET



